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Abstract: The effects of fatigue on a driver’s autonomic nervous system (ANS) were investigated
through heart rate variability (HRV) measures considering the difference of sex. Electrocardiogram
(ECG) data from 18 drivers were recorded during a simulator-based driving experiment. Thirteen
short-term HRV measures were extracted through time-domain and frequency-domain methods.
First, differences in HRV measures related to mental state (alert or fatigued) were analyzed in all
subjects. Then, sex-specific changes between alert and fatigued states were investigated. Finally, sex
differences between alert and fatigued states were compared. For all subjects, ten measures showed
significant differences (Mann-Whitney U test, p < 0.01) between different mental states. In male
and female drivers, eight and four measures, respectively, showed significant differences between
different mental states. Six measures showed significant differences between males and females in an
alert state, while ten measures showed significant sex differences in a fatigued state. In conclusion,
fatigue impacts drivers’ ANS activity, and this impact differs by sex; more differences exist between
male and female drivers’ ANS activity in a fatigued state than in an alert state.
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1. Introduction

It has been reported that nearly 1.3 million people are killed and 50 million people are injured in
road traffic collisions each year [1], and driving fatigue is estimated to be responsible for 20–30% of
all road fatalities [2–4]. Some studies on driving impairment have considered sleepiness and fatigue
as similar mental conditions [5], and the term “fatigue” is often used as an overarching term, which
includes sleepiness and mental fatigue [6]. There are many psychophysiological symptoms such as
tiredness, lack of energy, difficulties to concentrate, loss of interest, and so on, caused by fatigue that
dangerously affect driving [7]. Driving requires mental and physical attention and alertness to be
performed effectively [8], and fatigue may affect a driver’s attention and vigilance when controlling a
vehicle and may result in a disastrous consequence [9].

Predicting a driver’s mental state by measuring his or her fatigue before or during driving is
a method that may be used to reduce traffic accidents [9]. Substantial efforts have been devoted to
this topic; employed methods can be divided into three categories [10,11]: vehicle-based methods,
behavior-based methods and physiological-based methods. Vehicle-based methods detect the level
of a driver’s fatigue usually by steering wheel movement or standard deviation in the lane position.
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Behavior-based methods determine a driver’s mental state by his or her facial movements through
a camera. These two categories of methods become apparent only after the driver starts to sleep
with limited time left to prevent an accident. Physiological-based methods, in which physiological
signals, such as electrocardiogram (ECG) [8–10], electroencephalograph (EEG) [8–10] and functional
near-infrared spectroscopy (fNIRS) [9], are employed, are regarded as reliable and accurate methods
for fatigue detection in the early stages. However, these methods are less acceptable for receiving
physiological signals because they involve placing electrodes on the body. With the development of
noncontact ECG technology [10], the ECG-based method is expected to detect fatigue in a nonintrusive
manner while maintaining the advantages of reliability, accuracy and timely detection.

The autonomic nervous system (ANS) controls heart rate by balancing the sympathetic and
parasympathetic nervous systems [12]. Several physiological and pathological changes could exert an
impact on the ANS. Heart rate variability (HRV) has emerged as the most valuable noninvasive test to
assess ANS function [13], and RR interval time series derived from ECGs are the source information
for HRV analyses [14]. For the quantitative evaluation of ANS function, time and frequency domain
methods have been widely employed in HRV analyses. Several factors, such as smoking [15], stress [16],
and anxiety [17], could alter HRV measures. ANS function is also influenced by driving fatigue and
could be expressed by HRV measures. The HRV measures absolute power of the VLF band (PVLF(abs))
and power of the HF band in normalized units (PHF(nu)) were reported to be significantly increased
and power of the LF band in normalized units (PLF(nu)) and ratio of the LF band power to the HF
band power (rHF/LF) to be significantly decreased in drivers in a fatigued state compared with those
in an alert state by Awais et al. [8,10]. Tran et al. [18] reported that a driver’s absolute power of the
LF band (PLF(abs)), PLF(nu) and rLF/HF increased significantly and that the mean RR interval, MRR, and
PHF(nu) decreased significantly. Abtahi et al. [19] reported that the MRR, standard deviation of RR
interval (DRR), number of successive RR interval pairs that differ by more than 50 ms (NNN50), PLF(abs),
absolute power of the HF band (PHF(abs)) and absolute power of all three bands (Ptot(abs)) increased
significantly. These studies contribute to our understanding of the relationship between driving fatigue
and ANS function and clarify the development of driving fatigue detection algorithms. A summary of
the experimental designs, HRV measures and HRV measure extraction methods of six prior studies
related to driver fatigue is provided in Table 1. Sex differences exist in HRV measures [20–22], which
should be considered when employing these measures.

For the studies related to driving fatigue and HRV measures, two limitations exist. One limitation
is that sex differences have been taken into consideration by few (if any) studies, and the other limitation
is that the change tendency of some time and/or frequency HRV measures from the driver’s alert
state to fatigued state had contradictory results based on the available reports. For studies on the
sex differences in HRV measures, to the best of the authors’ knowledge, all of them were researched
with subjects in an alert state, leaving the sex differences in HRV time and frequency measures in a
fatigued state unknown. Our experiments were performed in a high-fidelity driving simulator, and
fatigue was induced by prolonged monotonous, simulated driving. With being aware of the limitations
in this field, the aim of the study was three-fold: First, as many HRV measures as possible were
extracted using time domain and frequency domain methods to provide a comprehensive evaluation
of the impact of fatigue on the driver’s ANS and to provide references for the development of driving
fatigue detection methods; second, the HRV measures of drivers of different sexes in different mental
states were compared to provide a basis for developing driver-specific fatigue detection algorithms for
specific sexes; and finally, the similarities and differences of HRV measures of males and females in
both an alert and a fatigued state were compared to provide a new perspective for understanding the
sex differences in the ANS.
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Table 1. Summary of studies related to HRV measures and driving fatigue.

Number of
Subjects (Valid) Male/Female Age (Years) Study Design Methods Related to

Fatigue Assessment
Methods Related to HRV

Measure Extraction References

10 (10) 5/5 29–47

Three real driving sessions
on the motorway of

approximately 100–105 min
each: one during the

daytime, one in the evening
and one at night

The subjects were asked to
provide their Karolinska

Sleepiness Scale (KSS) score
every 5 min during driving.

HRV analysis was performed
following reference [23], and

an AR model was used for the
PSD estimation of the HRV

time series.

[19]

22 (11) Unknown 18–35 80 min of simulated,
monotonous driving

Drowsiness-related events were
identified based on a range of

facial features, and the driver in
the 5 min prior to or after an

event was scored as being in an
alert or drowsy state.

ECG signal analysis was
performed using

Biosignal Toolbox.
[8,10]

20 (20) Unknown 22.6 ± 1.6 120 min of simulated driving
with highway scenery

A driver in the 5 min prior to or
after driving was scored as being

in an alert or fatigued state.

Peak-to-peak intervals were
determined through a blood

pressure waveform produced
by the radial artery. The HRV

analysis followed reference [23]
and used an FFT for

PSD estimation.

[24]

10 (unknown) Unknown 41 ± 9 Driving on highways for a
mean duration of 223 min

Observers classified the state of
the driver each minute as either
alert or drowsy through video
recordings. Ten minutes before
and after a drowsy minute was
defined as a drowsiness period;

the other periods were defined as
alert periods.

HRV measures were extracted
from a 300-beat window with a

step of one beat. The
Hodrick-Prescott filter was
used for detrending, and a

periodogram was estimated
using a Hanning window.

[25]

12 (12) 9/3 24–30

Two simulated driving
sessions lasting 15–20 min:

one in the morning and one
in the afternoon after lunch

Two observers scored the
drowsiness level according to

recorded videos of the
drivers’ faces.

HRV measures were extracted
from one-minute segments of

the ECG.
[5]
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2. Materials and Methods

2.1. Subject

Eleven male and nine female college students (age: 25.95 ± 2.67 years) with legal driver’s licenses
were recruited to participate in the experiment. A sum of RMB 150 was provided to the subject as
compensation for their participation in the experiment. Two of the male subjects were excluded from
the ECG-related research. One was excluded due to poor connectivity of the ECG electrodes during the
driving period, and the other was excluded due to fatigue throughout the experiment, mainly caused
by extensive studying the night before. Subjects were asked to refrain from consuming caffeine, alcohol
or tea and from smoking on the testing day. All subjects provided informed consent for inclusion
before participating in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee of Tsinghua University (20160006).
Details of the methods have been described in our previous studies [26].

2.2. Driving Simulator

A driving simulator with six degrees of freedom (see Figure 1) was used in the experiment.
A passenger car was mounted on the motion base, and five large projections surrounded the car.
The driving simulator provided a realistic driving experience to the drivers. To accelerate the
development of the driver’s fatigue symptoms, a simulated, straight highway-driving scenario was
selected, and there were no other cars in the simulation other than the virtual experimental car during
the driving period.
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2.3. Experimental Protocol

After the experimental details were introduced, single-channel EEG and ECG electrodes were
placed on the subject. The Biopac MP 150 system (Biopac Inc., Goleta, CA, USA) was used for signal
acquisition. The EEG and ECG signals were acquired at a sampling frequency of 1 kHz. For the ECG,
a modified lead II configuration was adopted. The left leg (LL)-equivalent electrode was placed in the
upper-left quadrant, and the right arm (RA)-equivalent electrode was placed in the right infraclavicular
fossa. Then, a laboratory assistant guided the subject into the car. A pretest of approximately 10 min
was performed to familiarize the subject with the experimental environment, followed by a 60 min
period of uninterrupted driving. In addition to the EEG and ECG signals, the driver’s facial expressions
were recorded by a camera mounted on the center console during the test. The subjects were required
to maintain a speed of approximately 75 km/h in the simulated highway scenario. The tests were
performed between 9:30 and 17:30, as these are conventional daily working hours. The ECG signals
and videos were analyzed offline, and the EEG signals were left for further research.

2.4. Fatigue Assessment

The 60-min videos of the drivers’ facial expressions were each divided into 60 one-minute segments.
Then, five well-trained experts scored each one-minute segment a score of 1, 2 or 3 according to the
criteria in Table 2.

Table 2. Subjective scores for driver’s mental state assessment.

Mental State Score Description of Facial Expression

Alert 1
The eyes open normally and blink quickly, the eyes are active, the attention

appears focused, and attention to the outside world is maintained. The head is
upright, and the facial expression is changing frequently.

Fatigued 2

The eyes appear to be partially closed, eyes appear to be partially closed,
blinking duration is extended, blinking speed is decreased, eye activity is

decreased, or eyes become sluggish; the subject yawns, takes a deep breath,
sighs, swallows, rubs the eyelids using their hands, shakes his or her head,

scratches his or her face or performs any other action that suggests fatigue or
reduced concern with the environment.

Very fatigued 3
The eyes appear to be half or fully closed, the eyelids are so heavy that they are

unable to open, the eyes are closed for a long period of time, there is head
nodding and head tilting, and the ability to continue driving is lost.

Since the number of segments with a score of 3 was low, the scores of 3 were rescored as 2.
In accordance with the length of the ECG signal recommended for short-term HRV analyses [23],
the 60-min videos and the ECG signals were divided into 19 five-minute segments, with 40% overlap
at each end with the start/end of the adjoining five-minute segments. In each five-minute segment,
the scores of every one-minute segment assessed by each expert were summed over. The minimum
and maximum of the summed score in a five-minute segment were 25 and 50, respectively. If the
summed score is greater than or equal to 38, according to the simple majority principle, the driver can
be considered to be in a fatigued state during the five-minute segment, and if the summed score is less
than or equal to 37, the driver can be considered to be in an alert state during the five-minute segment.
To reduce misjudgments, we adopted the principle of the effective majority, which stipulated that if the
summed score was greater than or equal to 40, then the five-minute segment was defined as a fatigued
segment; if the score was less than or equal to 35, then the five-minute segment was defined as an alert
segment. Otherwise, the segment was defined as a discordant segment. In this manner, we obtained
88 alert segments and 223 fatigue segments for the following analyses. We also obtained 31 discordant
segments, which were excluded from further analysis. Figure 2 compares the summed scores of all
subjects in 19 five-minute segments. The figure shows that as time elapsed, all subjects essentially
changed from an alert state to a fatigued state.
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2.5. Extraction of HRV Time and Frequency Measures

We detected R peaks in every segment of the ECG, and abnormal beats were detected and
corrected with normal R beats. Then, the occurrence times of the R peaks were denoted by a time
series (t0, t1 . . . , ti, . . . ), and the RR interval series was obtained. The RR interval series was unevenly
sampled, and the HRV signal was assumed to be a continuous signal derived from the RR interval
series via cubic spline interpolation. The HRV time series was obtained by sampling the HRV signal
evenly at a given sampling frequency of 4 Hz.

The HRV time domain measures were calculated from the RR interval series. To calculate the HRV
frequency domain measures, the smoothness priors approach (SPA) with λ = 500, which corresponds
to a high-pass filter with a cutoff frequency of 0.035 Hz, was applied to the RR interval series, and the
power spectral density (PSD) was obtained by Welch’s periodogram method [27]. Then, the PSD was
divided into three bands: very low frequency (VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and
high frequency (HF, 0.15–0.4 Hz).

The abovementioned processes were completed by employing Kubios 3.0.2 (Kubios Oy, Kuopio,
Finland) [27]. All the measures were calculated in the manner recommended by the Task Force of the
European Society of Cardiology and the North American Society of Pacing and Electrophysiology [23].
The abbreviations of the measures were redefined (see Table 3) in accordance with the requirements of
the Chinese national standards.
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Table 3. Overview of the HRV time and frequency domain measures.

Method Measure (Abbreviation
in This Study)

Measure (Abbreviation
in Other Publications) Description Unit Physiological Interpretation

Time
domain method

MRR Mean RR Mean RR interval ms −

DRR STD RR (SDNN) Standard deviation of RR interval ms Reflects the ebb and flow of all the factors
that contribute to heart rate variability. [28]

MHR Mean HR Mean heart rate 1/min −

DRMS RMSSD
Square root of the mean squared

differences between successive RR
intervals

ms

Measurements of short-term variation in the
NN cycles and detect high frequency

oscillations caused by parasympathetic
activity. [13]

NNN50 NN50 Number of successive RR interval
pairs that differ by more than 50 ms beats Reflects parasympathetic activity. [13]

pNN50 pNN50 NNN50 divided by the total number
of RR intervals % A proxy for cardiac parasympathetic

activity. [12,13]

Frequency
domain method

PVLF(abs) VLF(power) Absolute power of the VLF band ms2 Increases in resting PVLF(abs) power may
reflect increased sympathetic activity. [28]

PLF(abs) LF(power) Absolute power of the LF band ms2 A marker of the parasympathetic tone. [13]

PHF(abs) HF(power) Absolute power of the HF band ms2 Possibly correlated to sympathetic tone or to
autonomic balance. [13]

PLF(nu) LF(pow nu) Power of the LF band in
normalized units n.u. A marker of the parasympathetic tone. [13]

PHF(nu) HF(pow nu) Power of the HF band in
normalized units n.u. Possibly correlated to sympathetic tone or to

autonomic balance. [13]

rLF/HF LF/HF Ratio of the LF band power to the HF
band power −

An important marker of sympathovagal
balance. [13]

Ptot(abs) tot(power) Absolute power of all three bands ms2 The variance of NN intervals over the
temporal segment. [13]
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2.6. Statistical Analysis

SPSS 19 (SPSS Inc., Chicago, IL, USA) was used for the statistical analyses. We calculated the means,
standard deviations, medians, 1st quartile (Q1) and 3rd quartile (Q3) to describe the distributions of
HRV measures for the alert group and fatigued group and for the male-alert (MA) group, male-fatigued
(MF) group, female-alert (FA) group and female-fatigued (FF) group to facilitate comparisons with
other studies in this field. The Mann-Whitney U test was used to assess whether the time domain and
frequency domain measures significantly differed between (1) the alert group and fatigued group,
(2) the MA and MF groups and the FA and FF groups, and (3) the MA and FA groups and the MF and
FF groups. According to Fritz et al. [29], a common effect size statistic for the Mann-Whitney U test is r
using the following formula:

r =
z
√

N
, (1)

where N is the total number of observations, and when runs the test SPSS report the appropriate z
value. The difference between the means and the 95% confidence interval of the mean difference are
also presented for a difference between means convey effect size information [30].

3. Results

Table 4 shows the drivers’ HRV measures during the alert and fatigued states. Being fatigued
showed significantly (p < 0.01) increases in MRR, DRR, DRMS, NNN50, pNN50, PVLF(abs), PLF(abs), PHF(abs)

and Ptot(abs) and decreases in MHR compared with being alert.
Tables 5 and 6 presents the HRV measures in the male-alert (MA), male-fatigued (MF), female-alert

(FA) and female-fatigued (FF) groups. The MF group showed significantly (p < 0.01) increases in MRR,
DRR, DRMS, pNN50, PVLF(abs), PLF(abs) and Ptot(abs) and decreases in MHR compared with the MA group.
The FF group showed significantly (p < 0.01) increases in DRR, PVLF(abs), PLF(abs) and Ptot(abs) compared
with the FA group.

The HRV measures were also compared between the two sexes. The FA group showed significantly
(p < 0.01) lower values of PLF(nu), PHF(nu) and rLF/HF compared with the MA group. The FF group
showed significantly (p < 0.01) higher values of MHR and PHF(nu), and lower values of MRR, DRR, DRMS,
PVLF(abs), PLF(abs), PLF(nu), rLF/HF and Ptot(abs) compared with the MF group.
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Table 4. Descriptive statistics and results of Mann-Whitney U tests of HRV time domain and frequency domain measures of drivers with different mental states.

Measures
Alert (N = 88) Fatigued (N = 223) Mann-Whitney

U Test
Mean Difference (95%
Confidence Interval) r

Mean SD Q1 Med. Q3 Mean SD Q1 Med. Q3 Alert vs. Fatigued

MRR 797.9 137.5 684.3 804.0 870.3 863.5 141.0 738.6 851.4 955.2 p < 0.01 65.64 (30.96 to 100.3) 0.20
DRR 47.06 20.37 33.53 43.05 54.76 65.55 23.87 48.05 60.57 77.67 p < 0.01 18.49 (13.17 to 23.81) 0.40
MHR 77.38 13.0 68.94 74.63 87.68 71.32 11.49 62.82 70.47 81.23 p < 0.01 −6.060 (−9.193 to −2.927) −0.20
DRMS 33.63 20.44 21.67 27.57 40.18 42.55 23.06 24.56 39.28 45.36 p < 0.01 8.915 (3.379 to 14.45) 0.21
NNN50 46.63 51.36 10.0 19.5 73.75 69.87 55.14 17.0 67.0 89.0 p < 0.01 23.24 (9.838 to 36.64) 0.20
pNN50 14.3 17.8 2.128 5.318 21.76 22.3 20.15 4.239 19.27 26.46 p < 0.01 8.002 (3.169 to 12.84) 0.20

PVLF(abs) 87.25 92.05 32.89 58.0 112.1 201.2 193.1 85.6 136.0 247.5 p < 0.01 113.9 (82.00 to 145.9) 0.42
PLF(abs) 751.8 714.7 297.9 571.4 859.5 1348.0 1056.0 638.5 958.6 1686.0 p < 0.01 596.5 (391.8 to 801.3) 0.35
PHF(abs) 528.6 719.7 159.3 290.5 621.9 701.9 789.5 249.6 470.3 725.4 p < 0.01 173.2 (−17.61 to 364.1) 0.17
PLF(nu) 62.52 18.35 49.65 63.57 77.95 67.78 16.43 57.56 70.49 81.43 p = 0.02 5.259 (1.051 to 9.468) 0.13
PHF(nu) 37.4 18.35 21.95 36.32 50.22 32.09 16.38 18.56 29.43 41.57 p = 0.02 −5.304 (−9.505 to −1.103) −0.13
rLF/HF 2.667 2.42 0.9887 1.75 3.557 3.155 2.492 1.365 2.395 4.387 p = 0.02 0.4887 (−0.124 to 1.101) 0.13

Ptot(abs) 1368.0 1373.0 470.6 949.7 1524.0 2254.0 1730.0 1030.0 1748.0 2911.0 p < 0.01 885.2 (517.1 to 1253) 0.34

The mean difference is the fatigue group mean minus the alert group mean.

Table 5. Descriptive statistics of HRV time and frequency domain measures of drivers with different mental states and of different sexes.

Measure
MA MF FA FF

Mean ± SD, Q1, Med., Q3 Mean ± SD, Q1, Med., Q3 Mean ± SD, Q1, Med., Q3 Mean ± SD, Q1, Med., Q3

MRR 807.8 ± 155.8, 681.1, 789.1, 962.8 903.8 ± 143.0, 785.7, 927.2, 984.1 787.9 ± 117.4, 684.3, 804.0, 860.4 825.0 ± 128.3, 728.5, 812.4, 858.2
DRR 50.19 ± 26.94, 30.8, 43.23, 59.21 75.28 ± 28.59, 53.08, 75.8, 92.73 43.93 ± 9.691, 34.6, 42.73, 51.69 56.26 ± 12.66, 46.75, 54.74, 64.15
MHR 77.01 ± 14.73, 62.33, 76.31, 88.09 68.14 ± 11.39, 60.97, 64.71, 76.55 77.75 ± 11.16, 69.74, 74.63, 87.68 74.36 ± 10.78, 69.91, 73.86, 82.37
DRMS 34.36 ± 24.38, 16.94, 30.33, 43.77 46.17 ± 25.47, 30.26, 41.42, 50.78 32.91 ± 15.79, 24.19, 27.57, 37.89 39.09 ± 19.99, 24.51, 36.38, 41.64
NNN50 48.64 ± 54.94, 1.0, 30.0, 78.0 74.97 ± 55.34, 31.5, 69.0, 86.5 44.61 ± 48.07, 13.5, 19.5, 73.0 64.98±54.75, 16.0, 61.0, 89.25
pNN50 15.57 ± 18.98, 0.2277, 8.506, 23.96 24.79 ± 20.09, 9.427, 21.69, 27.64 13.03 ± 16.66, 3.332, 5.318, 19.53 19.92 ± 20.0, 4.067, 16.93, 24.48

PVLF(abs) 111.5 ± 118.0, 40.54, 77.98, 146.3 276.3 ± 223.1, 118.0, 217.0, 333.7 63.0 ± 44.98, 32.05, 48.51, 80.22 129.4 ± 122.7, 71.9, 104.4, 152.2
PLF(abs) 981.8 ± 909.9, 262.7, 681.6, 1371.0 1839.0 ± 1244.0, 876.2, 1547.0, 2506.0 521.8 ± 311.8, 301.9, 516.8, 687.3 878.8 ± 504.4, 516.2, 819.8, 1051.0
PHF(abs) 617.5 ± 924.6, 77.8, 261.2, 646.3 788.6 ± 968.6, 239.1, 504.9, 746.1 439.7 ± 420.5, 181.8, 290.5, 526.3 618.9 ± 560.1, 251.1, 464.5, 716.5
PLF(nu) 69.73 ± 14.17, 57.47, 73.59, 79.99 74.24 ± 13.77, 64.08, 79.19, 85.1 55.31 ± 19.33, 38.39, 54.78, 68.06 61.6 ± 16.43, 51.25, 62.04, 75.55
PHF(nu) 30.2 ± 14.18, 19.98, 26.36, 42.5 25.58 ± 13.63, 14.87, 20.8, 35.81 44.6 ± 19.34, 31.93, 45.1, 61.59 38.32 ± 16.42, 24.38, 37.93, 48.73
rLF/HF 3.187 ± 2.17, 1.362, 2.792, 4.004 4.176 ± 2.889, 1.788, 3.806, 5.722 2.147 ± 2.567, 0.6233, 1.215, 2.134 2.179 ± 1.503, 1.052, 1.636, 3.1

Ptot(abs) 1712.0 ± 1799.0, 368.2, 1257.0, 2478.0 2908.0 ± 2121.0, 1487.0, 2395.0, 3713.0 1025.0 ± 582.6, 581.2, 925.3, 1201.0 1628.0 ± 879.9, 987.8, 1386.0, 2074.0

Abbreviations: CI, confidence interval; MA, male-alert group; MF, male-fatigue group; FA, female-alert group; FF, female-fatigue group.
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Table 6. Results of Mann-Whitney U tests of HRV time and frequency domain measures of drivers with different mental states and of different sexes.

Measure

MA vs. MF FA vs. FF MA vs. FA MF vs. FF

Mann-
Whitney

U Test

Mean Difference
(95% CI) r

Mann-
Whitney

U Test

Mean Difference
(95% CI) r

Mann-
Whitney

U Test

Mean Difference
(95% CI) r

Mann-
Whitney

U Test

Mean Difference
(95% CI) r

MRR p < 0.01 95.97
(33.09 to 158.8) 0.26 p = 0.19 37.09

(−25.39 to 99.57) 0.10 p = 0.63 −19.93
(−94.98 to 55.13) 0.05 p < 0.01 −78.81

(−126.0 to −31.65) 0.32

DRR p < 0.01 25.08
(15.17 to 34.99) 0.41 p < 0.01 12.33

(2.482 to 22.18) 0.43 p = 0.81 −6.263
(−18.09 to 5.566) 0.03 p < 0.01 −19.02

(−26.45 to −11.58) 0.36

MHR p < 0.01 −8.870
(−14.26 to −3.484) −0.26 p = 0.19 −3.390

(−8.742 to 1.961) −0.10 p = 0.63 0.7385
(−5.690 to 7.167) −0.05 p < 0.01 6.218

(2.179 to 10.26) −0.32

DRMS p < 0.01 11.81
(1.558 to 22.06) 0.25 p = 0.05 6.182

(−4.004 to 16.37) 0.15 p = 0.73 −1.456
(−13.69 to 10.78) −0.04 p < 0.01 −7.082

(−14.77 to 0.6060) 0.19

NNN50 p = 0.01 26.34
(1.370 to 51.30) 0.22 p = 0.04 20.37

(−4.436 to 45.17) 0.16 p = 0.23 −4.023
(−33.82 to 25.77) −0.13 p = 0.55 −9.990

(−28.71 to 8.730) 0.04

pNN50 p < 0.01 9.219
(0.2436 to 18.20) 0.23 p = 0.05 6.894

(−2.025 to 15.81) 0.16 p = 0.42 −2.544
(−13.26 to 8.170) −0.09 p = 0.1 −4.870

(−11.60 to 1.862) 0.11

PVLF(abs) p < 0.01 164.8
(91.40 to 238.1) 0.47 p < 0.01 66.41

(−6.495 to 139.3) 0.41 p = 0.02 −48.49
(−136.1 to 39.09) 0.24 p < 0.01 −146.86

(−201.9 to −91.82) 0.44

PLF(abs) p < 0.01 857.7
(453.4 to 1262) 0.37 p < 0.01 357.0

(−44.74 to 758.7) 0.38 p = 0.04 −460.0
(−942.6 to 22.60) 0.22 p < 0.01 −960.7

(−1264 to −657.5) 0.44

PHF(abs) p = 0.05 171.0
(−183.4 to 525.4) 0.16 p = 0.02 179.3

(−172.9 to 531.4) 0.19 p = 0.67 −177.9
(−600.9 to 245.1) −0.05 p = 0.64 −169.7

(−435.5 to 96.15) 0.03

PLF(nu) p = 0.05 4.513
(−2.733 to 11.76) 0.16 p = 0.04 6.289

(−0.9107 to 13.49) 0.16 p < 0.01 −14.42
(−23.07 to −5.773) 0.38 p < 0.01 −12.65

(−18.08 to −7.211) 0.40

PHF(nu) p = 0.04 −4.620
(−11.84 to 2.604) −0.16 p = 0.04 −6.275

(−13.45 to 0.9033) −0.16 p < 0.01 14.40
(5.778 to 23.02) −0.38 p < 0.01 12.75

(7.327 to 18.16) −0.40

rLF/HF p = 0.05 0.9894
(−0.07761 to 2.057) 0.16 p = 0.04 0.03274

(−1.028 to 1.093) 0.16 p < 0.01 −1.040
(−2.314 to 0.2333) 0.38 p < 0.01 −1.997

(−2.798 to −1.197) 0.40

Ptot(abs) p < 0.01 1196 (486.1 to 1906) 0.34 p < 0.01 603.0
(−102.4 to 1308) 0.36 p = 0.41 −686.3

(−1534 to 161.1) 0.09 p < 0.01 −1279
(−1812 to −746.8) 0.34

Abbreviations: CI, confidence interval; MA, male-alert group; MF, male-fatigue group; FA, female-alert group; FF, female-fatigue group. The mean difference is the MF group mean minus
the MA group mean for MA vs. MF, the FF group mean minus the FA group mean for FA vs. FF, the FA group mean minus the MA group mean for MA vs. FA and the FF group mean
minus the MF group mean for MF vs. FF.
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4. Discussion

Using a driving simulator, this study investigated ANS activity in alert and fatigued driving states
through HRV time and frequency domain methods. We focused especially on the sex difference in both
mental states. For the comparison with existing studies, assessment of the results with and without
considering sex differences led to the following points.

4.1. HRV Time Domain and Frequency Domain Measures of Drivers without Considering the Difference of Sex

Our results comparing the HRV time and frequency domain measures of drivers in different
mental states are shown in Table 4. Tables 7 and 8 show comparisons of the results of seven studies
(six previous studies and this study) related to HRV time and frequency domain measures of drivers in
different mental states.

As shown in Table 4, all six HRV time domain measures were significantly different between the
alert and fatigued states. As shown in Table 7, MHR and NNN50 are consistent across all the included
studies with respect to the change direction from the alert state to the fatigued state.

Although Tran et al. [18] obtained the opposite result, three studies demonstrated that MRR is
significantly higher in the fatigued state than in the alert state, which is also supported by a review
from Ismail et al. [31]. Thus, the influence of fatigue in terms of MRR can be determined. DRR is
likely to increase significantly from the alert state to the fatigued state based on four of the six studies,
and pNN50 is highly likely to increase significantly because it is related to MRR and NNN50, which
definitely increase significantly, although the results of this study and that by Tran et al. [18] do not
fully agree. The change direction of DRMS is still unclear from Table 7.

As shown in Table 8, an increased change direction in PVLF(abs) and Ptot(abs) is consistent across all
the included studies, and regarding the powers of the VLF, LF and HF bands, the absolute values are
better than the normalized values for discriminating between mental states.

DRR reflects the ebb and flow of all the factors that contribute to HRV [28] and correlates with
Ptot(abs), with r > 0.9 [32]. Fatigue can be considered a factor that contributes to HRV since significant
increases in DRR and Ptot(abs) were confirmed in drivers’ fatigued state compared with their alert
state. Given that pNN50 and PVLF(abs) are significantly increased from the alert state to fatigued state,
more parasympathetic and sympathetic activities can be inferred to be present in the fatigued state as
pNN50 is often interpreted as a proxy for cardiac parasympathetic activity and PVLF(abs) may mirror
sympathetic activity [33].
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Table 7. Research results related to HRV time domain measures of drivers in different mental states.

Measure Unit Alert State (mean ± SD) Fatigued State (Mean ± SD) Statistical Method Level of Significance Change Tendency References

MRR ms

688.7 ± 84 753.9 ± 103 One-way ANOVA * Up [19]
889 ± 122 927 ± 132 Paired t-test * Up [27]

865.7 ± 144 845.5 ± 131 Scheffé’s test * Down [18]
797.86 ± 137.5 863.5 ± 140.98 M-W U test * Up This study

DRR ms

40.8 ± 17 53.2 ± 23 One-way ANOVA * Up [19]
47.7 ± 16.9 58.6 ± 17.3 Paired t-test ** Up [26]
63.6 ± 21.1 73.7 ± 24.3 Paired t-test * Up [27]

106.72 ± 30.38 97.07 ± 45.45 One-way ANOVA NS None [5]
46.7 ± 29 49.4 ± 25 Scheffé’s test NS None [18]

47.061 ± 20.375 65.555 ± 23.873 M-W U test * Up This study

MHR 1/min 70.4 ± 8.6 65.6 ± 6.9 Paired t-test ** Down [26]
77.382 ± 12.998 71.322 ± 11.488 M-W U test * Down This study

DRMS ms

43.2 ± 21.8 43.2 ± 18.9 Paired t-test NS None [27]
28.67 ± 9.40 31.10 ± 22.07 One-way ANOVA NS None [5]
50.1 ± 41.4 50.2 ± 36.8 Scheffé’s test NS None [18]

33.635 ± 20.436 42.55 ± 23.058 M-W U test * Up This study

NNN50 beats
39.0 ± 47 52.8 ± 48 One-way ANOVA * Up [19]

46.63 ± 51.365 69.87 ± 55.143 M-W U test * Up This study

pNN50 %
20.1 ± 22.0 18.1 ± 18.0 Scheffé’s test NS None [18]

14.302 ± 17.799 22.304 ± 20.145 M-W U test * Up This study

Abbreviations: M-W, Mann-Whitney. Levels of significance (for the M-W U test): NS, not significant; * p < 0.01. Levels of significance (for other tests): NS, not significant; ** p < 0.01; * p <
0.05.
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Table 8. Research results related to the HRV frequency domain measures of drivers in different mental states.

Measure Unit Alert (Mean ± SD) Fatigued (Mean ± SD) Statistical Method Level of Significance Change Tendency References

PVLF(abs) ms2
859.82 ± 114.12 1338.47 ± 121.61 Paired t-test * Up [8,10]
1233.6 ± 773.1 2135.6 ± 1286.7 Paired t-test ** Up [24]
87.25 ± 92.054 201.2 ± 193.13 M-W U test * Up This study

PLF(abs) ms2

222.4 ± 191 449.5 ± 365 One-way ANOVA * Up [19]
738.3 ± 869.5 825.5 ± 590.3 Paired t-test NS None [24]
1216 ± 686 1789 ± 1248 Paired t-test NS None [25]

511.15 ± 115.47 606.67 ± 162.70 One-way ANOVA NS None [5]
1179 ± 1520 1581 ± 1792 Scheffé’s test * Up [18]

751.79 ± 714.69 1348.4 ± 1055.6 M-W U test * Up This study

PHF(abs) ms2

127.2 ± 121 241.2 ± 212 One-way ANOVA * Up [19]
506.3 ± 484.2 757.2 ± 538.2 Paired t-test ** Up [24]

572 ± 488 576 ± 520 Paired t-test NS None [25]
244.26 ± 101.69 568.33 ± 312.05 One-way ANOVA ** Up [5]

1415 ± 2612 1218 ± 1789 Scheffé’s test NS None [18]
528.61 ± 719.68 701.85 ± 789.47 M-W U test * Up This study

PLF(nu) n.u.

0.54 ± 0.10 0.46 ± 0.08 Paired t-test ** Down [8,10]
0.592 ± 0.190 0.515 ± 0.170 Paired t-test NS None [24]
0.501 ± 0.15 0.566 ± 0.15 Scheffé’s test * Up [18]

0.62518 ± 0.18346 0.67777 ± 0.16430 M-W U test NS None This study

PHF(nu) n.u.

0.32 ± 0.08 0.37 ± 0.06 Paired t-test * Up [8,10]
0.406 ± 0.191 0.484 ± 0.170 Paired t-test * Up [24]
0.436 ± 0.16 0.35 ± 0.17 Scheffé’s test * Down [18]

0.37398 ± 0.18349 0.32094 ± 0.16383 M-W U test NS None This study

rLF/HF -

2.1 ± 1.5 2.1 ± 0.9 One-way ANOVA NS None [19]
2.01 ± 0.98 1.39 ± 0.59 Paired t-test ** Down [8,10]
2.0 ± 1.3 1.3 ± 0.9 Paired t-test * Down [24]

3.18 ± 1.58 4.33 ± 2.27 Paired t-test * Up [25]
2.55 ± 1.37 1.01 ± 1.55 One-way ANOVA * Down [5]
1.5 ± 1.3 2.4 ± 2.3 Scheffé’s test * Up [18]

2.6668 ± 2.42 3.1555 ± 2.4921 M-W U test NS None This study

Ptot(abs) ms2 373.4 ± 302 741.4 ± 584 One-way ANOVA * Up [19]
1368.4 ± 1373.3 2253.6 ± 1729.9 M-W U test * Up This study

Abbreviations: M-W, Mann-Whitney. Level of significance (for M-W U test): NS, not significant; * p < 0.01. Level of significance (for other tests): NS, not significant; ** p < 0.01; * p < 0.05.
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4.2. The HRV Time and Frequency Domain Measures of Drivers Considering the Difference of Sex

To evaluate the sex difference, the differences in the impact on the change in mental states in
terms of the HRV measures were compared between males and females. Table 6 shows that four HRV
measures exhibited significant differences between the alert state and fatigued state in both males
and females. For males, another four HRV measures were significantly different between the two
mental states, while for females, no other HRV measures were significantly different between the two
mental states.

This situation may imply that ANS activities are more sensitive to the change in mental state
for males than for females, as HRV is regarded as the most valuable non-invasive test to assess ANS
function [13]. The HRV time and frequency domain measures were adopted by Huang et al. [34] and
Patel et al. [35] for the establishment of driving fatigue detectors. It could be reasonable to infer that a
better result would be obtained for such detectors if the sex factor was considered.

The sex-related influence on the HRV measures was observed by Ryan et al. [20] early in the 1990s.
Recently, a comprehensive study on both age and sex differences in HRV measures was reported by
Voss et al. [22]. In their study, an HRV analysis was performed on a 5-min ECG recording obtained in
the supine position. According to their study, in the 25- to 34-year-old age group, there were four HRV
time and frequency domain measures (MRR, PLF(abs), PLF(nu) and rLF/HF) that were significantly higher
in males than in females, one HRV measure (PHF(nu)) that was significantly lower in males than in
females, and five HRV measures (DRR, DRMS, NNN50, PHF(abs) and Ptot(abs)) that showed no significant
difference between the two sexes. Our study confirmed these results, except for those for MRR and
PLF(abs), which showed a higher median value in males than in females without statistical significance.
The difference in the two studies may be that subjects in the study by Voss et al. [22] were in a supine
position without a workload, but they were in a sitting position with a driving workload in our study.
It should be noted that all studies, including those by Ryan et al. [20] and Voss et al. [22], to our
knowledge, have researched the sex difference of HRV measures of subjects in only the alert state.

Investigating the sex-related influence on HRV measures in a fatigued state could enable further
understanding of sex differences. However, little is known in this field. In our study, a comparison of
the sex-related influence on the HRV measures between an alert state and a fatigued state is shown in
Table 6. The sex differences are larger in the fatigued state than in the alert state: seven of the thirteen
HRV time and frequency domain measures that show no significant difference between males and
females in the alert state become significantly different in the fatigued state. The relationship between
stress and HRV measures was reported by Tharion et al. [36], and stress is associated with fatigue [7,32].
Thus, sex differences of HRV measures in subjects in the stress state are highly expected.

The mechanism of the sex differences in the HRV measures has not been clearly disclosed, and
our contribution is a new question proposed to the field of neurophysiology: What is the mechanism
underlying the sex differences in healthy subjects’ ANS activity in the fatigued state but not in the alert
state? From the application point of view, since the HRV time and frequency domain measures in the
state of mental fatigue could better characterize the physiological characteristics of sex, whether these
measures can better characterize more physiological and pathological characteristics in the state of
mental fatigue is a topic worthy of investigation.

In our opinion, an ideal study related to HRV measures and driving fatigue should (1) involve
real vehicles with real-world driving scenarios to ensure a real driving experience, (2) assess fatigue in
an offline method to allow careful inspection, and (3) extract HRV measures by established software to
increase the reproducibility of the experiment by other investigators. None of the abovementioned
studies fulfilled all these requirements, thus leading to some disagreements regarding the results to an
extent. One limitation of this study is that the experiments were performed in driving simulators rather
than in real vehicles, and some differences may exist between our results and those from real driving
conditions. Another limitation is that the number of participants is somewhat scarce and presents
similar sociodemographic characteristics (age, vocation, etc.), which can limit the generalization of
results. Further research using a large sample size with different sociodemographic characteristics will
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help to further elucidate the findings of this study. Besides, Our experiment was performed between
9:30 and 17:30; however, since the time of day may affect the perception of fatigue, further experiments
performed at the same time of day may yield a more elaborate result regarding the relationship between
HRV measures and driving fatigue.

5. Conclusions

This study investigated the effects of both mental states and sex factors on drivers’ ANSs by
extracting thirteen time and frequency domain HRV measures from ECG signals. The main conclusions
are as follows: (1) For drivers of both sexes, there are ten HRV time domain and/or frequency domain
measures that are significantly different between the alert state and the fatigued state, implying that the
HRV time domain and/or frequency domain measures have the ability to characterize drivers’ mental
states; (2) For male drivers, nine HRV time domain and/or frequency domain measures are significantly
different between the different mental states, and for females, four measures are significantly different
between the different mental states. This finding indicates that the HRV time and frequency domain
measures have sex differences in characterizing the mental states of drivers; and (3) There are three
HRV time domain and/or frequency domain measures in the alert state that show significant differences
between male and female drivers, while ten measures in the fatigued state show significant differences
between the two sexes. It can be seen that there are more sex differences in autonomic activities in a
fatigued state than in an alert state.
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