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Abstract. Eukaryotic translation initiation factor 6 (eIF6) 
affects the maturation of 60S ribosomal subunits. Found in 
yeast and mammalian cells, eIF6 is primarily located in 
the cytoplasm of mammalian cells. Emerging evidence has 
demonstrated that the dysregulated expression of eIF6 is 
important in several types of human cancer, including head and 
neck carcinoma, colorectal cancer, non‑small cell lung cancer 
and ovarian serous adenocarcinoma. However, the molecular 
mechanisms by which eIF6 functions during tumor formation 
and progression remain elusive. The present review focuses on 
recent progress in terms of the mechanisms and functions of 
eIF6 in human tumorigenesis or cancer cell lines, along with 
the signal transduction pathways in which this novel transla-
tion initiation factor may participate. Oncogenic Ras activates 
Notch‑1 and promotes transcription of eIF6 via a recombining 
binding protein suppressor of Hairless‑dependent mecha-
nism. In addition, overexpression of eIF6 results in aberrant 
activation of the Wnt/β‑catenin signaling pathway. Similarly, 
overexpressed eIF6 regulates its downstream modulator, cell 
division control protein 42, which in turn affects oncogenesis. 
Finally, the potential of eIF6 as a biomarker for diagnosis of 
cancer is also discussed in the present review.
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1. Introduction

More than 30 years ago, eukaryotic translation initiation factor 
6 (eIF6) was first identified as a protein in wheat germ (1). This 
protein functions as an anti‑association factor to interact with 
the 60S ribosome, and prevent the assembly of the 60S and 
40S subunits in the cytoplasm (2‑5). eIF6 is found in yeast 
and mammalian cells, and the majority of eIF6 is located in 
the cytoplasm of mammalian cells (4,5). Originally, eIF6 was 
first observed in the proliferating compartment of the colonic 
epithelium and stem cells (6), and is also highly expressed 
in epithelial and embryonic tissues  (7‑9). Furthermore, an 
increasing number of studies have demonstrated that eIF6 
is overexpressed in human cancer (6,10‑15). Accumulating 
evidence suggests that eIF6 is a useful biomarker in cancer 
diagnosis, and that it serves as an anti‑cancer molecular target. 
However, the specific role of eIF6 in tumorigenesis remains to 
be elucidated.

The present review focuses on eIF6‑associated studies, 
particularly those pertaining to its subcellular location, 
phosphorylation and dephosphorylation, roles in cancer and 
molecular mechanisms in oncogenesis.

2. Subcellular localization of eIF6

eIF6, also known as integrin β4 binding protein, p27BBP or 
β4 integrin interactor, is a remarkably conserved protein from 
yeast to mammals (7,13‑14). In yeast, eIF6 is primarily local-
ized in the nucleolus (9‑10). By contrast, in mammalian cells, 
the majority of eIF6 is present in the cytoplasm, with a smaller 
but significant fraction (~30%) located in the nucleus (4,16‑18). 
Notably, eIF6 is located in the nucleolus of certain cell lines, 
such as HeLa, A431, NIH/3T3 fibroblasts and Jurkat T cells (8), 
in addition to neoplastic tissues, including colonic adenoma 
and carcinoma (6). Previous studies have demonstrated that 
eIF6 functions as a component of the preribosomal particles in 
the nucleolus, thus serving an important role in 60S ribosome 
biogenesis (8,18). In the cytoplasm, eIF6 functions as a transla-
tion factor (9), therefore, subcellular localization is crucial for 
the functional regulation of eIF6.
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3. Phosphorylation and dephosphorylation of eIF6

In mammalian cells, eIF6 regulates ribosomal assembly and 
biogenesis, thus controlling the binding of 40S and 60S ribo-
somal subunits and participating in 80S assembly (7‑9,16). 
As described above, eIF6 is present in the nucleus and cyto-
plasm (9,17). Notably, it is reported that nucleocytoplasmic 
shuttling is caused by the phosphorylation of eIF6, in line 
with the well‑established hypothesis that phosphoryla-
tion is able to regulate the biological activity of numerous 
proteins (9). Therefore, phosphorylation is likely to modulate 
eIF6 activity, and three potential phosphorylation sites have 
been identified (18). For nuclear export in mammalian cells, 
eIF6 is phosphorylated in vitro at Ser‑175 and Ser‑174 by 
the nuclear isoforms of casein kinase (CK) CK1α or CK1δ, 
thereby promoting the formation of pre‑60S ribosomal 
particles in the cytoplasm. In addition, the Ca2+/calmod-
ulin‑dependent protein phosphatase calcineurin mediates 
dephosphorylation, which facilitates migration of eIF6 back 
to the nucleolus and continues 60S ribosome biogenesis (18). 
Such evidence implies that CK1 controls the subcellular 
distribution of eIF6.

Although CK1 is widely found in the nucleus, cytoplasm, 
cell membrane and cytoskeleton of mammalian and yeast 
cells (19‑21), it is unclear whether extranuclear CK1 enters 
the nucleus to regulate the export of eIF6. It should be noted 
that cytoplasmic eIF6 in mammalian cells is also phosphory-
lated by receptors for activated C kinase 1 (RACK1)/protein 
kinase C (PKC) signaling at positions Ser‑174, Ser‑175 
and Ser‑235 (Fig.  1)  (16,22). These procedures result in 
dissociation of eIF6 from the 60S subunit, thus aiding its 
maturation (18). Recent research demonstrates that GTPase 
elongation factor‑like 1 (EFL1) is involved in the cytoplasmic 
maturation of the ribosomal 60S subunit  (3). SBDS, the 
protein mutated in Shwachman‑Bodian‑Diamond syndrome, 
and EFL1 release the anti‑association factor eIF6 from the 
surface of the 60S subunit (2,5). In addition, the Ser235 PKC 
phosphorylation site has also been identified in the Xenopus 
eIF6 protein (23).

However, there is little or no evidence to verify whether 
CK1 and the RACK1‑PKC complex phosphorylate the 
Ser‑174 and Ser‑175 sites of eIF6 at the same time. Moreover, 
an increasing number of studies have demonstrated that eIF6 
is highly overexpressed in tumor cells (8‑11). The C‑terminal 
of eIF6 is subject to RACK1‑PKCβII complex phosphoryla-
tion at Ser‑235, which modulates the protumorigenic activity 
of eIF6 (16), whereas mutation of the phosphorylation site 
at Ser235 of eIF6 in mouse models reduces translation and 
lymphomagenesis (4). A previous study demonstrated that 
the Ras cascade, which regulates phosphorylation of eIF6, 
is triggered by agonists of phorbol esters (16). Therefore, it 
may be speculated that the Ras cascade recruits PKCβII and 
phosphorylates eIF6 at Ser235, and the activity of eIF6 leads 
to increased translation and tumorigenesis.

4. Overexpression of eIF6 in human carcinoma

Numerous studies have demonstrated highly aberrant expres-
sion of eIF6 in human cancer (10‑15). Although the function 
of eIF6 is not fully understood, differential expression of eIF6 

is correlated with cancer pathogenesis, and eIF6 functions as a 
regulator in cancer development (6,10‑15). The cancer tissues 
and cell lines in which eIF6 is overexpressed are presented 
in Table I. In this section, the potential of eIF6 as a cancer 
biomarker is discussed.

Colorectal cancer. eIF6 is regarded as a nuclear matrix 
protein that accumulates in nucleoli (8), and is found in the 
cytoplasm of glandular crypt cells in the human colonic 
epithelium (6). However, higher levels of eIF6 are observed in 
colorectal carcinoma compared with colorectal precancer and 
normal mucosa (6‑7,16). Consequently, there is a progressive 
increase of eIF6 from normal tissue to dysplastic adenoma 
and carcinoma. This raises the question of which mechanisms 
are involved in the increased expression of eIF6 protein. It is 
hypothesized that eIF6 is upregulated at the transcriptional 
level, such that the mRNA coding for eIF6 is highly concen-
trated in tumors relative to normal colorectal tissues  (6). 
mRNA translation controls distinct cellular processes, 
including tumorigenesis, cell migration, adhesion and growth, 
and cell‑cycle control (24). Notably, gross gene expression of 
eIF6 is less well known. Therefore, further research is required 
to understand the underlying reasons for this.

As a marker of cell proliferation, the distribution of argyro-
philic nucleolar organizer region (AgNOR)‑associated proteins 
in the nucleolus and cell correspond to proteins located in the 
nucleolar organizer regions. Previously, nucleolar staining by 
AgNORs was considered to be a prognostic marker of malig-
nancy (25). Moreover, the value of AgNORs as proliferation 
markers has been reported in various forms of cancer, such 
as breast, ovarian, cervical, prostate, hepatocellular, papillary 
thyroid, gastric and bladder cancer (25‑31). Certain studies 
have demonstrated a correlation between AgNOR count in 
tumors and various clinical parameters, including tumor size 
and staging, and distant metastasis (28‑32). Therefore, eIF6 
may be used as a diagnostic tool on the basis of the function of 
AgNORs. In addition, differentially‑expressed eIF6 may serve 
a critical function in colon carcinogenesis and provide a novel 
marker in surgical pathology.

Head and neck carcinoma. eIF6 is overexpressed in colorectal 
cancer (6). Similarly, in head and neck carcinoma, the expres-
sion of eIF6 is also higher than that observed in normal 
mucosa (13). Additionally, nucleolar overexpression of eIF6 
has been detected in head and neck metastatic carcinoma (13). 
Head and neck cancer has previously been reported as the 
sixth leading type of cancer worldwide, accounting for ~6% 
of all tumors, of which >90% are head and neck squamous 
cell carcinoma (33,34). Despite advances in treatment, the 
prognosis remains poor. Therefore, the discovery of molecular 
markers is not only important for understanding the patho-
genesis of head and neck cancer, but may also provide further 
insight into tumor biology, diagnosis, therapeutic perspectives 
and prognosis (34,35).

eIF6 is highly concentrated in nucleoli, is easily observed 
and its overexpression is not difficult to measure. eIF6 may 
function as a molecular marker for use in surgical pathological 
diagnosis. Notably, a larger 52‑kDa protein, detected by eIF6 
antibody, is also observed in lymph node metastases (13). 
This larger protein has tissue specificity due to its absence in 
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samples of colorectal carcinoma, parotid gland adenocarci-
noma and leiomyosarcoma of the larynx (13). Consequently, 
this 52‑kDa band is able to be utilized by head and neck 
surgeons and surgical pathologists during diagnosis.

Non‑small cell lung cancer (NSCLC). Lung cancer is an 
extraordinarily malignant tumor with the highest morbidity and 
mortality, of which the most common variant is NSCLC (36,37). 
The primary features of this cancer are invasion and metas-
tasis  (36‑39). eIF6 interacts with the cytoplasmic integrin 
β4 subunit, and in a previous study, positive eIF6 staining 
was observed in 82.5% (66/80) of NSCLC specimens  (37). 
Therefore, eIF6 is likely to be present at a high concentration 
in NSCLC (6,13). Integrin β4 subunit, α6β4, the receptor for 
the basement membrane protein laminin‑5, is an important 
cellular adhesion molecule, and is closely associated with tumor 
invasion and metastasis  (6,40). α6β4 integrin is expressed 
in invasive breast carcinomas and is a potential indicator of 
poor prognosis (40). Taken together, a large increase in eIF6 
is apparent in NSCLC, which may promote the migration of 
NSCLC cells; however, further study is required to confirm this.

Ovarian serous adenocarcinoma. Ovarian serous adenocarci-
noma is the most prevalent form of epithelial ovarian cancer 
and a fatal type of gynecological malignancy (41,42). Human 
eIF6 is located on chromosome 20q12, which is an ampli-
fied chromosomal region (20q12‑12) in ovarian cancer (43). 
This suggests that increased eIF6 may be a consequence of 
increased protein turnover in rapidly proliferating malignant 
cells based upon its role in ribosome assembly. Notably, eIF6, 
Dicer and RNaseIII endonuclease, which are essential compo-
nents of miRNA machinery, are overexpressed in ovarian 
serous adenocarcinoma and associated with its clinicopatho-
logical features (15). miRNAs are a class of small, noncoding 
RNAs that affect the post‑transcriptional control of mRNA 
and contribute to human tumorigenesis (44-46). Low eIF6 

expression has increasingly been associated with reduced the 
probability of disease‑free survival (15). Therefore, it is not 
inconceivable that downregulated expression of miRNAs and 
eIF6 could be useful biomarkers for the prediction of ovarian 
serous adenocarcinoma. Additionally, eIF6 and proteins of 
the miRNA machinery are closely related to future RNA 
interference‑based therapy.

5. Upstream modulator of eIF6

As aforementioned, eIF6 is overexpressed in human colorectal 
cancer (6), head and neck cancer (13), lung cancer (14) and 
ovarian serous adenocarcinoma (15). Therefore, it is neces-
sary to determine which oncogenes in the transcriptional 
network control eIF6 expression during tumorigenesis. 
Previous studies have established that the transcription factor 
complex GA‑binding protein (GABP) regulates eIF6 expres-
sion, as the eIF6 promoter region contains GABP‑binding 
sites (47). GABP is an E26 transformation‑specific sequence 
(ETS) transcription factor, which contains an unrelated 
GABP protein, an ETS DNA‑binding domain and a nuclear 
localization signal (48). The transcription of nuclear genes 
involved in mitochondrial respiration is controlled by the 
GABP complex (48). Moreover, certain ribosomal proteins 
are also GABP targets  (49,50). For these reasons, GABP 
may be essential in regulating the transcription of ribosomal 
genes. The activity of the eIF6 promoter could be inhibited 
through blocking endogenous GABP activity. To date, a 
possible function for GABP in tumorigenesis remains to be 
described. Accounting for the fact that GABP could be vital 
in mediating the proliferative response, it may be useful to 
determine whether certain oncogenes directly affect GABP 
expression.

It is worth noting that the Notch‑1 receptor has been 
demonstrated to directly regulate transcription of the 
eIF6 gene (12). The Notch‑1 receptor belongs to the Notch 

Figure 1. Nucleocytoplasmic shuttling of eIF6 and its release from the 60S ribosomal subunit in a normal cell. In the nucleus, CK1‑catalzyed phosphorylation 
at Ser‑174 and Ser‑175 promotes eIF6 to associate with the immature large ribosomal subunits (pre‑60S) to export to the cytoplasm. In the cytoplasm, the 
RACK1/PKC complex phosphorylates eIF6 at Ser‑174, Ser‑175 and Ser‑235, leading to eIF6 release from 60S and mature 60S ribosome biogenesis. In the 
cytoplasm, the Ca2+/calmodulin‑dependent protein phosphatase calcineurin dephosphorylates eIF6 to enter the nucleus. eIF6, eukaryotic translation initiation 
factor 6; CK1, casein kinase 1; RACK1, receptors for activated C kinase 1; PKC, protein kinase C.
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family of transmembrane proteins in mammals  (51). The 
highly‑conserved Notch signaling pathway is essential in 
the regulation of various physiological processes, including 
cell development, differentiation and proliferation (52‑55). 
In particular, activation of the canonical Notch‑1 pathway is 
of major significance in human tumorigenesis (12,51,56). A 
high level of Notch‑1 expression has been observed in sali-
vary adenoid cystic carcinoma (56) and breast cancer (57). 
Notably, it was reported that Notch‑1 activation resulted in a 2 
to 3‑fold overexpression of eIF6, thus enhancing the invasive-
ness of A2780 cells (12,57). Therefore, it is conceivable that 
the Notch‑1 signal is key to control the expression of eIF6. 
Notch‑1 functions as an upstream regulator of eIF6, which 
directly regulates eIF6 expression via a recombinant binding 
protein suppressor of Hairless (RBP‑Jκ)‑dependent mecha-
nism. In other words, the Notch‑1/RBP‑Jκ signaling pathway 
stimulates eIF6 promoter activity, resulting in abnormal 
expression of eIF6 (57,12). Overexpression of eIF6 enhances 
cell migration and invasiveness, but it is noteworthy that it 
does not affect proliferation (12).

6. Downstream regulation of eIF6

eIF6 and the canonical Wnt/β‑catenin signaling pathway. 
In previous studies, eIF6 has primarily been used to control 
translation through regulation of ribosome biogenesis and 
assembly (3,4,9,18). Further research using yeast two‑hybrid 
assays has demonstrated that eIF6 interacts with the C 
terminus of β‑catenin, functioning as a transcriptional activa-
tion domain (7,55). In addition, the Wnt signal transduction 
cascade, with β‑catenin as a major transducer, is a canonical 
cellular pathway in cell adhesion and proliferation during 
embryogenesis in animals (58‑61). In general, the Wnt signal is 
absent in normal cells or tissues. However, the aberrant activa-
tion of Wnt/β‑catenin signaling leads to the dysregulation of 
cellular growth and development, and contributes to human 
tumorigenesis (58,60). The targets of β‑catenin transcription 
are also overexpressed in various types of carcinoma (59,63). 
Although the molecular mechanism remains to be clarified, 
previous research has demonstrated that dysregulation of 
Wnt/β‑catenin signaling results in large accumulation of 
β‑catenin in the nucleus (62,63). Subsequently, combined with 
T cell factor/lymphoid enhancing factor (TCF/LEF), transcrip-
tion of target genes, including c‑Myc (64) and cyclin D1 (65), 
may be activated resulting in carcinogenesis. Previous research 
has demonstrated that eIF6 serves as a factor participating in 
Wnt/β‑catenin signaling and the distribution of eIF6 and β4 is 
altered in colonic adenoma and carcinoma (6). Furthermore, 
in SW480 cells transfected with full‑length eIF6, the level of 
activated β‑catenin was reduced compared with controls (66). 
The question may therefore be raised as to whether eIF6 has 
the same effect as Dickkopf antagonists on the Wnt/β‑catenin 
signaling pathway. However, this is problematic to answer as 
eIF6 is overexpressed in colorectal carcinoma (6). Moreover, 
MG132, a proteasome‑specific inhibitor, fails to inhibit 
the decrease in β‑catenin that occurs upon overexpression 
of yellow fluorescent protein‑eIF6 in SW480 cells  (66). 
Consequently, despite the fact that β‑catenin functions as a 
downstream effector of eIF6, eIF6 expression does not directly 
regulate the level of β‑catenin, indicating that downregulation 
of β‑catenin may only exist in certain vectors transfected with 
cell lines overexpressing eIF6.

Downstream effector of eIF6: Cell division control protein 
42 (Cdc42). In a previous study, several membrane‑associated 
proteins differed in abundance upon eIF6 overexpression in 
A2780 ovarian cancer cells (11). This effect is particularly 
notable in Cdc42 (11), a small GTPase belonging to the Ras 
homolog family (67‑69). A number of studies have established 
that Cdc42 regulates cell differentiation, cell cycle progres-
sion, cell polarity, cell fate determination, and cell motility 
and adhesion (68,70). Aberrant expression of Cdc42 is pivotal 
in tumorigenesis, including that of breast carcinoma  (71). 
Notably, it was reported that Cdc42 expression is disrupted 
at the post‑transcriptional level by enhanced levels of eIF6 in 
A2780 ovarian cancer cells (11). In addition, it was observed 
that downstream of eIF6 activation, Cdc42 levels are increased 
by a post‑transcriptional mechanism (11).

Although the underlying mechanisms of eIF6‑mediated 
Cdc42 expression remain to be elucidated, a possible theory 
may be that enhanced levels of eIF6 indirectly control the 

Table I. Overexpression of eIF6 in various cancer tissues and 
cell lines.

Type	 Overexpression of eIF6

Cancer tissues	� Colorectal cancer, head and neck 
carcinoma, NSCLC, ovarian serous 
adenocarcinoma

Cancer cell lines	� A2780 ovarian cancer cells, WM793 pri-
mary melanoma cells, SW480 colorectal 
cancer cells

eIF6, eukaryotic translation initiation factor 6; NSCLC, non small 
cell lung cancer.

Figure 2. Schematic illustration depicting several cross‑cellular pathways 
present in cancer cells overexpressing eIF6. eIF6, eukaryotic translation ini-
tiation factor 6; RBP‑Jκ, recombining binding protein suppressor of Hairless; 
Cdc42, cell division control protein 42.
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variation in the abundance of Cdc42. This is supported by 
the fact that Cdc42 mRNA expression levels exhibit little 
or no difference following eIF6 overexpression (11), which 
also demonstrates that eIF6 may target the translation of 
specific mRNAs. In A2780 cells overexpressing eIF6, 
ML‑141, a selective and potent inhibitor of Cdc42 GTPase, 
has been demonstrated to significantly decrease migratory 
activity  (11). The tumor‑promoting ability of eIF6 is not 
restricted to the A2780 cell line; the primary melanoma cell 
line WM793 has also been reported to exhibit upregulated 
Cdc42 expression, in addition to increased motility and 
invasiveness (11). Therefore, eIF6 is crucial for Cdc42 upreg-
ulation. As eIF6 affects Cdc42 translation in ovarian cancer 
cells, this indicates that the increased expression of eIF6 
is more likely to cause Cdc42 activation in ovarian cancer 
tissue, which in turn is accountable for increased migration 
and invasion. Nevertheless, further studies are required to 
elucidate the mechanisms behind these processes.

7. Conclusions and perspectives

The protein eIF6 possesses a high degree of evolutionary 
sequence conservation (1‑8), and is located subcellularly in the 
nucleolus and cytoplasm. Phosphorylation of eIF6 regulates 
nucleocytoplasmic shuttling in mammalian cells and involves 
the release of eIF6 from the 60S ribosome subunit (3,16,17). 
In cancer cells, eIF6 is phosphorylated by the RACK1‑PKCβII 
complex, and thus by the Ras cascade (16,72). eIF6 functions 
as an important component in gene regulatory networks 
and exerts crucial roles in neoplastic progression  (10‑15). 
Nevertheless, the specific molecular mechanisms under-
lying the role of eIF6 in these processes remain unclear. 
Oncogenesis typically involves several different signaling 
pathways. For example, the Ras‑extracellular related 
kinase mitogen‑activated protein kinase pathway and phos-
phoinositide 3‑kinase/AKT/mammalian target of rapamycin 
pathway each take part in the phosphorylation of eIF4E, which 
is involved in cancer development (73‑75). Consequently, it 
is possible that these signals are involved in the mechanisms 
of eIF6 overexpression in cancer, since eIF4E is a eukaryotic 
initiation factor in addition to eIF6.

In conclusion, the following hypothesis is proposed 
(Fig. 2). Firstly, Notch‑1 activated by oncogenic Ras promotes 
transcription of the eIF6 gene through an RBP‑Jκ‑dependent 
mechanism. Ras signaling has a key role in increasing Notch‑1 
expression in breast carcinoma (75). Secondly, overexpres-
sion of eIF6 leads to aberrant activation of the Wnt/β‑catenin 
signaling pathway. Similarly, overexpressed eIF6 controls its 
downstream effector Cdc42, which in turn affects tumorigen-
esis. As a consequence, understanding the signaling network 
in which eIF6 lies may contribute novel insights into the 
pathogenesis of cancer, and offer a promising target for the 
development of novel antineoplastic agents.
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