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Abstract 

Purpose: Considerable evidence suggests that autophagy plays a crucial role in the biological 
processes of ovarian cancer. The aim of this study was to develop a novel autophagy-related 
prognostic signature for serous ovarian cancer. 
Methods: A univariate Cox proportional regression model was used to analyze mRNA microarray 
and clinical data in The Cancer Genome Atlas (TCGA) for the purpose of selecting 
autophagy-related prognostic genes. A multivariate Cox proportional regression model and the 
survival analysis were used to develop an eight-gene prognostic signature. The multivariate Cox and 
stratification analysis suggested that this signature was an independent prognostic factor for serous 
ovarian cancer patients. Bioinformatics functions were investigated by a principal components 
analysis and gene set enrichment analysis (GSEA). Finally, the correlation between the prognostic 
signature and gene mutation status was further analyzed in serous ovarian cancer, and especially 
with regard to the mutation status of BRCA1 and BRCA2 (BRCA1/2) genes. 
Results: Distinctly different autophagy-related gene expression profiles were identified in normal 
ovarian tissues and serous ovarian cancer tissues. We profiled an autophagy-related gene set and 
identified eight genes with significant prognostic values for serous ovarian cancer. Subsequently, an 
autophagy-related ovarian cancer risk signature was constructed, and patients at a high-risk or 
low-risk for poor prognosis were identified based on their signature. High-risk patients had 
significantly shorter overall survival (OS) and disease-free survival (DFS) times than low-risk 
patients. GSEA results suggested an enhanced intensity of autophagy regulation in high-risk patients 
when compared with low-risk patients. When studied as an independent prognostic factor for 
serous ovarian cancer, the significant prognostic value of this signature could be seen in the stratified 
cohorts. For clinical use, we developed a nomogram that included the prognostic classifier and seven 
clinical risk factors. Additionally, we identified the 10 most frequently mutated genes found in serous 
ovarian cancer patients, and analyzed them for their differences in high-risk and low-risk patients. 
Among 293 patients, 62 had BRCA1/2 gene mutations, and this result was significantly correlated 
with the autophagy-related prognostic signature. 
Conclusions: Our findings suggest that the eight-gene autophagy-related signature could serve as 
an independent prognostic indicator for cases of serous ovarian cancer. 
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Introduction 
As the most lethal gynecological cancer 

world-wide, the incidence of ovarian cancer has 
increased [1, 2]. Statistics indicate that 85~90% of 
patients with ovarian cancer have epithelial ovarian 

cancer, and 75% of those patients have serous ovarian 
cancer [3, 4]. It is well-known that tumor stage, 
histological grade, and residual tumor size are 
significant prognostic factors for ovarian cancer 
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patients [5]. Moreover, recent studies suggest that the 
mutation status of BRCA1/2 correlates with patient 
prognosis and the chemosensitivity of ovarian cancer, 
and especially serous ovarian cancer [6]. Based on our 
increased knowledge of how molecular heterogeneity 
affects ovarian cancer progression, it has been 
suggested that prognostic biomarkers be included in 
any clinical analysis of ovarian tumors [7]. 

As a mechanism for maintaining cellular 
homeostasis, autophagy is a process that degrades 
cellular components under conditions of stress or 
nutrient deprivation [8, 9], and therefore plays an 
important role in numerous biological and 
pathological processes, including neurodegenerative 
diseases, cardiomyopathy and cancer [9, 10]. 
However, the role of autophagy in tumorigenesis 
remains controversial.  

Previous studies have shown that autophagy can 
either promote or suppress tumor cell survival at 
different stages of cancer development [11]. During 
the early stages of cancer, autophagy promotes the 
degradation of damaged proteins or organelles to 
alleviate cellular damage and chromosomal 
instability, and thus suppresses cancer progression 
[12-14]. However, once the cancer has formed, 
autophagy allows tumor cells to survive under 
stressful conditions, and thus promotes tumor 
progression [15-17].  

The relationship between autophagy and 
ovarian cancer has been previously reported. For 
instance, autophagy was shown to promote 
chemoresistance and help maintain the stemness of 
ovarian cancer stem cells [18]. Notably, previous 
studies have focused on exploring the relationship 
between autophagy and ovarian cancer progression; 
however, large-scale expression data has rarely been 
used to investigate the role of autophagy in ovarian 
cancer progression and prognosis. 

Because high-throughput expression data is now 
available, it has become feasible to use global gene 
expression data for analyzing the relationship 
between autophagy-related gene expression and the 
clinical outcomes of ovarian cancer patients. In this 
study, we detected an autophagy-related risk 
signature that contains eight autophagy-related 
genes. This signature can be used to independently 
and accurately predict the prognostic value for serous 
ovarian cancer, and is closely correlated with the 
mutation status of BRCA1/2. Broadly speaking, our 
study demonstrates that autophagy plays an essential 
role in cancer, and suggests autophagy-related genes 
as promising prognostic biomarkers for serous 
ovarian cancer.  

Materials and methods 
Autophagy-related gene set 

We searched the HADb (Human Autophagy 
Database) to identify 234 genes that had been 
described in literature as being involved in the 
autophagy process [19]. In addition, 394 
autophagy-related genes were obtained from the gene 
set (GO_autophagy, M12441) in the Molecular 
Signatures Database v4.0 [20]. 

Patient samples 
Firehose was used to generate a normalized gene 

expression dataset and clinical information pertinent 
to ovarian serous cystadenocarcinoma patients from 
The Cancer Genome Atlas (TCGA) database. A full 
mutation dataset of corresponding patients was 
obtained from cBioPortal [21, 22]. The nine 
independent microarray serous ovarian cancer 
cohorts produced by the HGU133 Plus 2 platform 
were extracted from the Gene Expression Omnibus 
(GEO) database (accession number: GSE14407, 
GSE38666, GSE54388, GSE27651, GSE18520, 
GSE40595, GSE32062, GSE26193, and GSE51088 
[23-31]. The Robust Multi-array Average method was 
used to normalize raw microarray datasets [32]. The 
ComBat method was used to remove any batch 
effects, and thereby eliminate discrepancies between 
different datasets [33]. When more than one probe 
matched the same gene ID, the probe with the largest 
expression value was used for our study. GSE26193 
and GSE51088 were selected as our independent 
validation cohorts because they are the largest 
datasets containing information on overall survival 
among the nine different datasets. Overall, 529 
samples from microarray of TCGA were used as a 
discovery cohort, 295 samples from the RNAseq of 
TCGA were used as an internal validation cohort, 79 
samples from GSE26193 and 106 samples from 
GSE51088 were used as two independent external 
validation cohorts. 

Procedures 
The R programming language was used to 

perform a principle components analysis for the 
purpose of investigating the distinct gene expression 
patterns of samples. 

An R package survivalROC was used to create 
receiver operating characteristic (ROC) curves that 
were used to evaluate the sensitivity and specificity of 
survival. Next, area under the curve (AUC) values 
was calculated according to the ROC curves. 

GSEA was used to perform the gene set 
enrichment analysis [20]. A normalized enrichment 
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score (NES) and false discovery rate (FDR) were used 
to determine statistical significance. 

Statistical analysis 
A univariate Cox proportional hazard regression 

analysis was used to evaluate the association between 
overall survival time and gene expression values 
obtained from the autophagy-related gene set in the 
test cohort. The prognostic value of a gene was 
considered statistically significant when the p-value 
was < 0.01. Next, a multivariate Cox proportional 
hazards regression analysis was performed using the 
pool of candidate prognostic genes. The Akaike 
information criterion (AIC) was used to select the 
most appropriate model [34]. By weighting the 
estimated Cox regression coefficients, the eight-gene 
risk signature was constructed [35]. Patients were 
classified into high-risk and low-risk groups 
according to their risk score, and using the median 
score as the cutoff point. The Kaplan-Meier method 
and log-rank test were used to estimate the overall 
survival (OS), disease-free survival (DFS), and 
progression-free survival (PFS) times of patients. 
Independent prognostic factors were identified using 
the multivariate Cox proportional hazards regression 
model, and hazard ratios (HR) were calculated using 
the Cox regression model. The prediction accuracy of 
this risk model was determined by a time-dependent 
ROC analysis. A prognostic nomogram was created 
for OS based on the Cox proportional hazard 
regression model. A concordance index (C-index) was 
calculated to determine the performance of the 
nomogram. The nomogram and calibration plot were 
created using the rms package of R software. The 

Chi-square test was used to evaluate the correlation 
between BRCA1/2 mutation status and the 
autophagy-related signature. R software (version 
3.4.1) was used to perform the bioinformatics analysis. 
All tests were two-tailed and p-values < 0.05 were 
considered statistically significant. All data were 
analyzed using GraphPad Prism 7 software 
(GraphPad Software Inc., La Jolla, CA, USA). 
Differences in clinicopathologic parameters between 
high-risk and low-risk groups were tested by Students 
t test or the X2 test. 

Results 
Distinct autophagy-related phenotype 
expression patterns in normal ovaries and 
serous ovarian cancer 

The general process of our study is described as 
Fig. 1a. A total of 117 serous ovarian cancer tissues 
and 52 normal ovarian tissues with mRNA expression 
data were obtained from 7 GEO datasets. The 
autophagy-related gene set included 546 genes from 
the Human Autophagy Database and another gene set 
(GO_autophagy, M12441) from the Molecular 
Signatures Database, v4.0. A principal components 
analysis comparing serous ovarian cancer tissues with 
normal ovarian tissues based on their 
autophagy-related genes showed two significantly 
different distribution patterns. Normal ovarian 
samples were distributed on the left side, while 
samples of serous ovarian cancer were distributed on 
the right side, suggesting distinctly different 
regulatory roles for autophagy in normal ovaries and 
serous ovarian cancer (Fig. 1b). 

 

 
Figure 1. (a) Flowchart for the study; (b) Principle components analysis of autophagy-related genes in normal ovaries and serous ovarian cancer. 
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Identification of an autophagy-related risk 
signature for the prognosis of serous ovarian 
cancer 

After reviewing the distinct autophagy-related 
gene expression pattern found in serous ovarian 
cancer when compared with the pattern found in 
normal ovaries, we investigated the role that 
autophagy might play in serous ovarian cancer, and 
identified an autophagy-related risk signature that 
might be useful for establishing the prognosis. A Cox 
regression analysis was performed to investigate the 
prognostic value of autophagy-related genes found in 
529 serous ovarian cancer patients as listed in the 
TCGA microarray dataset. Twelve genes (PRKG1, 
FGF7, WDR45L, NRG4, BLOC1S1, IL24, PEX3, 
CDKN1B, CD93, SIRT2, PDK4, and SLC22A3) were 
found to be significantly associated with OS in serous 
ovarian cancer patients (p < 0.01, Table 1). The AIC 
was used to select the most appropriate model, which 
was identified as a model comprised of eight different 
genes (BLOC1S1, IL24, NRG4, PDK4, PEX3, PRKG1, 
SIRT2, and WDR45L). Among the eight genes, four 
genes (BLOC1S1, IL24, NRG4, and WDR45L) were 
identified as protective factors (HR < 1), while the 
other four genes (PKD4, PEX3, PRKG1, and SIRT2) 
were identified as risk factors (HR > 1). 

Table 1. Top 12 genes significantly associated with the survival 
time of patients in the training dataset (N = 529) 

Gene name HR P-value 
PRKG1 1.425733 0.001275 
FGF7 1.2575 0.001398 
WDR45L 0.764353 0.002558 
NRG4 0.858855 0.00393 
BLOC1S1 0.707778 0.004328 
IL24 0.618953 0.004421 
PEX3 1.292997 0.00461 
CDKN1B 1.280662 0.00528 
CD93 1.195552 0.005346 
SIRT2 1.377175 0.006193 
PDK4 1.188561 0.006719 
SLC22A3 1.246166 0.006826 
HR: hazard ratio 

 
We then used a multivariate Cox regression 

model to develop the following autophagy-related 
risk signature associated with the survival of serous 
ovarian cancer patients [36]. 

Risk score =
(– 0.4175 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1𝑆𝑆1 expression)– (0.4852 ×

𝐼𝐼𝐵𝐵24 expression)– (0.1413 × 𝑁𝑁𝑁𝑁𝑁𝑁4 expression) +
(0.1443 × 𝑃𝑃𝑃𝑃𝑃𝑃4 expression) + (0.1679 ×

𝑃𝑃𝑃𝑃𝑋𝑋3 expression) + (0.2518 × 𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁1 expression) +
(0.4507 × 𝑆𝑆𝐼𝐼𝑁𝑁𝑆𝑆2 expression) – (0.2447 ×

𝑊𝑊𝑃𝑃𝑁𝑁45𝐵𝐵 expression).  

We then calculated the risk score of each patient 
according to their eight-gene expression signature, 
and used the median risk value as a cutoff point for 
classifying patient into a high-risk group (n = 264) and 
a low-risk group (n = 265), respectively. Patients in the 
high-risk group had a shorter overall survival time 
than patients in the low-risk group (median time = 
2.84 years vs. 4.72 years, p < 0.001, Fig. 2a). In 
addition, we also found that patients in the high-risk 
group had shorter DFS times (median time = 1.15 
years vs. 1.77 years, p < 0.001, Fig. 2b).  

Serous ovarian cancer cases were divided into 
high-risk and low-risk groups according to the 
median eight-gene risk score (Fig. 2c). Protective and 
risky genes showed distinct expression patterns 
according to the risk value. High-risk patients 
expressed higher levels of risky genes (PKD4, PEX3, 
PRKG1, and SIRT2), while low-risk patients expressed 
higher levels of protective genes (BLOC1S1, IL24, 
NRG4, and WDR45L). 

ROC curves for 3-year survival were used to 
reveal the predictive performance of the eight-gene 
risk signature (Fig. 2d). The 3-year AUC of our 
signature was 0.703, which was obviously higher than 
that of age (AUC = 0.626), neoplasm cancer status 
(AUC = 0.615), residual tumor size (AUC = 0.603), 
tumor stage (AUC = 0.581), and tumor grade (AUC = 
0.544). These results indicated that the ability to 
predict survival of serous ovarian cancer patients was 
improved by using the eight-gene risk signature when 
compared to using clinical factors. 

Due to such different prognostic outcomes, we 
sought to investigate possible differences between the 
high-risk and low-risk groups by using GSEA, which 
verified an enhanced autophagy-related signature in 
the high-risk group (Fig. 2e). Therefore, we propose 
the existence of an intense regulatory role for 
autophagy in high-risk serous ovarian patients. 

Associations between the autophagy-related 
risk signature and clinicopathologic features in 
serous ovarian cancer patients 

An analysis was performed to explore 
associations between various clinical parameters and 
our risk signature in serous ovarian cancer patients 
(Table 2). Results showed that the signature was 
significantly associated with age (p = 0.015), 
Karnofsky performance status (KPS, p < 0.0001), and 
neoplasm cancer status (p = 0.0443). Additionally, we 
found that the signature was only marginally 
associated with therapy outcome (p = 0.0512) and 
therapy type (p = 0.0736). 
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Figure 2. Kaplan-Meier curves for OS (a) and DFS (b) in the high-risk and low-risk groups when stratified by the autophagy-related signature; (c) Hierarchical 
clustering of high-risk and low-risk patients expressing the eight genes. Red indicates higher expression and green indicates lower expression; (d) ROC analysis at 
3-year of overall survival for the eight-gene signature and classical clinicopathologic parameters in the TCGA cohort; (e) A GSEA comparing the autophagy 
phenotypes in high-risk and low-risk groups. 

 

Table 2. Clinical characteristics of serous ovarian cancer patients by autophagy-related signature. 

Characteristics High-risk (n = 264) Low-risk (n = 265) p-value 
Age   0.0015 
 Mean (years) 61.20 58.02  
FIGO stage   0.3899 
 I 10 (3.8%) 5 (1.9%)  

II 11 (4.2%) 14 (5.3%) 
III 197 (74.6%) 211 (79.6%) 
IV 44 (16.7%) 34 (12.8%) 
NA 2 (0.7%) 1 (0.4%) 

Residual tumor size   0.3594 
 No macroscopic 53 (20.1%) 54 (20.4%)  

1-10nm 118 (44.7%) 114 (43.0%) 
11-20nm 14 (5.3%) 20 (7.5%) 
>20nm 56 (21.2%) 44 (16.6%) 
NA 23 (8.7%) 33 (12.5%) 

Lymphatic invasion   0.8329 
 Yes 67 (25.4%) 65 (24.5%)  
 No 36 (13.6%) 41 (15.5%)  
 NA 161 (61%) 159 (60.6%)  
KPS   <0.0001 
 40 0 (0.0%) 2 (0.7%)  
 60 6 (2.3%) 9 (3.4%)  
 80 6 (2.3%) 34 (12.8%)  
 100 1 (0.3%) 6 (2.3%)  
 NA 251 (95.1%) 214 (80.8%)  
Venous invasion   0.4883 
 Yes 42 (15.9%) 43 (16.2%)  
 No 38 (14.4%) 29 (10.9%)  
 NA 184 (69.7%) 193 (72.9%)  
Therapy type   0.0736 
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 Chemotherapy 216 (81.8%) 237 (89.4%)  
 Immunotherapy 3 (1.1%) 2 (0.8%)  
 Hormone therapy 3 (1.1%) 4 (1.5%)  
 Targeted molecular therapy 8 (3.1%) 2 (0.8%)  
 NA 34 (12.9%) 20 (7.5%)  
Therapy outcome   0.0512 
 Complete remission 132 (50.0%) 165 (62.3%)  
 Partial remission 35 (13.3%) 24 (9.1%)  
 Progressive disease 18 (6.8%) 18 (6.8%)  
 Stable disease 19 (7.2%) 11 (4.2%)  
 NA 60 (22.7%) 47 (17.7%)  
Neoplasm cancer status   0.0443 
 With tumor 178 (67.4%) 155 (58.5%)  
 Tumor free 55 (20.8%) 80 (30.2%)  
 NA 31 (11.8%) 30 (11.3%)  
New neoplasm event type   0.7736 
 Recurrence 128 (48.5%) 135 (51.0%)  
 Progression of disease 12 (4.5%) 15 (5.7%)  
 Locoregional disease 3 (1.1%) 3 (1.1%)  
 Metastatic 1 (0.4%) 0 (0.0%)  
 NA 120 (45.5%) 112 (42.2%)  
Radiation therapy   0.1020 
 Yes 4 (1.5%) 1 (0.4%)  
 No 250 (94.7%) 260 (98.1%)  
 NA 10 (3.8%) 4 (1.5%)  
Tumor grade   0.7955 
 G1 2 (0.7%) 4 (1.5%)  
 G2 33 (12.5%) 33 (12.5%)  
 G3 223 (84.5%) 221 (83.4%)  
 G4 0 (0.0%) 1 (0.4%)  
 NA 6 (2.3%) 6 (2.2%)  
Race   0.4475 
 White 227 (86.0%) 231 (87.2%)  
 Black or African American 12 (4.6%) 11(4.2%)  
 Asian 8 (3.0%) 11 (4.2%)  
 American Indian 3 (1.1%) 0 (0.0%)  
 NA 14 (5.3%) 12 (4.4%)  
KPS: Karnofsky performance score 

 

Table 3. Univariate and multivariate Cox regression analyses of the autophagy-related signature and clinical characteristics predictive of 
overall survival and disease-free survival. 

Variable Overall survival Disease-free survival 
 Univariate Multivariate Univariate Multivariate 
 HR 𝑝𝑝-value HR 𝑝𝑝-value HR 𝑝𝑝-value HR 𝑝𝑝-value 
Eight-gene signature 0.414 <0.001 0.463 <0.001 0.488 <0.001 0.599 0.007 
(low-risk vs high-risk) 

Age (old age vs young age) 1.019 0.001 1.016 0.033 1.012 0.058   

Tumor grade (G3-G4 vs G1-G2) 1.180 0.056   1.219 0.051   

FIGO stage 1.658 0.003 1.837 0.040 1.432 0.084   
(stage III-IV vs stage I-II) 
Residual tumor size 0.436 <0.001 0.578 0.037 0.478 0.002 0.487 0.016 
(no macroscopic vs visible macroscopic) 
BRCA1/2 mutation stage 2.021 0.001 1.874 0.004 1.752 0.020 1.602 0.065 
(no mutation vs mutation) 
Lymphatic invasion 1.422 0.114   1.491 0.148   
(invasion vs no invasion) 

Venous invasion (no invasion vs invasion) 0.973 0.917   0.714 0.311   

HR: hazard ratio 
 

Application of the autophagy-related signature 
in stratified serous ovarian cancer cohorts 

In order to investigate the prognostic value of 
the risk signature in stratified cohorts, patients were 

classified by residual tumor size, age, and lymphatic 
invasion status. In all cohorts, the high-risk group had 
shorter OS (Fig. 3) and DFS times (Fig. 4) than the 
low-risk group. These results suggest that 
classification of the autophagy-related risk signature 
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can be used to precisely identify patients with the 
poor prognosis, without the consideration of clinical 
parameters. 

The autophagy-related signature is an 
independent prognostic factor for serous 
ovarian cancer patients 

We performed univariate Cox and multivariate 
Cox regression analyses of data in the TCGA dataset 
in order to investigate whether the autophagy-related 
signature was an independent factor correlated with 
OS and DFS (Table 3). The univariate Cox analysis 
showed that the autophagy-related signature, age, 
tumor stage, residual tumor size, and BRCA1/2 
mutation status were all correlated with the overall 
survival of serous ovarian cancer patients; therefore, 
those factors were included in a multivariate Cox 
analysis. Moreover, the risk signature, residual tumor 
size, and BRCA1/2 mutation status each showed a 
significant correlation with DFS. Thus our results 
indicated that the autophagy-related signature might 

be an independent prognostic factor of OS and DFS 
when adjusted by those factors.  

Validation of the eight-gene autophagy-related 
prognostic signature using three independent 
cohorts 

To validate the eight-gene risk signature in other 
datasets, we calculated the risk score for each patient 
in the TCGA RNAseq dataset as an internal 
validation, in the GSE26193 and GSE51088 datasets as 
the independent external validations using same 
formula. The patients in these three datasets were 
then divided into a high-risk and a low-risk group 
based on the median risk score. As expected, the 
survival curves showed that in the TCGA RNAseq 
dataset, which including 295 patients, the overall 
survival time and disease-free survival time were 
much lower in the high-risk group (OS, median = 2.90 
years vs. 4.33 years, p < 0.001, Fig. 5a; DFS, median = 
1.22 years vs. 1.98 years, p < 0.001,Fig. 5b). While there 
was no DFS information in GSE26193, we used the 

 
Figure 3. Overall survival of autophagy-related signature in cohorts stratified by residual tumor size (a-d), age (e-f), and lymphatic invasion status (g-h). 
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progression-free survival time to create survival 
curves. Similarly, in dataset GSE26193, which 
including 79 patients, the high-risk patients had lower 
overall survival time and progression-free survival 
time than the low-risk patients (OS, median = 2.42 
years vs. 3.90 years, p = 0.026, Fig.5c; PFS, median = 
1.66 years vs. 1.87 years, p = 0.042, Fig. 5d). In 
addition, we also found in dataset GSE51088, which 
including 106 patients, the overall survival time were 
much lower in the high-risk group (OS, median = 3.93 
years vs. 5.28 years, p = 0.034, Fig. 5e). 

We next arrayed the patients according to the 
risk score in the validation cohorts. The heat map 
displayed the expression patterns of the eight 
autophagy-related prognostic genes in the two 

groups. As expected, in the TCGA RNAseq (Fig. 5h), 
GSE26193 (Fig.5f) and GSE51088 (Fig. 5g) datasets, the 
expression levels of the four protective genes were 
down-regulated in the high-risk group, while the risk 
factor genes were expressed at high levels. In contrast, 
those genes showed an opposite expression pattern in 
the low-risk group. 

Consistent with the finding in the test cohort, the 
autophagy-related signature was further validated by 
the TCGA RNAseq, GSE26193 and GSE51088 
datasets, confirming its power to independently 
predict the prognosis (Table  4). All these three 
cohorts validated that this novel autophagy-related 
signature could work as an independent predictor for 
the prognosis of serous ovarian cancer. 

 

 
Figure 4. Disease-free survival of autophagy-related signature in cohorts stratified by residual tumor size (a-d), age (e-f), and lymphatic invasion status (g-h). 
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Figure 5. Based on median risk score, the eight-gene risk signature divided patients into high-risk and low-risk groups with distinct prognosis in the TCGA RNAseq 
cohort (a-b), GSE26193 cohort (c-d), and GSE51088 cohort (e); (f-h) Hierarchical clustering of high-risk and low-risk patients expressing the eight genes in GSE26193 
(f), GSE51088 (g), and TCGA RNAseq (h). Red indicates higher expression and green indicates lower expression. 
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Table 4. Univariate and multivariate Cox regression analyses of the autophagy-related signature and clinical characteristics predictive of 
OS, DFS and PFS in each validation cohort 

 Overall survival  Disease-free survival  Progression-free survival 
Univariate  Multivariate  Univariate  Multivariate  Univariate  Multivariate  
HR p-value  HR p-value  HR p-value  HR p-value  HR p-value  HR p-value  

TCGA RNAseq cohort (n = 295) 
Eight-gene signature (low-risk vs high-risk) 0.477 <0.001  0.468 <0.001  0.491 <0.001  0.517 0.001        

 Age (old age vs young age) 1.022 0.003  1.016 0.033  1.014 0.058           

 Tumor grade (G3-G4 vs G1-G2) 1.663 0.038  1.777 0.120  1.337 0.051           

 FIGO stage (stage III-IV vs stage I-II) 1.487 0.057     1.216 0.084           

 Residual tumor size (visible vs no 
macroscopic) 

1.587 0.054     1.968 0.002  1.889 0.023        

 BRCA 1/2 mutation stage (mutation vs no 
mutation) 

0.613 0.033  0.758 0.237  0.584 0.020           

 Lymphatic invasion (invasion vs no 
invasion) 

1.319 0.359     1.109 0.148           

 Venous invasion (no invasion vs invasion) 0.927 0.830     0.603 0.311           

GSE26193 cohort (n = 79) 
 Eight-gene signature (low-risk vs high-risk) 0.564 0.028  0.552 0.023        0.599 0.044  0.553 0.021  

 Tumor grade (G1-G2 vs G3-G4) 0.877 0.351           1.054 0.719     

 FIGO stage (stage III-IV vs stage I-II) 1.699 0.006  1.713 0.005        1.827 0.001  1.883 0.001  

GSE51088 cohort (n = 106) 
 Eight-gene signature (low-risk vs high-risk) 0.624 0.035  0.556 0.021              

 Age (old age vs young age) 1.023 0.012  1.008 0.148              

 Tumor grade (G3-G4 vs G1-G2) 1.235 0.194                 

 FIGO stage (stage III-IV vs stage I-II) 1.799 0.023                 

 Disease status (not free vs free) 60.734 <0.001  66.097 <0.001              

HR: hazard ratio 

 

Nomogram development for the prediction of 
prognostic risk 

In order to provide clinicians with a quantitative 
approach for predicting cancer survival, we 
assembled a nomogram that integrated both the risk 
signature and various clinicopathologic risk factors. 
The nomogram was constructed to estimate 1-, 2-, 3-, 
4-, and 5 -year survival probabilities, and it showed 
that the signature risk score was the most essential 
factor among the different variables analyzed (Fig. 
6a). A C-index was calculated to estimate the 
performance of this nomogram (Fig. 6b). The C-index 
of our nomogram was 0.778. A calibration plot 
showed optimal agreement when compared with an 
ideal model.  

Association between the risk signature and 
gene mutation status, and especially BRCA1/2 
mutation status 

The ten genes (BRCA1, BRCA2, CSMD3, FAT3, 
HMCN1, MUC16, RYR2, TP53, TTN, and USH2A) 
with the highest mutation rates in 293 patients were 
selected for further study (Fig. 7a). The association 
between autophagy-related signature and each of 
those ten genes is shown in Table 5. The data 
indicated that mutation of the BRCA1 gene (p = 
0.0359) helped to extend the survival of serous 
ovarian cancer patients, while mutation of the BRCA2 
(p = 0.0691) or TTN (p = 0.0884) gene had a marginally 
favorable effect on survival. The mutation status of 

BRCA1/2 was recently reported to be an important 
favorable survival predictor in ovarian cancer [6]. 
Therefore, we further investigated the effect of 
combined BRCA1 and BRCA2 gene mutations. As 
expected, the BRCA1/2 mutation status was 
significantly correlated with our risk signature (p = 
0.0062). Therefore, the patients were arranged 
according to their risk scores. The genes in our 
autophagy-related signature showed distinct 
expression patterns according to the BRCA1/2 
mutation status (Fig. 7b).  

Discussion 
Ovarian cancer is a progressive disease that 

urgently needs reliable prognostic markers that can 
aid in its diagnosis and treatment. Computational 
models have recently been used to explore possible 
mRNA and non-coding RNA biomarkers for ovarian 
cancer. Furthermore, numerous studies have focused 
on the role that autophagy plays in tumorigenesis and 
the results produced by cancer therapies. While most 
studies of autophagy-related genes have used cell 
lines or animal models, our current study used 
high-throughput expression profiling of autophagy- 
related genes to investigate the progression and 
outcomes of serous ovarian cancer patients. 
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Figure 6. (a) Prognostic nomogram for serous ovarian cancer patients; (b) Calibration curves for the nomogram at different time points. 

 

 
Figure 7. (a) Associations between the risk signature and BRCA1/2 mutation status with its related genes; (b) Top ten genes with highest mutation rates in serous 
ovarian cancer patients of TCGA microarray database 

 
As a novel therapeutic method, the influence of 

autophagy on cancer has been discussed for several 
years. Sui et al. suggested that autophagy might 
influence how patients respond to chemoradio- 
therapy [37]. In our study, we first examined 
differences in the autophagy status of normal ovarian 
tissues and serous ovarian cancer tissues, and then 
explored the role that autophagy might play in serous 
ovarian cancer. Although the controversial and 
complex role played by autophagy in cancer 
development has been widely discussed during the 
past decade, researchers have not reached a 
conclusion. Therefore, development of a meaningful 
autophagy-related risk signature should not only 
benefit the science of disease prognosis, but also 
provide clinicians with a rationale for using 
autophagy targeting therapies for treating serous 
ovarian cancer patients. In this study, we profiled an 

eight-gene autophagy-related model gene signature 
that could predict the prognosis of serous ovarian 
cancer, which was further validated in the GEO 
database. As described in GSEA, high-risk group 
showed positive regulation of autophagy, which 
suggested that the autophagy level might be 
increased in high-risk group with worse prognostic 
outcomes. As we all known, cisplatin resistant ovarian 
cancer cells showed higher autophagy level compared 
with the cisplatin sensitivity ovarian cancer cells [38], 
which is in accordance with our results. Previous 
studies have demonstrated that patients with 
BRCA1/2 gene mutations had higher chemosensitivity 
and better prognosis [6], while our results showed 
that high-risk group correlated with lower possibility 
of BRCA1/2 gene mutations and higher autophagy 
level, which is in accordance with the conclusion that 
chemoresistance of ovarian cancer cells correlated 
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with higher autophagy level. Kwon et al performed a 
cDNA analysis which showed that among four 
high-risk genes, PDK4 was greatly overexpressed in 
ovarian cancer stem cells when compared with 
parental ovarian cancer cells [39]. Additionally, S Sun 
et al demonstrated that FAM210B expression loss led 
to the regulation of PDK4 expression, which is 
significantly associated with tumor metastasis and 
decreased survival of ovarian cancer patients [40]. 
Knockdown of SIRT2 was also found to be associated 
with ovarian cancer cell proliferation, migration, and 
invasion [41]. However, with regards to other genes, 
most studies have focused on their role in autophagy 
rather than ovarian cancer. Zhao et al. reported that 
autophagy contributed to the resistance of 
osteosarcoma cells to doxorubicin [42], while IL24 
could suppress autophagy, and thus reverse the 
multiple drug resistance of osteosarcoma [43]. 
Moreover, other studies have reported that high levels 
of PEX3 expression can induce pexophagy, and that 
ubiquitination of PEX3 is not essential for pexophagy 
[44].  

 

Table 5. Gene mutation status in serous ovarian cancer according 
to the autophagy-related signature. 

Characteristics High-risk 
(n = 130) 

Low-risk 
(n = 163) 

p-value 

BRCA1   0.0359 
 mutation 9 (6.9%) 24 (14.7%)  

 no mutation 121 (93.1%) 139 (85.3%) 

BRCA2   0.0691 
 mutation 9 (6.9%) 22 (13.5%)  

 no mutation 121 (93.1%) 141 (86.5%) 

BRCA1/2   0.0062 
 mutation 18 (13.8%) 44 (27.0%)  

 no mutation 112 (86.2%) 119 (73.0%) 
CSMD3   0.5995 
 mutation 10 (7.7%) 10 (6.1%)  
 no mutation 120 (92.3%) 153 (93.9%)  
FAT3   0.3241 
 mutation 10 (7.7%) 8 (4.9%)  
 no mutation 120 (92.3%) 155 (95.1%)  
HMCN1   0.5481 
 mutation 8 (6.2%) 13 (8.0%)  
 no mutation 122 (93.8%) 150 (92.0%)  
MUC16   0.1612 
 mutation 7 (5.4%) 16 (9.8%)  
 no mutation 123 (94.6%) 147 (90.2%)  
RYR2   0.7849 
 mutation 7 (5.4%) 10 (6.1%)  
 no mutation 123 (94.6%) 153 (93.9%)  
TP53   0.2953 
 mutation 125 (96.2%) 160 (98.2%)  
 no mutation 5 (3.8%) 3 (1.8%)  
TTN   0.0884 
 mutation 22 (16.9%) 41 (25.2%)  
 no mutation 108 (83.1%) 122 (74.8%)  
USH2A   0.3178 
 mutation 12 (9.2%) 10 (6.1%)  
 no mutation 118 (90.8%) 153(93.9%)  

 

BRCA1/2 mutation status has been well studied 
as an important molecular marker for ovarian cancer. 
Ovarian cancer patients with BRCA1/2 mutations 
have shorter survival times and higher degrees of 
chemosensitivity [6]. It is known that PARP inhibitors 
can inhibit the proliferation of cancer cells with 
BRCA1/2 mutations. Moreover, recent studies have 
demonstrated that the PARP inhibitor can induce 
autophagy in BRCA1 or BRCA2 mutated breast cancer 
cells, and that inhibition of autophagy results in the 
partial inhibition of PARP inhibitor induced apoptosis 
[45]. These results suggest that autophagy plays an 
essential role in regulating BRCA1/2 mutated cancer 
cell proliferation and apoptosis. Coincidentally, 
another study showed significant decreases in serum 
LC3 and Bcl-2 expression levels in breast cancer 
patients with the 5382insC BRCA1 mutation [46]. In 
our current study, we found a close correlation 
between BRCA1/2 mutation status and the risk 
signature for ovarian cancer, which suggests that 
autophagy might contribute to the BRCA1/2 
mutations found in serous ovarian cancer cells; 
however, the precise mechanism for this contribution 
remains unknown. Thus additional studies should be 
considered to further explore the role played by 
autophagy in BRCA1/2 mutated serous ovarian 
cancer.  

Further studies showed that our signature was 
an independent prognostic factor for serous ovarian 
cancer, which suggests that autophagy status might 
serve as an accurate prognostic indicator. In this 
study, patients with higher risk scores significantly 
showed worse prognosis. Our nomogram 
demonstrated that the risk score associated with the 
signature for each patient was the most important 
variable, indicating its significant meaning when 
predicting the prognosis of serous ovarian cancer 
patients. Interestingly, by building this nomogram, 
we found that American Indian and Asian patients 
showed poorer prognosis than White patients. As we 
all known, patients with old ages, visible residual 
tumor sizes, higher FIGO stages and tumor grades all 
showed worse prognostic outcomes, which is in 
accordance with our results. Additionally, patients 
with BRCA1/2 gene mutations showed higher 
chemosensitivity and thus caused better prognosis [6]. 
Thus, this nomogram provided an individualized 
thorough estimate of survival, rather than using 
specific covariates. Moreover, perfect agreement was 
seen between actual observations and predictions in 
the calibration plot. Thus, the eight-gene signature 
could precisely predict the prognosis for serous 
ovarian cancer patients. 

The advantage of our study is that we performed 
a systematic analysis of microarray data and RNAseq 
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data, which provided a robust statistical approach for 
exploring the role of autophagy in serous ovarian 
cancer. Although the eight-gene signature allowed for 
a practical independent prognosis for serous ovarian 
cancer, our study does have certain limitations. First, 
only autophagy-related genes were included in the 
study, and the risk signature does not represent the 
entire gene transcription profile associated with 
serous ovarian cancer. Second, our study is restricted 
because it is retrospective, and our results should be 
validated in prospective investigations. 

In summary, we developed an autophagy- 
related gene expression model that could 
independently predict the overall survival of serous 
ovarian cancer patients. Furthermore, our results 
suggest that use of a targeted autophagy therapy 
might be a promising future strategy for treating 
serous ovarian cancer. Further investigations into the 
molecular mechanisms of autophagy will 
demonstrate how autophagy affects survival, and 
provide new suggestions for treating ovarian cancer 
patients. Thus, our eight-gene autophagy-related 
signature may predict the overall survival of serous 
ovarian cancer patients, and also guide the 
therapeutic approaches used for those patients.  
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