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Abstract 30 

The domestication of wild canids led to dogs no longer living in the wild but instead residing 31 
alongside humans. Extreme changes in behavior and diet associated with domestication may 32 
have led to the relaxation of the selective pressure on traits that may be less important in the 33 
domesticated context. Thus, here we hypothesize that strongly deleterious mutations may have 34 
become less deleterious in domesticated populations. We test this hypothesis by estimating the 35 
distribution of fitness effects (DFE) for new amino acid changing mutations using whole-36 
genome sequence data from 24 gray wolves and 61 breed dogs. We find that the DFE is 37 
strikingly similar across canids, with 26-28% of new amino acid changing mutations being 38 
neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong purifying selection (|s| > 1e-2). 39 
Our results are robust to different model assumptions suggesting that the DFE is stable across 40 
short evolutionary timescales, even in the face of putative drastic changes in the selective 41 
pressure caused by artificial selection during domestication and breed formation. On par with 42 
previous works describing DFE evolution, our data indicate that the DFE of amino acid 43 
changing mutations depends more strongly on genome structure and organismal characteristics, 44 
and less so on shifting selective pressures or environmental factors. Given the constant DFE 45 
and previous data showing that genetic variants that differentiate wolf and dog populations are 46 
enriched in regulatory elements, we speculate that domestication may have had a larger impact 47 
on regulatory variation than on amino acid changing mutations. 48 

Significance Statement 49 

Domestication of dogs to live alongside humans resulted in a dramatic shift in the pressures of 50 
natural selection. Thus, comparing dogs and wolves offers a unique opportunity to assess how 51 
these shifts in selective pressures have impacted the fitness effects of individual mutations. In 52 
this project, we use patterns of genetic variation in dogs and wolves to estimate the distribution 53 
of fitness effects (DFE), or the proportions of amino acid changing mutations with varying 54 
fitness effects throughout the genome. Overall, we find that the DFE for amino acid changing 55 
mutations is similar between dogs and wolves. Even genes thought to be most affected by 56 
domestication show a similar DFE, suggesting that the DFE has remained stable over 57 
evolutionary time.  58 

Introduction 59 

Domestication created radical phenotypic changes in many species and understanding the 60 
genetic and evolutionary basis of these changes is a major research objective (1–4). Studies on 61 
animal and plant domesticates have shown that these changes are accompanied by an increase 62 
in the number and frequency of deleterious genetic variants (5–7), an enrichment of identity-63 
by-descent (IBD) segments, coupled with an excess of runs of homozygosity (ROH) (8, 9), the 64 
simplification of the genetic architecture of polygenic traits (7, 9), and an increase in the overall 65 
recombination rates (10, 11). What remains unclear is whether domestication has also altered 66 
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the strength of natural selection on amino acid changing (or nonsynonymous) variants due to 67 
shifted selective pressures. 68 

Artificial selection for desired traits during the process of domestication is thought to have led 69 
to the rapid increase in the frequency of alleles with large effects on the trait, triggering 70 
selective sweeps (7, 9, 12, 13), but may also have led to the relaxation of the selective pressure 71 
on traits that are less important in the domesticated context, such as camouflage and predator 72 
avoidance. Here, we hypothesize that strongly deleterious mutations may have become less 73 
deleterious in domesticated populations living alongside humans, while neutral mutations 74 
underlying traits of interest may have been selected by breeders, shifting the selection 75 
coefficients of genetic variants associated with these traits. 76 

We test this hypothesis by studying the distribution of fitness effects (DFE) for nonsynonymous 77 
mutations in populations of wild wolves and breed dogs. The DFE is defined as the distribution 78 
of selection coefficients in an organism’s genome (or part of its genome) and it quantifies the 79 
proportions of new mutations that are neutral, deleterious, or beneficial (14). The DFE plays a 80 
fundamental role in population genetics, with implications for the understanding of the genetic 81 
architecture of complex traits, the evolution of recombination, and the survival of threatened 82 
species of ecological concern (14–17). Moreover, it also informs about the adaptive potential 83 
of a species and the amount of background selection expected in an organism’s genome (18–84 
20). Despite its significance, our understanding of the biological factors influencing the DFE 85 
remains incomplete (21). Comparing different model organisms, Huber et al. (22) detected 86 
significant differences in the DFE across large evolutionary time scales, in particular between 87 
humans and flies. On a smaller time-scale, however, the DFE seems to be more stable. A 88 
comparative study on humans, flies, and tomatoes found that the DFE of different populations 89 
of the same species (or subspecies of the same genus) is highly correlated, with a correlation 90 
coefficient ranging from 0.91 to 0.99 (23). Importantly, their work found that the correlation is 91 
inversely related to genetic differentiation between populations. Similarly, Castellano et al. 92 
(24) found that the shape of the deleterious DFE is strikingly similar across great apes. Among 93 
the two main factors shaping the DFE are the organism complexity and the effective population 94 
size (Ne) (22, 24–26). Organism complexity – defined in terms of a larger number of unique 95 
cell types coupled with a larger genome with more genes and more protein-protein interactions 96 
– should be similar in phylogenetically related organisms. Thus, all else being equal, we would 97 
expect the DFE of closely related species, like the ones examined in refs. (23, 24) to indeed be 98 
highly correlated and similar. However, the other piece of the puzzle, namely the Ne, is known 99 
to vary across closely related species and even across populations within a species (24, 27) and 100 
thus, in principle, we can expect to see changes in DFE across short evolutionary time scales. 101 

While our understanding of the determinants of the DFE is increasing, there are still many gaps 102 
such as how much it varies across non-model species and what factors in addition to organism 103 
complexity and Ne shape the DFE. Insights from comparing the ratio of nucleotide diversity 104 
for nonsynonymous and synonymous variants (πN/πS) across plant species revealed additional 105 
factors that may influence the DFE (21, 28). These features include selfing/outcrossing, 106 
longevity, reproductive system, and ploidy ((21) and references therein). While the full DFE 107 
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cannot be inferred from πN/πS alone, as this ratio also is affected by changes in population size, 108 
these observations suggest that additional factors related to life-history traits could play a role 109 
in determining the DFE of a species. 110 

Domestication can impact both the life-history traits and the Ne of a species (29, 30), raising 111 
the question of whether it might also alter the DFE. Additionally, although the process of 112 
domestication can follow different pathways (31) and vary across and within species (1), it 113 
typically entails fast and drastic changes in the selective pressure acting upon a population (1, 114 
7, 32). For instance, at the early stages of domestication, selection for tameness and against 115 
aggressiveness may take place as animals start living in the surroundings of human populations 116 
(31, 32). Shifts in dietary intake are also expected, since animals may take advantage of the 117 
resources associated with human societies such as food waste, smaller animals that are attracted 118 
to it, and surplus food (31, 33). At later stages of domestication, in particular, during breed 119 
formation and the improvement of traits, we expect to see fast shifts in the selective pressure 120 
(1). For instance, many of the traits of interest for breeders may be deleterious in the wild – 121 
such as an increase in tameness, extreme morphological alterations (e.g., brachycephaly), and 122 
the loss of camouflage – which means that, in practice, humans could be selecting for traits that 123 
otherwise would be eliminated in the wild. These phenomena combined, in particular the 124 
changes in Ne and in the selective pressure resulting from intense artificial selection, could in 125 
principle result in a shift in selection coefficients, changing the DFE in domesticates relative 126 
to their wild counterpart. In this context, domesticated animals offer a unique opportunity for 127 
the study of the determinants of the DFE, specifically by allowing for dissecting the relative 128 
importance of drastic environmental shifts (emulated by the process of domestication and breed 129 
formation) and the shared organismal characteristics of closely related species (the wild and 130 
the domestic counterparts). 131 

To tackle these questions, we focused on comparing the DFE of wild wolves and domestic 132 
dogs. Evidence suggests that dogs were domesticated from gray wolves (Canis lupus) around 133 
15,000 years ago or earlier (29, 34, 35), making them the oldest known domesticated species. 134 
Modern dog breeds arose much more recently, around 200 years ago through multiple 135 
processes involving intense artificial selection, inbreeding, and gene flow (36). Both the initial 136 
domestication of dogs and the more recent development of dog breeds entailed severe 137 
population bottlenecks (29, 35–37), with significant consequences to the dog genetic diversity 138 
such as an excess of deleterious genetic variants (5) and runs of homozygosity (8). Here, we 139 
ask whether domestication has also shifted the selection coefficients in the dog genome relative 140 
to that of the wolf. We address this question by leveraging whole-genome sequence data from 141 
24 gray wolves and 61 dogs. After accounting for differences in demography and background 142 
selection, we find that the DFE is strikingly similar across canids, with 26-28% of new amino 143 
acid-changing mutations being neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong 144 
purifying selection (|s| > 0.01). We evaluate the robustness of our results to different model 145 
assumptions and conclude that the DFE is stable across short evolutionary timescales, even in 146 
the face of putative drastic changes in the selective pressure caused by artificial selection during 147 
domestication and breed formation. On par with previous works describing DFE evolution 148 
across the tree of life, our results indicate that the DFE of nonsynonymous mutations depends 149 
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more strongly on genome structure and organismal characteristics, and less so on shifting 150 
selective pressures or environmental factors. 151 

Results 152 

Genetic Diversity in Wolves and Breed Dogs. We analyzed four canid populations for which 153 
publicly available, high-coverage (>30x), whole genome sequences were available: Arctic 154 
Wolf (AW; n = 15 (38, 39)), Border Collie (BC; n = 10 (40)), Labrador Retriever (LB; n = 10 155 
(40)), and Pug (PG; n = 15 (41)). Genomic VCF files were generated for each population 156 
according to the pipeline outlined by Phung et al. (39) 157 
(https://github.com/tanyaphung/NGS_pipeline). These VCFs were subset to exonic regions 158 
considering the CanFam3.1 reference genome exon annotations. We exclusively considered 159 
biallelic SNVs where all three potential variants were annotated as either synonymous or 160 
missense (henceforth nonsynonymous) mutations, in practice excluding sites with potential 161 
nonsense mutations, splice sites variants, and indels. This resulted in a total exonic sequence 162 
length of ~21.7 Mb for which we retrieved data in the four canid populations. 163 

Genetic variation data was summarized by the folded site frequency spectrum (SFS) for each 164 
population, after the removal of related individuals and projecting down the sample size in 165 
order to maximize the number of usable SNPs. No evidence of substantial population structure 166 
within each group was detected based on a Principal Component Analysis (Fig. S1). The final 167 
folded SFSs are shown in Fig. S2 and S3, highlighting nonsynonymous variants segregating at 168 
lower frequency relative to synonymous mutations.  169 

Controlling for the Effects of Demography and Background Selection in the Estimation 170 
of the DFE. In this work, we sought to characterize the effects of changing selective pressures 171 
(caused by artificial selection during the process of domestication and breed formation) on the 172 
DFE of new mutations. To do so, we initially used the SFS of the wolf (AW) and three breed 173 
dog populations (BC, LB, and PG) mentioned above. The SFS of a population is shaped by 174 
different evolutionary forces such as genetic drift, natural selection, and background selection 175 
in linked sites. To untangle the effects of target natural selection from the effects of 176 
demographic changes and background selection, we followed an approach developed by Kim 177 
et al. (42) consisting of two steps. First, we use the SFS of synonymous variants to infer the 178 
underlying demography; and second, we use the inferred demographic model and the SFS of 179 
nonsynonymous variants to infer the DFE. We implemented this approach with ∂a∂i (43), a 180 
maximum-likelihood method that uses diffusion approximations to fit population genetic 181 
models of demographic history and natural selection to genetic polymorphism data summarized 182 
in SFS. 183 

We initially considered a two-stage demographic model (henceforth, “2-epoch”) allowing for 184 
one instantaneous population size change, and used the multinomial likelihood to infer the 185 
demographic parameters. The parameters of the model are ω – the intensity (i.e., fold-change) 186 
of the population size change – and time T that this demographic change occurs in the past. 187 
The method also outputs θS, the estimated population mutation rate for synonymous mutations, 188 
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defined as θS=4*Na*μ*L, where Na is the estimate of the effective population size of the 189 
ancestral population (before the population size change), μ is the mutation rate per site, per 190 
generation, and L is the coding sequence length. The inferred demographic model parameters 191 
are presented in Table S1. We infer the wolf’s population Na at ~72,000 individuals and a 192 
population size reduction (ω) of approximately 19% of its size at ~2,000 generations ago. 193 
Estimates for BC and LB are in the same order of magnitude, with Na = ~52,000 and ~86,000, 194 
ω = ~34% and ~20% respectively, although population size change takes place at an earlier 195 
period (~17,500 generations ago in either population). The estimates for PG indicate a much 196 
larger ancestral population effective size of ~223,000 and a much more severe bottleneck (ω = 197 
3.5%), taking place more recently (~8,000 generations ago). Both the model and the data SFSs, 198 
as well as the residuals of the model fit, are shown in Figures S4 and S5, highlighting the 199 
models fit the data well. 200 

Stability of the DFE Despite Domestication. We next inferred the DFE for new mutations 201 
using the nonsynonymous SFS, conditioning on the maximum-likelihood demographic 202 
parameters inferred from the synonymous variants. In doing so, we do not directly quantify the 203 
selection coefficient of each variant, but instead, summarize the distribution of fitness effects 204 
(DFE) over many sites. Initially, we focused on all exons annotated in the CanFam3.1 reference 205 
genome assembly for this inference, in order to calculate the genome-wide DFE of 206 
nonsynonymous mutations for each population of canids. 207 

To infer the DFE of nonsynonymous mutations, we used fit∂a∂i (42), a modification of 208 
∂a∂i (43) that allows for the inference of DFE from polymorphism data. Initially, we 209 
considered that the selection coefficients (s) followed a gamma distribution and inferred its 210 
shape and scale parameters. In addition to the gamma distribution, at a second stage, we also 211 
considered a mixture distribution where a proportion of mutations are neutral (s = 0) and the 212 
rest follow a gamma distribution (“neugamma” henceforth). We effectively treat the 213 
neugamma distribution as a single integrable function, as described in ref. (42).  214 

The inferred gamma-distributed DFE in canids (Fig. 1) shows no significant differences across 215 
the wolves (AW; yellow) and three different breeds of dogs (BC, LB, and PG; different shades 216 
of blue). The proportion of neutral/nearly-neutral mutations (|s| < 1e-5) is ~26-28% across 217 
wolves and dogs and that of strongly deleterious mutations (|s| > 1e-2) is ~41-48% (Table S2). 218 
No statistically significant differences between the discretized DFE were observed across canid 219 
populations, based on the overlap of the 95% confidence intervals (Fig. 1). 220 

Assuming a neugamma distribution for the DFEs, we observe a similar pattern, although the 221 
confidence intervals are considerably larger (Fig. S6). While the neugamma distribution 222 
improves the fit of the model for some populations (Table S3), we found that the optimizations 223 
for the neugamma did not converge as well as the ones for the former. On a related note, when 224 
we compare the DFEs of these four canid populations considering the distribution with best 225 
log-likelihood in each case (namely gamma for BC and neugamma for the other three 226 
populations), we still see no significant differences in the DFEs across populations when 227 
considering the 95% confidence interval (Fig. S7), although the neugamma DFE for PG 228 
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predicts a considerably higher proportion of strongly deleterious mutations than that in the 229 
other populations. The estimated parameters of the gamma and neugamma DFEs for the 230 
analyses, as well as the corresponding log-likelihoods, are reported in Tables S2 and S3. The 231 
model SFS fits for the nonsynonymous SFS for both the gamma and neugamma distributions 232 
and corresponding residuals are shown in Figures S8-S11, indicating the inferred DFE models 233 
fit the data well considering either functional form of the DFE.  234 

We observed a similar pattern when we use the same sample sizes of neq = 6 across all four 235 
populations (Fig. S12), although the 95% confidence intervals are wider, as expected due to 236 
the reduced data. Finally, we computed the population-scaled DFE, 2Nas, for the four canid 237 
populations. Estimates of 2Nas measure the relative strengths of selection vs. drift acting in the 238 
population and are more robust than estimates of s, as 2Nas is directly inferred from fit∂a∂i. 239 
Similar to the population-scaled DFE in terms of s, we detect no significant differences in the 240 
DFE across AW, BC, LB, and PG (Fig. S13). In sum, the inference of a stable DFE for 241 
nonsynonymous mutations in canids is not an artifact caused by different sample sizes across 242 
populations or biases in converting estimates of 2Nas into estimates of s.  243 

The Wolf and Dog DFEs are Highly Correlated. Because dogs and wolves have diverged 244 
relatively recently (29, 34, 35), and we did not observe any differences in the DFE between 245 
dogs and wolves, we sought to jointly model their DFE, following the approach developed by 246 
Huang et al. (23). According to this approach, the joint DFE is estimated for pairs of 247 
populations, and the correlation of their selection coefficients (ρ) is estimated. That is to say, ρ 248 
= 1 means that the mutations have the same selection coefficients in both populations, while 249 
lower values of ρ indicate that those mutations that are deleterious in one population may not 250 
be deleterious in the second population. This approach follows the same framework of 251 
∂a∂i/fit∂a∂i, using the synonymous SFSs to control for the effects of demography and 252 
background selection, and the nonsynonymous SFSs for the DFE inference, except that it uses 253 
the joint SFS (i.e., 2-dimensional; henceforth “2D”), computed for a pair of populations (23). 254 
The method requires only modest sample sizes and is robust to many forms of model 255 
misspecification (23).  256 

We first fit a simple demographic model (“split_mig”) with a population split at time T in the 257 
past (Fig. S14-S16). According to this model, the size of the two derived populations relative 258 
to the ancestor is ω1 and ω2, and remain constant after the split. Symmetric migration between 259 
the two derived populations happens at a rate m. We consider the following pairs of 260 
populations: AW-BC, AW-LB, and AW-PG. Projected sample sizes are the same used for the 261 
single population analysis described above. The joint SFS and fit plots are found in Figures 262 
S14-S16 and the inferred demographic parameters, in Table S4. The 2D demographic models 263 
show similar joint inferred demography across each pair, with Na = ~20,500, effective 264 
population size in the present (Np) for the wolf population after the split at ~8,400, and split 265 
time at ~4,000 generations ago. The only noticeable difference across the three models is the 266 
Np for the breed dog populations after the split, which ranges from ~500 for PG to 267 
approximately 1,300 for BC and LB (Table S4). 268 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623529doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.13.623529
http://creativecommons.org/licenses/by-nc/4.0/


8 

We inferred the joint DFE using the joint SFS of nonsynonymous variants (Fig. S17-19). Since 269 
little is known about the joint DFEs of wolf and breed dog populations, we first considered a 270 
simple bivariate lognormal distribution with an easily interpretable correlation coefficient. 271 
Given the similarity in DFEs for single populations, we assumed a symmetric bivariate 272 
lognormal distribution in which the marginal DFE for the wolf and dog populations are the 273 
same, while the parameter ρ quantifies the correlation of fitness effects of mutations between 274 
populations. Using a Poisson likelihood framework, we inferred the DFE parameters for each 275 
wolf-dog population pair (Table S4). We found that the DFEs of wolf and dog across all three 276 
comparisons are perfectly correlated (ρ > 0.99; Table 1). The discretized DFE for the bivariate 277 
lognormal joint DFEs and single-population gamma DFEs predict similar proportions of 278 
mutations in each bin (Table 1), suggesting the robustness of our findings relative to the 279 
assumptions about the functional forms of the DFE and whether we model the populations 280 
separately or jointly. 281 

Assessing the Robustness of the Inferred DFE. In order to confirm our observations about 282 
the stability of the DFE despite domestication, we sought to replicate our results using a 283 
separate dataset comprising one wolf and two dog populations. The wolf population (MW) 284 
comprises the genomes of nine gray wolves sequenced at ~19x depth of coverage (5). The two 285 
dog populations comprise one sample with 20 domestic breed dogs (MD) sequenced at an 286 
average of ~18x (5) and 10 Tibetan mastiffs (TM) sequenced at ~15x (39). Only one individual 287 
was removed from TM due to relatedness with other TMs in the sample. Following the same 288 
approach used for the higher coverage data (namely AW, BC, LB, and PG), we projected down 289 
the sample size in order to maximize the number of usable sites. The final sample sizes after 290 
projection and removal of related individuals are MW = 8, MD = 16, and TM = 7. 291 

We fit a 2-epoch demographic model to the synonymous SFS (Table S1; Fig. S4 and S5) and 292 
a gamma-distributed DFE model to the nonsynonymous SFS (Table S2; Fig. S8 and S9) using 293 
∂a∂i/fit∂a∂i. Although the maximum likelihood estimates for the proportion of new 294 
mutations with different values of s may appear to differ between wolves (MW) and dogs (MD 295 
and TM) using this lower coverage dataset (Fig. S20), the 95% confidence intervals of these 296 
estimates overlap, suggesting no significant differences between the DFEs of MW, MD, and 297 
TM. This observation confirms our findings obtained with the analysis of the high coverage 298 
samples (Fig. 1) showing no significant differences in the DFE of wolves and dogs.  299 

In addition to confirming the observations of a stable DFE in canids with an independent 300 
dataset, we also assessed whether misspecification in the model parameters could bias our 301 
estimates. We did so by using the high coverage samples (AW, BC, LB, and PG), considering 302 
their full, projected sample sizes, and re-ran the analyses considering a low mutation rate of 303 
3.00e-9 (considering the lower range of the estimate from ref. (35)), a high mutation rate of 304 
6.73e-9 (considering the cat-dog divergence-based mutation rate from ref. (39)) and a 1.25x 305 
higher mutation rate in exons – see Materials and Methods), the expected ratio of 306 
nonsynonymous-to-synonymous mutations (NS:S) estimated for humans (42), and a 3-epoch 307 
demographic scenario (Table S5). 308 
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The inferred DFE for dogs and wolves in each case are highly similar (Fig. S21), confirming 309 
our observations are robust to misspecification of the model, as far as it concerns the mutation 310 
rate (within a reasonable range for canids (35, 39)), the expected NS:S ratio (within a 311 
reasonable range for mammals (42)), and the number of population size changes. We note that 312 
the log-likelihood of the inferred 3-epoch demographic model for PG is slightly improved 313 
relative to that of the 2-epoch model (log-likelihood = -79.59 and -72.95 respectively); 314 
however, the gamma DFE for PG is qualitatively similar regardless of the demographic model 315 
considered (Fig. S22). 316 

DFE Inference for Domestication-associated Genes. While our results using the whole dog 317 
exome point to no differences in the DFE of nonsynonymous mutations in dogs and wolves 318 
(Fig. 1), even when considering different model assumptions and population samples (Table 1, 319 
Fig. S6, S12, S20, and S21), we hypothesized that the effects of domestication on the DFE may 320 
be more pronounced in gene sets thought to be associated with domestication. Although no 321 
single suite of traits is consistently seen across domestic animals (44), the literature harbors a 322 
number of studies evidencing signals of natural selection in domesticated species associated, 323 
in particular, with the nervous system, behavioral traits, skeletal system development, 324 
immunity, and pigmentation (7, 12, 13, 29, 32, 45, 46). Thus, to tackle this question, we subset 325 
the whole-exome data to different sets of genes implicated in pathways putatively associated 326 
with domestication. 327 

To implement this approach, the whole-exome data were filtered based on the following Gene 328 
Ontology terms: Nervous System Development (5.5 Mb exonic sequence length), Immune 329 
System Processes (3.6 Mb), and a combination of Immune System Processes, Nervous System 330 
Development, Carbohydrate Metabolic Processes, Pigmentation, and Skeletal System 331 
Development (“Domestication Genes” subset; 10.4 Mb). Similarly to our previous analyses, 332 
we fit first the synonymous SFS from the genes in each set in AW, BC, LB, and PG 333 
(considering the maximum sample size projected) to 2- and 3-epoch demographic models. 334 
Based on log-likelihoods estimated by ∂a∂i, we picked the best demographic model for each 335 
population considering each gene set independently for a total of 12 models (Tables S1 and 336 
S5). We assume a gamma-distributed DFE and fit the resulting model SFS to the data 337 
nonsynonymous SFS following the same procedure adopted for the whole exome analysis. 338 

The discretized gamma-DFE computed for each gene set shows no significant differences in 339 
the predicted proportion of deleterious and neutral mutations at different selection strengths 340 
(Fig. 2). While small differences in the maximum-likelihood estimates for these proportions 341 
are visually evident in some cases, in particular showing a larger proportion (additional ~10%) 342 
of strongly deleterious mutations in PG relative to the others for the Nervous System 343 
Development and “Domestication Genes” sets, the 95% confidence intervals largely overlap 344 
(Table S6). 345 
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Discussion  346 

The Evolutionarily Stable DFE of Dogs and Wolves. Our findings allow us to revisit our 347 
initial hypothesis that shifts in selective pressures during domestication would change the DFE 348 
in domesticated species compared to their wild relatives. We specifically hypothesized that 349 
strongly deleterious mutations might have become less deleterious under domestication and 350 
that this would have an impact in the DFE of new amino acid changing (nonsynonymous) 351 
mutations. At the early stages of domestication, selection for tameness may take place as 352 
animals start living in the surroundings of human populations (31, 32). At later stages, we 353 
expect to see fast shifts in the selective pressure (1), with many of the traits selected by breeders 354 
being potentially deleterious in the wild. Comparing populations of wolves and domestic dogs, 355 
we sought to test whether these putative shifts in selective pressure would also have an impact 356 
on the DFE of dogs. Contrary to our initial expectations, our data showed striking stability of 357 
the DFE across wild and domestic canid populations (Fig. 1), suggesting that domestication 358 
and the development of breeds may not drastically alter selection coefficients in 359 
nonsynonymous mutations, as inferred from polymorphism data. We assessed the robustness 360 
of our findings relative to differences in sample sizes across populations (Fig. S12) and model 361 
assumptions (Fig. S6 and S21; Table 1), and replicated our findings with an independent dataset 362 
(Fig. S20), and consistently observe statistically similar DFEs across wolves and breed dogs. 363 

This stability in the DFE across wolves and dogs aligns with previous studies comparing DFE 364 
evolution across the tree of life, which have found that significant differences in the DFE occur 365 
primarily across distantly related species (22, 47), whereas minimal changes are observed 366 
among more closely related species, subspecies, or populations (23, 24, 48, 49). Insights from 367 
comparing the ratio of nucleotide diversity for nonsynonymous and synonymous variants 368 
(πN/πS) across plant species also pointed to a limited role of domestication on shifting selection 369 
coefficients in plants (21, 28). The observed stability of the DFE within short evolutionary time 370 
scales supports the idea that the DFE is influenced more strongly by intrinsic organismal 371 
characteristics (e.g., organismal complexity, genome structure, genetic context, life history, 372 
etc.) than by extrinsic environmental factors (21, 22, 28), here, emulated by domestication. 373 

Despite evidence showing stability of the DFE, in particular in closely related species and 374 
populations (23, 24, 48, 49), experimental evolution studies in Drosophila (50) and the 375 
bacterium E. coli  (51) indicate that environmental shifts can influence the DFE. In particular, 376 
Wang et al. (50) showed that especially the variance, V(s), of the DFE of Drosophila was 377 
dependent on the environment. On a similar note, the strength of natural selection on 378 
pigmentation genes was found to be different across human populations (52). Thus, while the 379 
effects of domestication and breed formation on the DFE of canids appear minimal in our study, 380 
environmental factors may still play a role under certain evolutionary contexts. Motivated by 381 
these observations, we sought to investigate the effects of domestication on gene sets in 382 
biological pathways thought to be impacted by domestication in animals, in particular, the 383 
nervous system, skeletal system development, immunity, metabolism/diet, and pigmentation 384 
(7, 12, 13, 29, 32, 45, 46). Surprisingly, we found that the DFE is stable even when analyzed 385 
for these gene sets (Fig. 2), suggesting artificial selection may not have affect the DFE of 386 
canids, even for domestication-associated gene sets.  387 
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One potential explanation for the observed DFE stability is that domestication-related shifts in 388 
selective pressure have not been sufficient to generate detectable changes in the DFE, at least 389 
within the sample sizes and timescales studied. Forward simulations by Castellano et al. (53), 390 
modeling pig domestication over 10,000 generations, suggest that the DFE of deleterious 391 
mutations can be accurately estimated using either the 1D and 2D SFSs–that is either modeling 392 
one population at a time or two populations jointly. In their simulations, the evolutionary effects 393 
produced by domestication are modeled by changing, at the time of the split, the fitness effects 394 
of a proportion (5% or 25%) of the existing and new mutations in the domestic population 395 
relative to the wild counterpart. Given their findings, our research design appears to be well-396 
powered for detecting meaningful DFE changes in canids, assuming similar dynamics to what 397 
they simulated also apply to dog domestication.  398 

Alternatively, domestication might have more pronounced effects on other mutation types, 399 
such as regulatory variants or complex structural variants, rather than the nonsynonymous 400 
mutations studied here. Indeed, variants that differentiate wolf and domestic dog populations 401 
are enriched in regulatory elements such as promoters and enhancers (54), suggesting that a 402 
promising area for further investigation is to look at DFE differences between dogs and wolves 403 
focusing on regulatory variation. Finally, it is possible that domestication and artificial 404 
selection during dog breed formation have had a greater impact on beneficial mutations (55) or 405 
standing deleterious variation, which we did not specifically assess in this study. Further 406 
analyses targeting beneficial DFE components, as well as standing variation, may provide 407 
additional insights into the evolutionary consequences of domestication in canids. 408 

We note that the sample sizes used for our inference, ranging from n = 6 (neq) to 16 (MD after 409 
projection), may also limit power to detect subtle shifts in natural selection, as strongly 410 
deleterious variants are expected to segregate in low frequencies and thus not be observed in 411 
our sample. Instead, the strongly deleterious part of the DFE is extrapolated from the lack of 412 
common variants and the functional form of the DFE assumed. Larger sample sizes including 413 
more rare variants could enable more accurate inference of the more strongly deleterious part 414 
of the DFE. However, we note that estimates of the proportion of neutral/nearly neutral variants 415 
(|s| < 1e-5) among new mutations is less likely to be impacted by sample size. For this portion 416 
of the DFE, where we have more information, we do not detect a difference across wolves and 417 
breed dogs. This finding suggests that if we assume the DFE of new mutations is gamma 418 
distributed, we can use data from a small number of individuals to learn about mutations that 419 
we did not observe in our sample. 420 

The canid DFE relative to other animals. A recent study analyzed the DFE across eleven 421 
animal (sub)species, including humans, mice, fin whales, vaquitas, gray and Arctic wolves, 422 
collared flycatchers, pied flycatchers, halictid bees, Drosophila, and mosquitoes (56). Their 423 
findings show variation in the DFE across deep evolutionary time, with mammals having a 424 
larger proportion of strongly deleterious (|s| > 1e-2) mutations (22% in vaquitas to 47% in 425 
Arctic wolves) than other animals (0.0% in Drosophila to 5.4% in collared flycatchers), while 426 
the proportion of weakly deleterious mutations (1e-5 ≤ |s| < 1e-3) is smaller in mammals 427 
relative to birds and insects (56). Previously, Huber et al. (22) examined five competing models 428 
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explaining the determining factors driving DFE evolution and found strong support for the 429 
Fisher’s Geometrical Model (FGM). According to the FGM, phenotypes are characterized as 430 
points in an n-dimensional space, with fitness being a decreasing function of the distance from 431 
the optimal phenotype (57). The phenotype dimensionality n can be understood as the 432 
“organismal complexity.” Among others, the FGM makes one key prediction that is confirmed 433 
by refs. (22, 56) that mutations in more complex organisms are on average more deleterious 434 
because they are more likely to disrupt an important function in a complex organism than in a 435 
simpler one. In this context, the unusually high proportion of strongly deleterious mutations 436 
(|s| > 1e-2) in canids inferred in this study (41-48%) relative to other mammals (30% fin whale, 437 
27% human, 24% mouse, and 22% vaquita (56)) suggest a venue worthy of further 438 
investigation. 439 

DFE and Homologous Recombination in Canids. We speculate that our findings on the large 440 
amount of predicted strongly deleterious mutations in dogs and wolves relative to other 441 
mammals, including humans, may relate to the unique recombination landscape in canids, 442 
where recombination predominantly occurs in promoter regions due to a non-functional 443 
PRDM9 gene (58). This recombination pattern differs significantly from other mammals, 444 
where the PRDM9 protein localizes recombination hotspots throughout the genome (59, 60). 445 
In species harboring a functional copy of PRDM9, recombination hotspots may localize 446 
anywhere in the genome. The restriction of recombination to promoter regions in canids may 447 
thus effectively reduce recombination within genes, potentially impacting the purging of 448 
deleterious mutations under Muller’s Ratchet hypothesis, which posits that low-recombination 449 
regions are more prone to accumulating harmful mutations (61, 62). We note that less 450 
efficiently purging deleterious mutations does not necessarily equate to a more deleterious 451 
DFE. However, because our inference is based on polymorphism data, linkage between 452 
mutations within genes could skew the SFS, resulting in a larger proportion of deleterious 453 
mutations being inferred.  454 

As a first step into examining the relationship between the DFE and recombination rates, we 455 
inferred an LD-based recombination map for the Arctic wolf and subset its genome into three 456 
different datasets based on the estimated recombination rates (r), in units of recombination 457 
events per bp per generation: Low (0 ≤ r < 1.9e-9), Moderate (1.9e-9 ≤ r < 4.3e-9), and High 458 
(r ≥ 4.3e-9) recombination rate. We then used these three subsets to infer the DFE using the 459 
same framework implemented for the whole exome. Our results show qualitatively similar 460 
DFEs between low and high recombination regions, with regions with moderate recombination 461 
rate presenting an overall larger proportion of deleterious mutations (Fig. S23). One potential 462 
explanation for this observation is that intermediate recombination rate regions could have 463 
genes with different functions than other portions of the genome. We note that, due to the small 464 
sample sizes considered in our study, our findings regarding the differences in the proportion 465 
of strongly deleterious mutations across regions with different recombination rates should be 466 
considered with care. On the other hand, estimating the proportions of nearly neutral variants 467 
among new mutations is less likely to be impacted by sample size, and in the case of nearly 468 
neutral sites (|s| < 1e-4), we inferred highly similar proportions for the whole exome (33%) and 469 
the different recombination subsets (Low r = 34%; Moderate r = 29%; High r = 32%). Given 470 
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the importance of recombination in shaping genetic variation, understanding how the unique 471 
canid recombination pattern within mammals affects the DFE could provide valuable insights 472 
into the determinants of the DFE and the implications of PRDM9-independent recombination 473 
on adaptive potential and the purging of detrimental variants.  474 

Conclusion 475 

Overall, our study provides evidence that the DFE of nonsynonymous mutations remains 476 
relatively stable despite the significant shifts in selective pressures putatively associated with 477 
domestication in canids. Our finding underscores the role of intrinsic organismal characteristics 478 
in shaping the DFE, while environmental factors and shifts in the selective pressures associated 479 
with domestication may have limited influence – contradicting previous findings in Drosophila 480 
and E. coli showing an influence of the environment in shaping the selecting effects of 481 
nonsynonymous mutations  (50, 51). Future studies could explore the full properties of the DFE 482 
in other domesticated species with varying degrees of selection intensity and different life 483 
history traits to determine whether these observations hold across domesticated lineages. 484 
Additionally, investigating the DFE of gene promoters and enhancers in domesticated species 485 
could yield further insights into the importance of natural selection on regulatory variation 486 
during domestication. In conclusion, while domestication has clearly impacted genetic 487 
diversity and allele frequencies in canids (and other domesticated species alike), our data 488 
suggest that the DFE of nonsynonymous mutations remains resilient to these shifts, providing 489 
new perspectives on the stability of fitness effects even in the face of drastic environmental 490 
shifts. 491 

Materials and Methods 492 

Genomic Data. Whole-genome sequencing data were aggregated from the literature: Arctic 493 
wolf (AW; n = 15) with ~39x coverage (38, 39), border collie (BC; n = 10) with ~24x coverage 494 
(40), labrador retriever (LB; n = 10) with ~30x coverage (40), pug (PG; n = 15) with ~47x 495 
coverage (41), and Tibetan Mastiff (TM; n = 10) with ~15x coverage (39). In addition to these, 496 
we also aggregated data from nine wolves from different populations (referred to as “mixed 497 
wolves” or MW in this study) with ~19x coverage and 20 dogs from 20 different breeds 498 
(referred to as “mixed dogs” or MD in this study) with ~18x coverage (5). The term “mixed” 499 
here refers to the fact that these individuals came from different populations and were pooled 500 
into one sample, not that they are necessarily wolf-domestic dog hybrids or mixed breed dogs. 501 

Raw whole genome sequences (fastq files) were processed following GATK best practices, 502 
and according to the pipeline outlined by Phung et al. (39) 503 
(https://github.com/tanyaphung/NGS_pipeline). In brief, the fastq files were first aligned to the 504 
dog genome (CanFam3.1) with BWA (63). We then marked duplicate reads with Picard tools 505 
(https://broadinstitute.github.io/picard/), removed reads with mapping quality (MAPQ) less 506 
than 30 using SAMtools (64), and recalibrated the base quality scores using the BQSR tool in 507 
GaTK v3.8 (65, 66). We performed joint genotyping with the HaplotypeCaller method and 508 
emitted all sites (variant and invariant). To reduce bias in SNP calling accuracy between canids 509 
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from a given dataset, we conducted joint genotyping considering all individuals in each 510 
population. For example, joint genotyping was conducted on the 15 AW samples as a group, 511 
separately on the 10 BC samples as a group, and so on. We then applied post hoc filtering to 512 
each of the VCF files generated for each of the seven datasets. Specifically, we applied GATK 513 
filtering recommendations for variant sites in non-model species: QD < 2.0, FS > 60.0, MQ < 514 
40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, and a minimum genotype quality (GQ) 515 
of 20. Additionally, we removed clustered SNPs (i.e., > 3 SNPs within 10 bp). 516 

For invariant sites, for which no best practices were available, we applied the following filters: 517 
QUAL < 30, and RGQ < 1.  For both variant and invariant sites, we applied a minimum depth 518 
filter of 10 for each genotype, as previous work has found heterozygous calls are unreliable 519 
below this depth (5), and a maximum depth filter of 2.5 times the average genomic coverage 520 
(specific for each of the seven datasets). Finally, we removed any sites where all individuals 521 
were heterozygous, fewer than 80% of individuals in a group had a genotype call after post hoc 522 
filtering was applied, or any sites within the UCSC repeat regions. 523 

Genomic VCF files were subset to autosomal exonic regions with VCFtools (67). Exon 524 
coordinates for the reference dog genome canFam3 were obtained from 525 
http://hgdownload.soe.ucsc.edu/goldenPath/canFam3/database/ensGene.txt.gz (accessed on 526 
02/05/2018). From this dataset, we obtained the coordinates for the exons of 30,784 genes, 527 
considering the longest transcript in each case. Based on the canFam3 reference genome, we 528 
calculated the total exon length for dogs as 25.16 Mb. 529 

To annotate the effects of all potential exonic single nucleotide variants (SNVs), we artificially 530 
introduced “mutations” to a VCF file containing dog exome data, so that all three potential 531 
SNVs were observed in each site. The functional effects of each variant in each site were 532 
predicted with SnpEff (68, 69), using the dog reference genome build CanFam3.1.75, available 533 
with SnpEff. We used these annotations to classify each exonic position into either a 0-, 2-, 3-, 534 
or 4-fold degenerate site. We exclusively considered exonic sites where all three potential 535 
SNVs were annotated as either synonymous or nonsynonymous (missense) mutations (~21.7 536 
Mb), effectively discarding sites with other types of annotations, such as splice sites and 537 
nonsense mutations (i.e., stop-gained and stop-lost). 538 

Computing the Site Frequency Spectra. We used KING (70), implemented in PLINK (71), 539 
to identify pairs of related individuals and excluded those with more than 35% of their genome 540 
with at least one allele in IBD in practice removing first-degree relatives (i.e., parent-child and 541 
siblings). Relatedness was estimated using a set of putative neutral SNVs from ref. (39). To 542 
select putative neutral regions in the dog genome, these authors filtered out any locus 0.4 cM 543 
away from conserved regions, annotated with phastConsElements100way UCSC Genome 544 
Browser, or a gene, resulting in approximately 24.5 Mb of sequence. The following individuals 545 
were excluded from the downstream analysis after removing related individuals: AW14, BC2, 546 
BC8, BC10, and TM4. The final sample sizes obtained for each population after the removal 547 
of one of the relatives were AW = 14, BC = 7, LB = 10, PG = 15, MW = 9, MD = 20, and TM 548 
= 9. 549 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623529doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.13.623529
http://creativecommons.org/licenses/by-nc/4.0/


15 

Because we allowed some missing data in our dataset and considering we cannot use missing 550 
data to calculate the SFS, we projected down these sample sizes in order to maximize the 551 
number of SNVs available for each population. We used EasySFS 552 
(https://github.com/isaacovercast/easySFS; (43)) to calculate the number of SNVs for a given 553 
sample size and to project down the sample size. EasySFS averages allele absolute frequencies 554 
over all possible combinations of samples for a given sample size (i.e., the hypergeometric 555 
projection method). The resulting projected sample sizes were: AW = 13, BC = 6, LB = 9, PG 556 
= 14, MW = 8, MD = 16, and TM = 7. Additionally, to assess if unequal sample sizes were 557 
biasing results, we further projected down these sample sizes to neq = 6 for the high coverage 558 
samples (AW, BC, LB, and PG). 559 

Based on these sample sizes after filtering and projection, we calculated the folded SFS for 560 
each population using EasySFS. The folded SFS describes the number or proportion of variants 561 
at different minor allele frequencies in the sample. We chose to use the folded SFS (as opposed 562 
to the unfolded) to avoid biases resulting from the misspecification of the ancestral allele (72). 563 

Calculating Synonymous and Nonsynonymous Sequence Lengths. After classifying each 564 
exonic position into 0-, 2-, 3-, or 4-fold degenerate sites, we calculated the ratio of 565 
nonsynonymous sequence length to synonymous sequence length (LNS:S) in the canFam3 566 
genome assembly. We used LNS:S to calculate the expected number of nonsynonymous 567 
mutations from the inferred synonymous mutation rate for the DFE inference (see below). 568 

The nonsynonymous sequence length (LNS) was calculated as the number of 0-fold degenerate 569 
sites, ⅔ of the 2-fold degenerate sites, and ⅓ of the 3-fold degenerate sites. Conversely, the 570 
synonymous sequence length (LS) was calculated as the number of 4-fold degenerate sites, ⅔ 571 
of the 3-fold degenerate sites, and ⅓ of the 2-fold degenerate sites. Because methylated CpG 572 
sites are highly mutable (73, 74) and enriched in exons (as seen in humans (75)), we calculated 573 
LNS:S considering a 10x higher mutation rate in putatively methylated CpG sites. We defined 574 
putatively methylated CpG sites as those CpG sites not in CpG islands, which are known to be 575 
unmethylated (76, 77). CpG islands coordinates in the dog genome were obtained from 576 
http://hgdownload.soe.ucsc.edu/goldenPath/canFam3/database/cpgIslandExt.txt.gz (accessed 577 
03/20/2018). This information was used for exploring the effects of different LNS:S in the 578 
estimates of the DFE in different populations, using LNS:S = 2.21 calculated for the dog (this 579 
study) and LNS:S = 2.31 calculated for the human genome (22). 580 

Demographic and DFE Inference. We inferred demography and the DFE from site frequency 581 
spectrum (SFS) according to a maximum likelihood approach in two steps. First, we inferred 582 
the parameters of a demographic model considering synonymous variants. Second, we inferred 583 
the parameters of the DFE of nonsynonymous variants conditional on the demographic 584 
inference. As shown by Kim et al. (42), this two-step approach effectively controls for the 585 
effects of demography and background selection when estimating the DFE of nonsynonymous 586 
variants. The rationale behind this approach is that, if nonsynonymous variants are completely 587 
neutral, the SFS computed based on these variants will have the same shape as the SFS of 588 
synonymous variants and the number of nonsynonymous mutations will be 2.21x larger (for 589 
dogs, as calculated in the present study). Any differences between the shapes of the 590 
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synonymous and nonsynonymous SFSs or a deviation in the number of mutations from the 591 
expected can be attributed to the effects of natural selection. That is because both synonymous 592 
and nonsynonymous variants are subject to the same demography. Note that, although the 593 
demographic model inferred in the first step may be biased by linked selection (78), using this 594 
combination of synonymous and nonsynonymous variants allows us to control for the effects 595 
of background selection in addition to demography when inferring the DFE in the last step (22, 596 
42). 597 

We implemented both the demographic and DFE inferences using varDFE 598 
(https://github.com/meixilin/varDFE; (56)), a robust but flexible workflow implemented in 599 
Python. The demographic inference was performed with ∂a∂i (43), implemented via varDFE 600 
(Demog1D_sizechangeFIM module). The  method implemented via ∂a∂i uses a diffusion 601 
approximation to compute the SFS given a demographic model. The multinomial likelihood is 602 
maximized to estimate the demographic parameters from the observed (data) synonymous SFS. 603 
A population mutation rate for synonymous variants θS is estimated by scaling the optimized 604 
SFS relative to the observed synonymous SFS. The ancestral population size Na can then be 605 
estimated considering θS according to this equation: θS=4*Na*μ*L. varDFE uses Na for scaling 606 
the time and size parameters of the demographic model as well as the selection coefficients 607 
inferred at the final step. 608 

We considered two simple demographic models with spontaneous size changes. The 2-epoch 609 
model has a single size change and the 3-epoch model has two size changes. As can be seen in 610 
Figures S4 and S5, the SFSs computed from these simple demographic models present a good 611 
fit to the observed synonymous SFSs. 612 

We used fit∂a∂i (42), implemented via varDFE (DFE1D_refspectra and 613 
DFE1D_inferenceFIM modules), to estimate the DFE from the nonsynonymous SFSs, 614 
conditioning on the maximum-likelihood estimates of the demographic parameters. The 615 
method implemented with fit∂a∂i fits a DFE to the nonsynonymous data SFS by maximizing 616 
the Poisson likelihood (42). Because the Poisson likelihood requires a mutation rate for 617 
nonsynonymous variants (θNS), we multiplied the estimates obtained for θS by the ratio of 618 
nonsynonymous-to-synonymous mutation we estimated for the dog genome (2.21:1) and later 619 
also for the one calculated for the human genome (2.31:1 (22)). In doing so, we sought to assess 620 
whether the DFE estimates were sensitive to misspecification of this ratio, considering a 621 
plausible value for mammals.  622 

We focused on the deleterious DFE, with selection coefficients (s) ranging from |s| = 10-8 to 623 
0.5. In doing so, we considered any portion of the DFE smaller than 10-8 to be effectively 624 
neutral and larger than 0.5 to be lethal and have a negligible probability of being polymorphic 625 
in sample sizes considered in our study. Dominance coefficients are assumed to be h = 0.5, 626 
thus implying additive fitness effects. 627 

We investigated three distributions of selection coefficients: the standard gamma distribution 628 
for DFEs (22, 49, 79); a mixture distribution where a proportion of variants are neutral, with 629 
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the remaining variants with selection coefficients following a gamma distribution 630 
(“neugamma”); and the bivariate lognormal distribution, the latter exclusively for the joint 631 
estimation of DFE for each two pairs of populations (namely AW-BC, AW-LB, and AW-PG; 632 
see below). For the neugamma distribution, the neutral mass and the gamma distribution can 633 
effectively be treated as a single integrable function. The reported s are scaled by the inferred 634 
ancestral population size estimated according to the demographic inference using the SFS of 635 
synonymous variants, unless otherwise noted (e.g., Fig. S13). To discretize the DFE using the 636 
estimated parameters of the distributions, we computed the cumulative probability in a given 637 
range of s using the pgamma function in R. 638 

varDFE outputs the standard deviation of the maximum likelihood parameter estimates 639 
(MLEs) based on the Fisher’s Information Matrix method implemented in ∂a∂i, which we then 640 
used to calculate confidence intervals using R. To do so, we assumed the MLEs of the shape 641 
and scale parameters of the gamma distribution were normally distributed with means equal to 642 
the maximum likelihood values and standard deviation as computed by varDFE. We then drew 643 
10,000 shape and scale parameters using the function pnorm in R and used pgamma to compute 644 
the discretized DFE for each replicate. The 95% confidence interval for each bin was taken as 645 
the middle 95% of the simulated values. 646 

We note that the maximum likelihood estimates for the scale parameter of the gamma 647 
distribution reached the upper boundary during the DFE inferences in some instances (see 648 
Tables S2 and S3), with uncertain biological significance. We initially used a range for the 649 
scale parameter based on previous works with different organisms and slowly increased the 650 
upper bound of the scale parameter until we reached 1,000,000. Reaching this upper bound 651 
may be due to an innately highly deleterious DFE in canids.  Importantly, the fit of the model 652 
SFS to the data is satisfactory using this upper bound (Fig. S8-S11). The same phenomenon 653 
was observed by Lin et al. (56) in an independent analysis of the AW data used in this study, 654 
as well as for a population of Russian Karelian gray wolf not analyzed here. In addition, 655 
Gaughran (80) describes the same phenomenon for the DFE estimates of the northern elephant 656 
seal and the Baltic ringed seal.  657 

2D Demographic and DFE Inferences. We inferred the joint DFE of pairs of populations: 658 
AW-BC, AW-LB, and AW-PG. We assume the wolf and the breed dog populations recently 659 
split form one another, and that there is symmetric gene flow between them. We also assume 660 
that the wolf population is more similar to the ancestral population and keeps the same selection 661 
coefficients while the diverged dog population may have different selection coefficients. 662 

We inferred the demographic history and joint DFE using the joint SFS, which is a matrix in 663 
which each entry is the count of the number of variants observed at frequency i in population 664 
1 and j in population 2. Similar to the 1D analysis, here we also used the folded allele frequency 665 
spectrum that counts the minor allele frequency. Different demographic histories and different 666 
combinations of selection coefficients of two populations lead to distinct patterns in the joint 667 
SFS (23). 668 
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We infer the demographic model using the joint SFS from synonymous variants. We assume 669 
the ancestral population split into a wolf (AW) and a breed dog (BC, LB, or PG) population. 670 
The derived populations after the split may have different population sizes among themselves 671 
and relative to the ancestral population. Gene flow is assumed to be symmetric. 672 

Since the DFE for single populations were found to be similar, we fit the joint DFE with a 673 
symmetric bivariate lognormal model that is a joint distribution of correlated lognormal 674 
variables (mean μ and standard deviation σ) with identical marginal distributions. That is, the 675 
marginal DFE for the wolf population and dog population are the same, while the parameter ρ 676 
quantifies the correlation of fitness effects of mutations between populations.  677 

We used ∂a∂i/fit∂a∂i and the command line tool dadi-cli to infer the 2D demographic 678 
model and the joint DFE. The parameters and commands used for inference can be found at 679 
https://github.com/chenludi/canids_2DDFE_2024/tree/main.  680 

Gene Set Data. The AmiGO Gene Ontology (GO) database 681 
(https://amigo.geneontology.org/amigo) was accessed on 09/12/2024 for the retrieval of 682 
information regarding gene names included in GO terms putatively associated with 683 
domestication. These include “nervous system development” (GO:0007399), “immune system 684 
process” (GO:0002376), “carbohydrate metabolic process” (GO:0005975), “pigmentation” 685 
(GO:0043473), and “skeletal system development” (GO:0001501). The choice for those 686 
specific five GO terms sought to balance the specificity of the term with the number of genes 687 
included in each. The data was filtered considering “Canis lupus familiaris” as “Organism.” 688 
From these, we obtained the relevant gene IDs based on the “gene/product (bioentity label)” 689 
column.  The coordinates for the selected genes were obtained from the UCSC Genome 690 
Browser 691 
(https://hgdownload.soe.ucsc.edu/goldenPath/canFam3/bigZips/genes/canFam3.ncbiRefSeq.g692 
tf.gz), accessed on 09/05/2024. Exon length for each gene set was 5,761,394 bp, 3,703,799 bp, 693 
1,060,844 bp, 239,818 bp, and 1,254,685 bp respectively. We considered “nervous system 694 
development” and “immune system process” separately, and also merged all five gene sets into 695 
a “domestication-associated genes” set for a total of 10,483,822 bp. Data processing and 696 
subsetting were performed with in-house scripts, as well as BCFtools (81) and BEDtools (82). 697 

A Recombination Map for the Arctic Wolf. 698 

To infer a fine-scale recombination map for the AW, we used the unphased high coverage 699 
polymorphism data used for the DFE inference as described above. The map was built based 700 
on linkage disequilibrium (LD) patterns across the genome. To do so, we first inferred AW 701 
demographic history (i.e., changes in Ne through time) with SMC++ (83), considering all 38 702 
autosomal chromosomes. We considered a mutation rate of 4.5e-9 per base pair per generation, 703 
based on a wolf pedigree study (84). Then, we estimated the recombination rate per-704 
chromosome using pyrho (85). When computing a lookup table in pyrho, we used the manual 705 
recommendation of calculating statistics of LD and rho (population recombination rate) based 706 
on a population size that was 50% larger than our sample size. For the final step of inferring 707 
recombination rates (r) in pyrho, we used a window size and block penalty of 50.  708 
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Assessing DFE Variation as a Function of Recombination Rate. We used the LD-based 709 
recombination map that we inferred for the AW to split its genome into three different bins 710 
based on r in units of per bp per generation and considering non-overlapping 1 MB windows:  711 
Low (0 ≤ r < 1.9e-9), Moderate (1.9e-9 ≤ r < 4.3e-9), and High (r ≥ 4.3e-9) recombination rate. 712 
We excluded regions with recombination rates above 2e-8 per bp per generation. In doing so, 713 
we sought to have approximately equal amounts of data (in base pairs) across the three bins. 714 
As a result, each bin contained roughly ⅓ the number of synonymous and nonsynonymous 715 
SNPs found across all exons. Considering each of the three recombination bins separately, we 716 
inferred demographic history and the gamma DFE using the same approach implemented for 717 
the whole exome data. 718 
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Figures 912 

 913 

Fig. 1. Discretized distribution of fitness effects (DFE) showing the proportions of 914 
nonsynonymous mutations in various categories of |s|. From left to right, mutations range from 915 
neutral/nearly neutral (0 < |s| ≤ 1e-5) to strongly deleterious/lethal ( |s| ≥ 1e-2). The DFE is 916 
assumed to follow a gamma distribution. The arctic wolf population (AW) is depicted in 917 
yellow, and three domestic dog breeds in different shades of blue (BC = border collie; LB = 918 
labrador retriever; PG = pug). Error bars represent the 95% confidence intervals for the 919 
proportion of mutations in each category of |s|.  920 
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 921 

Fig. 2. Discretized distribution of fitness effects (DFE) showing the proportions of 922 
nonsynonymous mutations in various categories of |s| for different gene sets: (A) Nervous 923 
System Development, (B) Immune System Processes, and (C) a combination of Immune 924 
System Processes, Nervous System Development, Carbohydrate Metabolic Processes, 925 
Pigmentation, and Skeletal System Development (“Domestication Genes” subset). In all 926 
panels, mutations range from neutral/nearly neutral (1e-5 < |s| ≤ 0) to strongly deleterious/lethal 927 
( |s| ≥ 1e-2). The DFE is assumed to follow a gamma distribution. The arctic wolf population 928 
(AW) is depicted in yellow, and three different domestic dog breeds in different shades of blue 929 
(BC = border collie; LB = labrador retriever; PG = pug). Confidence intervals for these 930 
estimates can be found in Table S6. 931 
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Table 934 

Population 
comparison 

Proportions of nonsynonymous mutations in various 
categories of |s| ρa FST

b 

[0, 1e-5) [1e-5, 1e-4) [1e-4, 1e-3) [1e-3, 1e-2) [1e-2, 0.5) 

AW 26% 7% 9% 11% 46% n/a n/a 
BC 26% 7% 9% 11% 48% n/a n/a 
LB 26% 7% 9% 12% 47% n/a n/a 
PG 28% 8% 10% 13% 41% n/a n/a 

AW-BC 20% 8% 9% 10% 53% 0.999 0.166 
AW-LB 21% 7% 8% 8% 56% 0.999 0.175 
AW-PG 21% 8% 9% 9% 54% 0.999 0.234 

Table 1. Comparison of the proportions of nonsynonymous mutations in various categories of 935 
|s|. Shown are the estimates for the Arctic wolf (AW), border collie (BC), labrador retriever 936 
(LB), and pug (PG) considering the 1D site frequency spectrum (SFS) and for each pair of 937 
populations including AW and each of the three dog breeds based on the 2D SFS. The AW’s 938 
DFE is assumed to be gamma-distributed, while the joint DFEs are assumed to be lognormal 939 
distributed. aρ represents the correlation coefficient of the DFE between pairs of populations. 940 
bFST from ref. (27). 941 
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