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Abstract. Background: Tissue counter analysis is an image analysis tool designed for the detection of structures in complex
images at the macroscopic or microscopic scale. As a basic principle, small square or circular measuring masks are randomly
placed across the image and image analysis parameters are obtained for each mask. Based on learning sets, statistical classification
procedures are generated which facilitate an automated classification of new data sets.

Objective: To evaluate the influence of the size and shape of the measuring masks as well as the importance of feature selection,
statistical procedures and technical preparation of slides on the performance of tissue counter analysis in microscopic images. As
main quality measure of the final classification procedure, the percentage of elements that were correctly classified was used.

Study design: H&E-stained slides of 25 primary cutaneous melanomas were evaluated by tissue counter analysis for the
recognition of melanoma elements (section area occupied by tumour cells) in contrast to other tissue elements and background
elements. Circular and square measuring masks, various subsets of image analysis features and classification and regression trees
compared with linear discriminant analysis as statistical alternatives were used. The percentage of elements that were correctly
classified by the various classification procedures was assessed. In order to evaluate the applicability to slides obtained from
different laboratories, the best procedure was automatically applied in a test set of another 50 cases of primary melanoma derived
from the same laboratory as the learning set and two test sets of 20 cases each derived from two different laboratories, and the
measurements of melanoma area in these cases were compared with conventional assessment of vertical tumour thickness.

Results: Square measuring masks were slightly superior to circular masks, and larger masks (64 or 128 pixels in diameter) were
superior to smaller masks (8 to 32 pixels in diameter). As far as the subsets of image analysis features were concerned, colour
features were superior to densitometric and Haralick texture features. Statistical moments of the grey level distribution were of
least significance. CART (classification and regression tree) analysis turned out to be superior to linear discriminant analysis. In
the best setting, 95% of melanoma tissue elements were correctly recognized. Automated measurement of melanoma area in the
independent test sets yielded a correlation ofr = 0.846 with vertical tumour thickness (p < 0.001), similar to the relationship
reported for manual measurements. The test sets obtained from different laboratories yielded comparable results.

Conclusions: Large, square measuring masks, colour features and CART analysis provide a useful setting for the automated
measurement of melanoma tissue in tissue counter analysis, which can also be used for slides derived from different laboratories.
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1. Introduction

Though automated image segmentation procedures
often work well in cytological preparations [6,8,10],
there are often problems in histologic specimens re-
quiring interactive measurements [14]. In order to
avoid segmentation prior to obtaining measurements,
tissue counter analysis has been designed for complex
digital scenes, particularly at the histologic level [11,
12]. Instead of attempting an a priori discrimination
of certain structures and subsequent measurements of
these structures, images are overlayed with regularly
distributed measuring masks of equal size and shape,
representing circular or square partial areas, each of
them representing a tissue element. Image analysis pa-
rameters obtained for each element are recorded and
stored in a database. In the learning step, an expert
interactively classifies each element as belonging to
a particular class of elements, as for example, “col-
lagen of the reticular dermis” or “other tissue ele-
ments”. Subsequent statistical analysis provides rules
and thresholds which characterize each class. This in-
formation can finally be used for the user-independent
classification of new elements and can be implemented
into a fully automated image analysis system [11,12].
As a final result, the procedure “counts” the number
of elements falling into each class. Therefore, the term
“tissue counter analysis” was termed.

Previous studies have shown that tissue counter
analysis can be applied to histologic specimens of nor-
mal and diseased skin [7] including diagnostic assess-
ment of benign and malignant melanocytic skin lesions
[12] and also to clinical and surface microscopic slides
[9,11]. In the case of melanocytic skin tumours, tissue
elements obtained from images of common nevi and
of malignant melanoma were subjected to multivariate
discriminant analysis in order to facilitate a distinction
between “benign” and “malignant” elements [12]. In
this study, 85.6% of all elements were correctly clas-
sified as either being derived from a benign or a ma-
lignant lesion, and based on the relative proportion of
“benign” and “malignant” elements a correct diagnos-
tic classification had been achieved in 40 cases each of
common nevi and malignant melanoma. In the studies
concerning tissue counter analysis, various shapes and
sizes of measuring masks have been used, and linear
discriminant as well as CART (classification and re-
gression tree) analysis have been alternatively applied.

The present study examines the influence of various
factors on the performance of tissue counter analysis
in histologic images: shape of the measuring masks,

size of the measuring masks, subsets of image analysis
features, and statistical procedures are evaluated with
histologic sections of cutaneous malignant melanoma
obtained from three different laboratories serving as a
target example.

2. Material and methods

2.1. Specimens

75 specimens of cutaneous melanomas were con-
secutively sampled from the Dermatopathology files of
the Department of Dermatology, University of Graz,
Austria. Inclusion criteria were that the lesion had been
completely excised, and that vertical tumour thickness
was at least 1 mm. Doubtful lesions and lesions asso-
ciated with pre-existent nevi were excluded from the
study. Mean age of the patients was 63± 16 years
(range: 28 to 91 years), with 50.3% females and 49.7%
males. Mean vertical tumour thickness measured from
the granular layer down to the lowermost melanoma
cell in the depth of the skin section (so-called Bres-
low index [4]) was 2.22 ± 1.57 mm (range: 1.0 to
8.0 mm). 4µm sections were prepared and stained
with hematoxylin and eosin with an automated stain-
ing device (DRF 701, Fakura, Japan). Furthermore,
20 cases each of malignant melanoma with the same
inclusion criteria were obtained from the Department
of Dermatology and Venereology, University of Lue-
beck, Germany, with a Breslow index of 2.78± 2.06
(1.0–9.0 mm) stained manually according to a stan-
dard protocol, and from the “Dermatohistopathologis-
che Gemeinschaftspraxis”, Friedrichshafen, Germany,
with a Breslow index of 2.87 ± 1.48 (1.0–7.0 mm),
stained automatically using a Medite Linearstainer
(Medite, Burgdorf, Germany). From each specimen,
the section showing the largest vertical diameter was
selected as index slide and used for further evaluation.

2.2. Image analysis system

Slides were examined with an Axioskop 2 Imaging
microscope (Zeiss, Oberkochen, Germany) mounted
with a motor-driven scanning stage, an automated fo-
cusing device, and a three chip colour video cam-
era (Sony, Tokyo, Japan). Images were fed into a KS
400 3.0 image analysis system (Zeiss Vision, Hall-
bergmoos, Germany) which also served as a control
system for the motorized functions of the microscope.
Examinations were performed with a 10× objective,
yielding a final magnification of 1.3µm per pixel. The
size of individual images was 764× 573 pixels.
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Fig. 1. Malignant melanoma, Breslow index 1.9 mm, cross-sectional area 15.9 mm2, haematoxylin–eosin. (a) Zoomed image of the whole lesion
(1 pixel= 6.5µm); (b) zoomed image of the whole lesion with the elements detected as melanoma tissue overlayed by filled blue squares (1 pixel
= 6.5 µm); (c) original digital image from the base of the lesion with the elements detected as melanoma tissue marked by open blue squares
(1 pixel= 1.3µm).
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Table 1

Measurement features obtained for each element. For detailed definition see [1]

Grey level features Haralick texture features Colour features

MEAND/grey HARAM1 MEANDR/grey

STDD/grey HARAM2 MEANDG/grey

SKEWD HARAM3 MEANDB/grey

KURTD HARAM4 STDDR/grey

ENERGYD HARAM5 STDDG/grey

ENTROPYD/bit HARAM6 STDDB/grey

MIND/grey HARAM7 SKEWR

MAXD/grey HARAM8 SKEWG

SUMD/grey HARAM9 SKEWB

SUMQD/greyˆ2 HARAM10 KURTR

MOMENTDC20/pixelˆ2 HARAM11 KURTG

MOMENTDC11/pixelˆ2 HARAR1 KURTB

MOMENTDC02/pixelˆ2 HARAR2 ENERGYR

MOMENTDC30/pixelˆ3 HARAR3 ENERGYG

MOMENTDC21/pixelˆ3 HARAR4 ENERGYB

MOMENTDC12/pixelˆ3 HARAR5 ENTROPYR

MOMENTDC03/pixelˆ3 HARAR6 ENTROPYG

MOMENTDI1 HARAR7 ENTROPYB

HARAR8 MINR

HARAR9 MING

HARAR10 MINB

HARAR11 MAXR

MAXG

MAXB

SUMR

SUMG

SUMB

SUMQR

SUMQG

SUMQB

2.3. Scanning procedure

For each slide, the corners of a meander were de-
fined which included the whole melanoma area of the
particular section. Subsequently, the meander was au-
tomatically scanned. In the learning procedure, 12 ran-
domly selected fields were evaluated in each case. In
the automated test procedure, the total meander was
scanned. In very large specimens the number of fields
evaluated was limited to 200 by restricting the analy-
sis to every second or third field. Each field of vision
was automatically focused. Illumination was kept con-
stant to a grey level of 195± 10 in a white back-
ground field, and additive shading correction was per-
formed for each image with a white, 10× 10 mean-
filtered background image. No further image enhance-
ment steps were carried out.

2.4. Learning procedure

25 melanoma specimens were used to generate a
learning data set. A learning data set comprises a ta-
ble of elements along with the image analysis para-
meters of each element and a user-defined class label,
which serves as the “gold standard” of classification.
For this purpose, 12 fields were overlayed with a grid
of 20 regularly distributed square measuring mask of
8 × 8 pixels in diameter in each case. Each element
was interactively classified as belonging to one of three
classes: (1) background of the slides outside the sec-
tion; (2) melanoma tissue; (3) other tissue. An element
was considered to represent melanoma tissue, when
the measuring mask contained tumour cells. Techni-
cally, the user selects one class after the other and per-
forms a single mouse click to each element belong-
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ing to the particular class. For convenience, the frame
of each classified element is highlighted in a class-
specific colour in the image overlay [1]. Besides the
8 × 8 measuring mask used for interactive classifica-
tion, the image was also overlayed with square measur-
ing masks with 16, 32, 64 and 128 pixels in diameter,
as well as with circular masks of the same set of diam-
eters. All these masks were centred around the origi-
nally classified 8× 8 square mask, and the class label
of this original mask was assigned to all other masks at
the same location. That means that a mask was classi-
fied as belonging to a particular class, when the 8× 8
pixed wide center of the mask is occupied by elements
of that class, even when the larger mask contains also
other structures. By this procedure, all masks including
masks with more than one component were used for
the learning set, because in automated procedures also
all masks – being homogeneous or not – will have to
be evaluated. For each measuring mask, a set of den-
sitometric, colour, texture features and statistical mo-
ments – the latter describing statistical features of the
grey level histogram [1] (Table 1) was assessed and
stored along with the interactively defined class label.
For each type of measuring masks, thus a learning data
set comprising 6000 elements was created.

2.5. Statistics

The learning sets were submitted to the following
statistical tools in order to provide algorithms for the
recognition of the three classes of elements: On the
one hand, multidimensional stepwise linear discrimi-
nant analysis [5] was performed using the SPSS soft-
ware package (SPSS Inc., Sunnyvale, USA). This pro-
cedure leads to linear combinations of subsets of vari-
ables which finally yield canonical variables with dis-
criminant values facilitating a discrimination of the
classes of elements. On the other hand, CART (classi-
fication and regression tree) analysis using the CART
3.6 program (Salford Systems, San Diego, USA) was
used [3,15]. In brief, classification and regression tree
analysis tries to separate certain classes of elements
by searching the data sets for features providing opti-
mal binary splits in separating the database into groups
with a predominance of one or the other class of ele-
ments. These subgroups are termed “nodes”, and each
node is tested for further split criteria in order to create
two daughter nodes. When in a particular node no fur-
ther split criterion is found, the node is called a “termi-
nal node”. To create a reliable tree model, the program
randomly divides the data into a preliminary learning

set and a preliminary test set, and repeats the whole
procedure ten times. Only splits which are reproduced
in all trees enter the final classification tree, thus pro-
viding a reliable classification [3,15]. In all classifica-
tion procedures, the percentage of correctly labelled el-
ements was assessed as a measure of the quality of the
procedure.

Relationships of measuring conditions on the one
hand and the percentage of correctly classified el-
ements on the other were evaluated by Wilcoxon’s
matched pairs signed rank test and by Spearman’s rank
correlation test [5] where appropriate.

2.6. Test procedure

The measuring procedure which had turned out to
yield the best classification was selected for further
application. The split criteria defining the melanoma
tissue elements were implemented into an automated
measuring program. This program was designed to
scan whole sections, thereby recognizing the elements
(test areas defined by measuring masks) classified as
melanoma elements based on the criteria of the learn-
ing set. The elements recognized as melanoma ele-
ments are shown in an overlay image, and finally a
zoomed image of the whole measuring area, again with
the melanoma elements in the overlay, is displayed.
The amount of tissue classified as melanoma elements
is given in mm2 section area.

The automated measuring procedure was applied to
50 cases of melanoma from the same laboratory as the
learning set, and to 20 cases each obtained from two
different laboratories, which served as a test sets. The
procedure was used to measure the section area occu-
pied by melanoma tissue without user interaction. Fi-
nally, the estimates of melanoma area (given in mm2)
were tested for correlation with Breslow index (given
in mm) of the same lesions calculating the correlation
coefficient between both values using linear regression
analysis [2].

3. Results

3.1. General observations

The interactive classification producing the learning
sets takes about 5 min per case. Since the 8× 8 square
masks are considerably small, they can be unambigu-
ously labelled as belonging to a particular class of el-
ements. In the rare instances where the mask was ly-
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Table 2

Percentage of correctly classified elements of melanoma tissue, other tissue components and background in
haematoxylin–eosin-stained slides. Influence of image analysis features, size and shape of elements, and statisti-
cal procedures (n = 6000 elements per test; LDA: linear discriminant analysis; CART: classification and regres-
sion tree). The best result was obtained with a 64× 64 pixel square mask, using all features evaluated by CART
analysis

All features Grey value Colour Haralick Statistical

featuresb featuresc featuresd moments

LDAa CART LDA CART LDA CART LDA CART LDA CART

Square maskse

8× 8f 84 85 73 79 82 85 76 76 45 76

16× 16 88 91 84 86 88 88 81 85 44 81

32× 32 90 91 86 91 90 89 85 88 42 78

64× 64 92 95 87 89 91 93 87 91 41 73

128× 128 92 93 88 91 91 93 89 89 40 74

Circular masks

d = 8 82 82 74 77 81 82 74 75 53 75

d = 16 88 85 81 83 87 85 81 81 28 79

d = 32 90 89 86 88 89 92 85 92 44 76

d = 64 91 90 87 89 90 92 87 88 39 75

d = 128 92 93 88 90 90 92 89 88 61 74

aComparison of the paired values obtained with linear discriminant analysis and CART analysis in each setting
using Wilcoxon matched pairs signed rank test shows significantly higher values for CART analysis (p < 0.001).
bGrey value features perform less well than colour features (p < 0.001), do not differ significantly from Haralick
texture features (p > 0.05), and are superior to statistical moments (p < 0.001).
cColour features are superior to grey value features in the same setting, and also to Haralick parameters and
statistical moments (p < 0.001).
dHaralick parameters are superior to statistical moments (p < 0.001).
eSquare masks are slightly superior to circular masks of the same diameter (p < 0.01).
fThe percentage of correctly classified elements increases with increasing diameter of the measuring mask (Spear-
man’s rank correlation test:r = 0.503, p < 0.01) and also with increasing area of the measuring mask
(r = 0.509,p < 0.01).

ing on the border of, e.g., melanoma and other tissue,
it was labelled according to the structure which com-
prised the majority of the contents of the mask. Auto-
mated measurement took between 2 and 15 min, de-
pending on the size of the section evaluated, with user
interaction limited to about 1 min for defining the cor-
ners of the meander and the white background image.

3.2. Effects of the measurement and classification
settings

The percentage of correctly classified elements rang-
ed from 28%, when only the statistical moments were
considered in circular masks with a diameter of 16 pix-
els and linear regression analysis, to 95% when all pa-
rameters were taken into account and a square mask of
64× 64 pixels was used with CART analysis. As far
as the size of the measuring mask is considered, the
percentage of correctly classified cases increased with
the size of the measuring mask (Table 2). The com-

parison of square and circular masks of equal diam-
eter showed usually a slight advantage of the square
masks (Table 2). This fact, however, could also be due
to the larger area of square masks of the same diam-
eter. In multivariate analysis taking into account si-
multaneously mask area and mask shape, the latter did
not significantly correlate with the classification re-
sults. CART analysis turned out to be slightly supe-
rior to multidimensional linear discriminant analysis
(Table 2). When the various subsets of measuring fea-
tures were concerned, the colour features were almost
as good as the whole data set, while densitometric fea-
tures and Haralick texture features produced less re-
liable results. The least significant contribution came
from the statistical moments of the grey value distrib-
ution.

When for each element the data derived from two
measuring masks of different size were combined (Ta-
ble 3), no marked advantage to the use of a single type
of measuring mask was found.
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Table 3

Percentage of correctly classified elements of melanoma tissue, other tissue components and background in haematoxylin–
eosin-stained slides. Influence of the combination of measuring elements of different size (n = 3000 elements per test;
LDA: linear discriminant analysis; CART: classification and regression tree). There is no advantage compared to the use
of a measuring elements of a single size

LDA CART LDA CART LDA CART LDA CART

Square masks 16× 16 32× 32 64× 64 128× 128

8× 8 89 89 90 90 92 91 93 94

16× 16 91 92 93 92 93 93

32× 32 93 92 93 93

64× 64 93 93

Circular masks d = 16 d = 32 d = 64 d = 128

d = 8 88 85 90 89 92 91 92 92

d = 16 89 90 92 91 93 92

d = 32 92 93 93 92

d = 64 93 92

Fig. 2. Classification tree separating melanoma elements from other tissue elements.

3.3. Automated melanoma area measurements

For further evaluation, the setting with a square mea-
suring mask of 64× 64 pixels in size, with all mea-
suring features, and CART analysis, was used. The
binary criteria defining the melanoma elements were
(MEANDG > 84.205 AND SUMQR> 8.19055E+
007 AND SUMQR≤ 9.44269E+ 007) OR (SUMQR
≤ 8.19055E+ 007), with MEANDG denoting the
mean grey value in the green image and SUMQR
denoting the sum of the squared grey values in the

red image (Fig. 2). In the test set of 50 cases of
melanoma, the area measurements based on these
CART criteria revealed a median of 11.6 mm2 (range:
0.5 to 118.6 mm2, interquartil range 4.8 to 23.6 mm2).
Spearman’s rank correlation analysis with Breslow in-
dex yielded a highly significant relationship between
the automatically obtained area measurements on one
hand and vertical tumour thickness on the other (r =
0.834;p < 0.001). For the two test sets from differ-
ent laboratories melanoma area was 30.6± 50.9 mm2

(range: 2.3 to 225.3 mm2) and 20.6±12.2 mm2 (range:
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3.3 to 41.7 mm2), with a correlation with Breslow
index of r = 0.910 (p ≤ 0.001) andr = 0.913
(p ≤ 0.001), respectively. In a subset of 10 cases the
area measurements were carried out twice at differ-
ent occasions and turned out to be highly reproducible
(r = 0.999;p ≤ 0.001).

4. Discussion

Our study shows that the process of tissue counter
analysis can be successfully applied to histologic sec-
tions of malignant melanoma in order to detect the
melanoma component. The settings of the procedure,
however, have significant influence on the reliability of
the classification. At first, the parameters must carry
sufficient information to achieve a useful classification.
In the H&E sections used in this study, colour features
turned out to be the most useful subset of measuring
features. When all measuring features were combined,
the results did only improve marginally. The crucial
importance of colour features in the present example
rises the question of how the results may depend on
the staining procedure. With the two other laborato-
ries tested, however, satisfactory results were obtained.
The fact that texture criteria were of minor importance
may be due to the magnification used in this study. Par-
ticularly Haralick parameters focus on the relationship
of neighbouring pixels and are likely to miss texture
changes at a larger scale.

The second important point is the size of the mea-
suring mask. There seems to be an advantage of large
masks over small masks, probably due to the larger
information content in the larger elements. Whether
square or circular masks are used seemed to be of mi-
nor importance, but at equal diameters square masks
were usually slightly superior to circular masks.

Among the two statistical classification processes
used, CART analysis performed somewhat better than
linear discriminant analysis. Besides this slight advan-
tage as to the percentage of correctly classified ele-
ments, CART yields simple binary criteria defining
certain subsets, while linear discriminant analysis pro-
vides large formulae with linear combinations of terms
which are more difficult to implement in the KS 400
3.0 image analysis system.

It is remarkable that the simultaneous combination
of the information obtained with a small and a large
mask did not improve the results significantly. Obvi-
ously the main information is found in the large mask,

and the particular features of the central area of the
mask do not add to the classification process.

Once a reliable classification process is defined,
it can be used for automated classification of new
tissue elements. The application of the detection of
melanoma elements on a test set of melanoma slides
yielded highly reproducible results, with a correlation
coefficient between measurements taken twice at dif-
ferent occasions was close to 1. When the relationship
between the area measurements and vertical tumour
thickness was tested, a correlation coefficient around
0.9 was found. This is slightly better than previous
studies which yielded correlation coefficients between
tumour thickness and area assessed by conventional
methods ofr = 0.770 [13] orr = 0.760 [16].

There are several limitations to the present study: All
material had been prepared by standard protocols and
automated staining facilities, thus variability in stain-
ing intensities and hue have been limited to a minimum
within each laboratory, but the slides were obtained
from different institutions. The study did only include
melanoma lesions of at least 1 mm tumour thickness,
and doubtful cases were excluded. Furthermore, the
study was more or less focused on the detection of
melanoma tissue on haematoxylin–eosin stained sec-
tions, and other target structures or other staining pro-
cedures would probably favour other feature subsets or
differently sized measuring masks.

In conclusion, our results show that the exact setting
of the measuring procedure, including size and shape
of the test area, image analysis parameter set, and sta-
tistical classification tool, have a marked influence on
the performance of tissue counter analysis. Further-
more, the usefulness of tissue counter analysis for the
detection of tissue components, is demonstrated, even
when slides derived from different laboratories with
some variability of the staining procedure are used.
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