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ABSTRACT

Motivation: In most quantitative trait locus (QTL) mapping
studies, phenotypes are assumed to follow normal distributions.
Deviations from this assumption may affect the accuracy of QTL
detection and lead to detection of spurious QTLs. To improve the
robustness of QTL mapping methods, we replaced the normal
distribution for residuals in multiple interacting QTL models with
the normal/independent distributions that are a class of symmetric
and long-tailed distributions and are able to accommodate residual
outliers. Subsequently, we developed a Bayesian robust analysis
strategy for dissecting genetic architecture of quantitative traits and
for mapping genome-wide interacting QTLs in line crosses.
Results: Through computer simulations, we showed that our
strategy had a similar power for QTL detection compared with
traditional methods assuming normal-distributed traits, but had a
substantially increased power for non-normal phenotypes. When
this strategy was applied to a group of traits associated with
physical/chemical characteristics and quality in rice, more main
and epistatic QTLs were detected than traditional Bayesian model
analyses under the normal assumption.
Contact: runqingyang@sjtu.edu.cn; dengh@umkc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In experimental line crosses, most parametric methods for mapping
quantitative trait locus (QTL) fall into one of three types
of approaches, least-squares, maximum likelihood or Bayesian
approach. A common characteristic of these methods is that they
all assume normally distributed phenotypes. However, many traits
do not follow normal distributions, this may arise by non-normal
traits, such survival time, and others may be the result of human
measurement error. This deviation from the normality assumption
by phenotypes can render many QTL mapping approaches
inappropriate, in senses of less accuracy and effectiveness in QTL
detection (Coppieters et al., 1998), and unstable results due to
outliers (Pinheiro et al., 2001).
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To improve the robustness, various approaches have been
developed to deal with non-normal phenotypes in QTL mapping.
A simple approach is to adopt parametric methods known for their
robustness. However, their robustness for non-normal phenotypes
is difficult to establish (e.g. Coppieters et al., 1998; Hackett,
1997; Jansen, 1992; Rebaï, 1997). A second approach is to
convert non-normal traits into approximately normal variables
through mathematical transformation (Sokal and Rohlf, 1995; Yang
et al., 2006). Distribution-free non-parametric methods were also
developed for mapping non-normal traits for various population
structures (Coppieters et al., 1998; Elsen et al., 1999; Kruglyak and
Lander, 1995; Zou et al., 2003). Yet another approach is to replace
the normal assumption about the data with other distributions to
better fit the trait data (Diao et al., 2004; Feenstra and Skovgaard,
2004; Jansen, 1992; Symons et al., 2002).

When the data is non-normal, assuming that the distributions of
random effects and of residuals of Gaussian distributions makes
inferences vulnerable to the presence of outliers (Pinheiro et al.,
2001). To accommodate these outliers, some symmetric and long-
tailed distributions, such as the Student’s-t distribution (Dempster
et al., 1980; Lange et al., 1989; Rogers and Tukey, 1972), have
been suggested for robust estimation. The normal/independent
distributions (Andrews and Mallows, 1974; Lange and Sinsheimer,
1993) are a class of symmetric and long-tailed distributions and
are used in linear regression models, within a Bayesian framework
(Liu, 1996). Fernandez and Steel (1998) applied the method of
inverse scaling of the probability density function on the left and on
the right side of a non-normal distribution to a symmetric heavy-
tailed distribution and have simultaneously captured heavy tails
and skewness. Rohr and Hoeschele (2002) have incorporated the
Fernandez and Steel’s approach into a Bayesian QTL mapping,
developing a robust Bayesian QTL mapping method, which allows
for non-normal, continuous distributions of phenotypes within QTL
genotypes in single QTL models.

The genetic architecture of quantitative traits includes the number
and locations of QTL and their main and epistatic effects. In
particular, the unknown number of QTL and possible huge epistatic
effects make the dissection for genetic architecture of quantitative
traits extremely complex. Fortunately, with a computationally
efficient Markov Chain Monte Carlo (MCMC) algorithm, Bayesian
model selection frameworks have been developed for identifying
epistatic QTL for complex traits (Yi et al., 2005, 2007).
However, normal distributions were assumed for these approaches.
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The effects of deviation from this assumption have not been fully
addressed.

In this article, we developed a Bayesian robust analysis strategy
for studying the genetic architecture of quantitative trait, by
combining the flexibility of Bayesian approach in modeling multiple
QTL and their interactions and the better phenotypic fitting of
symmetric and long-tailed distributions in characterizing non-
normal traits. We investigated the robustness of the proposed method
by a series of simulations, and applied it to a real dataset in rice.
Our method showed an improved power in mapping QTLs with
non-normal phenotypes.

2 METHOD

2.1 Genetic model
For simplicity, we consider a mapping population with only two segregating
genotypes, e.g., a backcross, double haploid lines (DHLs) or recombinant
inbred lines (RILs). However, the method can be applied to other
experimental designs, such as F2 design. The phenotypes and molecular
marker data were collected on n individuals. Assuming that there are q QTLs
responsible for a trait of interest, the phenotypic value yi of individual i can
be then described by the following multiple interacting QTL model:

yi =µ+
q∑

j=1

γjxijαj +
q∑

j=1

q∑
k>j

γjkzijkδjk +εi (1)

where µ is the population mean; αj for j=1, 2,...q is the additive effect
of the j-th QTL; δjk is the epistatic effect between j-th QTL and k-th QTL
for j=1, 2,... ,q; k = j+1,j+2,...,q. Variable xij is a genotype indicator
variable for individual i at locus j and is defined as 1 for one genotype and −1
for the other genotype, and zijk =xijxik ; γ• is a binary variable for each genetic
effect (additive or epistatic), indicating whether the corresponding effect is
included (γ•=1) or excluded (γ•= 0) from model (1). Through inferring the
γ•, we shall adopt Bayesian model selection to MCMC sampling in a reduced
model space; and εi is a random environmental error.

To cover outliers from non-normal distributed phenotypes, we introduce
the normal/independent distributions to describe random environmental
errors, denoted by εi =ei/

√
wi, where ei ∼ N(0, σ 2) and wi is a positive

random variable with density p(w|df ) with df being a scalar parameter. The
type of normal/independent distributions depends on the distribution of w.
For instance, if w is taken to be Gamma(df /2, df /2), the normal/independent
distribution becomes a t-distribution; p(w|df )=dfwdf −1 results in a
slash distribution (Lange and Sinsheimer, 1993; Rogers and Tukey,
1972); and the contaminated normal distribution arises when p(w|df )={

ν if w=τ

1−ν if w=1
with 0≤v<1 and 0<τ <1, where vand τ are scalar

parameters (Little, 1988). These three distributions are the most common
long-tailed distributions for robust inference. Apparently, the normal model
is a special case by taking wi =1, for all i.

2.2 Likelihood function
The probability distribution of the phenotype data conditional on all
parameters is called the likelihood. Based on model (1), the conditional
density of all phenotypes, given the parameters, is

p(y|w,x,z,λ,µ,γ,β,σ 2)∝
(σ 2)−

n
2

(
n∏

i=1
wi

) 1
2

exp

[
− 1

2σ 2

n∑
i=1

wi
(
yi −µ

−
q∑

j=1
γjxijαj −

q∑
j=1

q∑
k>j

γjkzijkδjk

)]

Where y={yi}, λ={
λj

}
,β ={

αj δjk
}
, γ ={

γj γjk
}

and w={wi}, for i=1,

2,...,n, j=1, 2,...,q and k = j+1, j+2,...,q.

2.3 Prior distribution
As described by Yi et al. (2005), we take L, the maximal number of QTLs as
l0 +3

√
l0, where l0 is the prior expected number of all QTLs including main-

effect and epistatic QTLs that is determined based on traditional methods.
The binary indicator γ has an independent prior p(γ )=∏

p•γ• (1−p•)(1−γ•),
where p•is the prior inclusion probability for a certain QTL effect and equals
to a predetermined hyper-parameter pm for main effect or pe for epistatic
effect.

The population mean µ is assumed to have a prior p(µ)∝ constant. A
hierarchical mixture model is proposed as the prior distribution for each
genetic effect, denoted by αj

∣∣(γj,σ
2,x•j) ∼N(0,γjc(

∑n
i=1 wix2

ij)
−1σ 2) for

additive effects and δjk
∣∣(γjk,σ

2,z•jk) ∼N(0,γjkc(
∑n

i=1 wiz2
ijk)−1σ 2) for the

epistatic effects, where c takes a value such that the prior variance of each
QTL effect stays approximately the same as n increases. Here, we let c=n.

A scaled inverse-χ2 distribution with hyper-parameters ve and se will be
adopted as prior for σ 2, i.e.

σ 2 |ve,se ∼ IC
(

ve,
(
vese

)−1
)
.

The prior for scalar parameter df is specified based on the type
of normal/independent distributions for residual error. The detailed
specification of the prior is given in Appendix A.

The prior for position of the j-th QTL is p(λj)=1/dj , where dj is the
length of the marker or adjoining QTLs interval where the j-th QTL resides.

2.4 Posterior distribution and MCMC sampling
The joint posterior density of all unknown parameters is then:

p(w,x,z,λ,µ,γ,β,σ 2 |y,m )=
p(y|w,x,z,λ,µ,γ,β,σ 2)p(df )p(w|df )p(λ)
×p(x |λ,m )p(z|λ,m )p(µ)p(γ )p(σ 2 |ve,se )
×p(αj

∣∣γj,σ
2,x•j )p(δjk

∣∣γjk,σ
2,z•jk )

(2)

where m is the known marker information; forj=1, 2,...,q.
In order to implement Bayesian estimation via the MCMC, the marginal

posterior distributions of all parameters need to be derived from the above
joint posterior density (2) by fixing other parameters. For convenience, we
first let

Gi =µ+
q∑

j=1

γjxijαj +
q∑

j=1

q∑
k>j

γjkzijkδjk .

The fully conditional posterior density of the population mean µ, given
all other parameters, can be shown to be a normal distribution with mean

µ̂=
(

n∑
i=1

wi

)−1 n∑
i=1

wi
(
yi −Gi +µ

)
, and varianceσ̂ 2

0 =
(

n∑
i=1

wi

)−1

σ 2.

Conditionally on all other parameters, the QTL effects are
mutually independent. In particular, the density of the fully
conditional posterior distribution of αj is normal with mean

α̂j = c
c+1 (

n∑
i=1

wix2
ij)

−1
n∑

i=1
wixij(yi −Gi +xijαj), and variance σ̂ 2

j = c
c+1

(
n∑

i=1
wix2

ij)
−1σ 2, for j=1,2,...,q. Likewise, the conditional posterior distri-

bution of δjk corresponds to the normal with mean δ̂jk = c
c+1 (

n∑
i=1

wix2
ijk)−1

n∑
i=1

wixijk(yi −Gi +zijkδjk) and variance σ̂ 2
jk = c

c+1 (
n∑

i=1
wiz2

ijk)−1σ 2, for j=1,

2,...,q and k = j+1, j+2,...,q.
For the residual variance σ 2, the corresponding fully conditional

distribution is a scaled inverse χ2 with parameters ve +n and (ve +n)se +
n∑

i=1
wi(yi −Gi)2.

So far, we note that wi can be interpreted as a ‘weight’. The specific
forms of the posterior for wi depend on the normal/independent distribution
adopted, and the posterior for degree of freedom df depend on the form of
corresponding prior distribution (detailed in Appendix B).
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The marginal posterior distribution of γ• is Bernoulli with a probability

p(γ• =1)= p•R

(1−p•)+p•R

where, p• =pm and R=
√

c
c+1 exp

(
− α̂2

j

2σ̂ 2
j

)
(j=1, 2,...,q) for the additive

effect; p• =pe and R=
√

c
c+1 exp

(
− δ̂2

jk

2σ̂ 2
jk

)
(j=1, 2,...,q ; k = j+1,j+

2,...,q) for the epistatic effect. If γ• is sampled to be zero, corresponding
α orδ=0. Otherwise, α orδ is drawn from its conditional posterior.

Only the position of QTL, where corresponding γ• =1 for either main
or epistatic effect, will be sampled. Since the genotype of QTL (x) depends
on the QTL position (λ), we decide to sample

{
λj,xj

}
jointly as a block but

proceed with the sampling wit one locus at a time. Each locus is sampled
from a variable interval (Wang et al., 2005; Zhang and Xu, 2005) whose
boundaries are the positions of adjoining QTLs. The prior distribution of λj

can be written as

p(λj)=U(λj;λj−1,λj+1)=1/dj =1/(λj+1 −λj−1),

where λj−1 and λj+1 are the positions of the left and the right QTL. Let λ
(t)
j

be the current position of the locus of interest and x(t)
j =[ x1j ... xnj]T be

the genotype array of all individuals at the locus. We first sample a new
position for the QTL called the proposed position and denoted by λ∗

j =λj +δ,
where δ is sampled from U(−s,s) and s is a small positive number (tuning
parameter), such as 1 cM. For the new position, we simulate the genotypes for
all individuals, denoted by x∗

j . We then use the M–H rule to decide whether
λ∗

j should be accepted or not. If λ∗
j is accepted, we update both the position

and the genotype using λ
(t+1)
j =λ∗

j and x(t+1)
j =x∗

j . Otherwise, the old values

of λj and xj are carried over so that λ
(t+1)
j =λ

(t)
j and x(t+1)

j =x(t)
j . Detailed

formula of the M–H acceptance rule can be found in (Wang et al., 2005) and
Zhang and Xu (2005).

Genotypes of missing markers were generated randomly in each iteration
on the basis of the probability inferred jointly from the nearest non-
missing flanking markers and the phenotype. The probability from the
markers is treated as the prior probability. After incorporation of the marker
(QTL) effects through the phenotype, the probability becomes the posterior
probability, which is used to generate the missing marker genotype. See,
Wang et al. (2005) for details.
In summary, the MCMC process is described in the following steps:

(1) Initialize all variables with some legal values or values sampled from
their prior distributions.

(2) Update population mean µ.

(3) Update the binary indicators γ .

(4) Update the additive QTL effects αj corresponding thatγj =1.

(5) Update the epistatic QTL effects δjk corresponding that γjk =1.

(6) Update the residual variance σ 2 .

(7) Update the degree of freedom df in the t-distribution or Slash
distribution, or v in the contaminated normal distribution.

(8) Update the ‘weight’ wi (i=1,2,...,n).

(9) Update the QTL position λj corresponding that γ• =1 and the
genotypes for those QTLs.

(10) Impute the genotypes of missing markers.

(11) Repeat steps (2)–(10) until the Markov chain reaches a desirable
length.

2.5 Post-MCMC analysis
The posterior sample can be used to infer the genetic architecture of a
quantitative trait. Prior to doing this, we need to monitor the mixing behavior
and convergence rates of MCMC algorithms by visually inspecting trace
plots of the sample values of scalar quantities of interest or by using formal

diagnostic methods provided in the package R/coda (Plummer et al., 2004).
Model averaging accounts for model uncertainty and provides more robust
inference compared with a single optimal model approach (Ball, 2001;
Raftery et al., 1997; Sillanpää and Corander, 2002). Therefore, we employ
the model averaging to assess characteristics of the genetic architecture by
averaging over possible models weighted by their posterior probabilities.
We can use various methods to graphically and numerically summarize and
interpret the posterior samples. The posterior inclusion probability for each
locus is estimated as its frequency in the posterior samples. Taking the prior
probability into consideration, we use Bayes factors (BFs) to show evidence
for inclusion against exclusion of each locus or effect. The BF for a locus
or effect is defined as the ratio of the posterior odds to the prior odds for
inclusion against exclusion of the locus or effect within each chromosomal
interval of 1–2 cM (Kass and Raftery, 1995). Generally, a threshold of BF
is empirically determined as 3, or 2logBF=2.1, for declaring statistical
significance for each locus or effect (Kass and Raftery, 1995).

3 SIMULATION STUDIES
For convenience of programming, we simulated 61 equally spaced
co-dominant markers on a single large chromosome of a length 500
cM for a backcross population with sample sizes of 150 and 300. We
simulated the four QTLs, two pairs of which are assumed to mutually
interact. The total genetic variance contributed by all main-effect
and epistatic QTLs was 45.06, where the proportion of phenotypic
variance contributed by an individual QTL ranged from 0.95% to
11.63%. The population mean and the residual variance were set at
µ=5.0 and σ 2 =3.0.

We use non-Bayesian and Bayesian methods to analyze the
simulated data. Non-Bayesian mapping is implemented with EM
algorithm through two dimensional scan. Detected QTL effects are
estimated using multiple QTL imputation. The critical values at
significance level of 5% are 3.9 for main effect and 6.7 for epistatic
effect, which are obtained with 1000 permutations.

In all Bayesian mapping analysis, we set the prior number of
main-effect QTL at three and the prior expected number of epistatic
QTL at three, then the upper bound of the number of QTL, L=
6+3

√
6=13. The actual values for the hyper-parameters take ve =0

and se =1; a=1 and b=0.01. The initial values of all variables
are sampled from their prior distributions. The MCMC is run for
6000 cycles as burn-in period (deleted) and then for additional
100 000 cycles after the burn-in. Note that here the length of the
burn-in is judged by visually inspecting the plots of some posterior
samples across rounds. The chain is then thinned to reduce serial
correlation by saving one observation in every 40 cycles. The
posterior sample contains 2500 observations for the post-MCMC
analysis. Considering each simulation is more time consuming, the
simulation experiment was replicated 50 times for statistical power
evaluation.

In order to demonstrate the flexibility of the Bayesian robust
mapping proposed here, we use residual errors drawn from
t-distribution with df =3 to generate the two samples of different
size, according to model (1). Those data were analyzed by
adopting the Bayesian robust mapping with a t-distribution, slash
distribution and contaminated normal distribution for residuals,
traditional Bayesian and non-Bayesian mapping procedures with
normal residuals, respectively. The statistical powers of all the
methods for QTL detection are given in Table 1. In general, Bayesian
robust mapping has higher statistical powers for QTL detection than
traditional Bayesian and non-Bayesian mapping if the residual error
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is subject to heavy-tailed distribution. The estimates for positions
and effects of QTL detected by all methods are fairly close to
true parameter values. As expected, the model is more robust with

Table 1. Statistical power of QTL detection (%) and type I error rate (%, in
the last column) obtained by various mapping methods

Sample size Distribution QTL no.

1 2 3 4 5 6

150 t 70 100 48 92 56 36 2
Slash 62 92 26 90 20 20 4
Contaminated 60 80 30 84 20 16 4
Normal 36 74 8 80 6 2 6
Non-Bayesian 16 28 0 32 4 0 6

300 t 100 100 82 100 84 64 0
Slash 96 100 74 100 84 54 2
Contaminated 76 100 42 100 36 34 2
Normal 50 90 36 80 20 30 4
Non-Bayesian 44 70 30 78 20 18 4

increased heritability and sample size (Tables 2 and 3). Statistical
power of QTL detection increases as sample size and genetic
contribution proportion increase. The type I error rates of all methods
are <6%. On the whole, as statistical power rises, error rate falls.

We further generated normally distributed phenotypes by
sampling residuals from normal distribution and analyzed them with
both the Bayesian robust mapping and traditional Bayesian mapping.
Results (provided in Section 1 of Supplementary Material) indicated
that applying the Bayesian Robust analysis for data being normally
distributed had similar powers as using traditional Bayesian mapping
methods.

4 REAL DATA ANALYSIS
A 162 F10 RILs derived from the hybrids of Dasanbyeo (a
Korean tongil type rice) × TR22183 (a Chinese japonica variety)
had been designed for mapping QTL for traits associated with
physical/chemical characteristics and quality of rice. On the basis
of the population, we have constructed the framework linkage map
of 1437.5 cM long using 208 SSR and STS markers. This map
consists of the 16 linkage groups (LGs) for each parental map. We
analyzed the data with the Bayesian robust mapping with different

Table 2. Mean estimates and SDs (in parentheses) of QTL positions detected by various mapping methods

Sample size Distribution QTL no.

1 2 3 4 5 6

150 True position 56 148 267 359 56 ×267 148×359
t 55.3 (5.1) 148.9 (2.4) 268.2 (5.6) 358.9 (3.5) 57.8 (11.0)×267.9 (8.8) 151.3 (7.7)×356.9 (6.3)
Slash 54.2 (4.8) 148.4 (3.4) 268.4 (3.0) 358.7 (4.9) 58.1 (8.9)×265.7 (9.2) 150.1 (7.0)×358.2 (7.7)
Contaminated 56.2 (5.9) 147.9 (4.3) 269.0 (7.5) 359.8 (3.9) 57 (13.3)×263.8 (12.7) 148.0 (6.8)×360.9 (9.2)
Normal 52.6 (4.2) 148.1 (4.9) 258.0 (9.8) 359.4 (3.6) 56.1 (13.0)×264.6 (15.2) 143.0 (–)×360.0 (–))
Non-Bayesian 55.7 (6.9) 150.2 (5.4) – 361.3 (5.8) 61.2 (15.1)×268.6 (18.4) –

300 t 57.6 (2.9) 148.3 (3.1) 266.4 (3.5) 357.5 (2.7) 58.4 (5.3)×265.4 (7.8) 149.8 (4.5)×359.3 (3.9)
Slash 55.9 (3.1) 149.4 (2.5) 266.3 (4.6) 357.9 (2.4) 57.4 (3.8)×266.2 (7.3) 150.6 (4.8)×359.0 (5.1)
Contaminated 56.0 (3.5) 146.4 (2.9) 264.3 (3.5) 357.8 (3.0) 57.7 (8.8)×269.0 (9.9) 149.0 (3.5)×359.2 (5.4)
Normal 57.4 (3.9) 147.9 (2.4) 264.0 (6.1) 359.4 (3.2) 52.4 (10.1)×270.5 (10.5) 145.0 (8.0)×358.4 (8.1)
Non-Bayesian 57.1 (4.1) 149.5 (3.3) 266.1 (7.3) 359.0 (3.4) 54.4 (13.6)×268.2 (10.1) 151.7 (9.1)×360.8 (7.4)

Table 3. Mean estimates and SDs (in parentheses) of QTL effects detected by various mapping methods

Sample size Distribution QTL no.

1 2 3 4 5 6

150 True Effect 0.45 0.70 0.30 0.55 0.30 0.20
t 0.50 (0.09) 0.73 (0.10) 0.35 (0.06) 0.57 (0.14) 0.25 (0.09) 0.23 (0.10)
Slash 0.51 (0.10) 0.77 (0.13) 0.38 (0.04) 0.54 (0.09) 0.23 (0.10) 0.27 (0.13)
Contaminated 0.51 (0.12) 0.76 (0.14) 0.39 (0.17) 0.62 (0.10) 0.37 (0.12) 0.26 (0.14)
Normal 0.56 (0.20) 0.74 (0.22) 0.46 (0.29) 0.63 (0.14) 0.39 (0.20) 0.31 (–)
Non-Bayesian 0.81 (0.52) 1.04 (0.44) – 0.87 (0.43) 0.68 (0.48) –

300 t 0.46 (0.07) 0.70 (0.08) 0.33 (0.13) 0.57 (0.08) 0.26 (0.07) 0.23 (0.08)
Slash 0.45 (0.09) 0.72 (0.09) 0.35 (0.07) 0.56 (0.08) 0.25 (0.09) 0.25 (0.09)
Contaminated 0.45 (0.09) 0.70 (0.12) 0.39 (0.18) 0.60 (0.14) 0.35 (0.09) 0.25 (0.12)
Normal 0.52 (0.19) 0.72 (0.14) 0.41 (0.28) 0.61 (0.18) 0.36 (0.18) 0.28 (0.17)
Non-Bayesian 0.78 (0.41) 0.89 (0.30) 0.58 (0.38) 0.83 (0.35) 0.64 (0.42) 0.51 (0.29)
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type of distributions and traditional Bayesian mapping procedure
with normal residuals, respectively.

In all Bayesian analyses, based on results from the interval non-
epistatic mapping (Lander and Botstein, 1989) and two-dimensional
genome scan, the prior number of main-effect QTL was set at lm =3
and the prior expected number of all QTL (l0) was taken to be
lm +5. The upper bound of the number of QTL, L, was then 16.
The initial value of each unknown parameter took the same one
as in simulation study. The MCMC was run for 200 000 cycles
after the burn-in of 6000 cycles. It was found that the mapping
results from 13 of 21 traits of interest support the Bayesian robust
mapping procedure. Herein, we take the peak viscosity (PKV) as
an example trait to compare the mapping results based on different
residual distributions.

The estimates for positions and genetics effects of QTL detected
with the Bayesian robust mapping and the traditional bayesian
mapping method are listed in Tables 4 and 5, respectively.
Apparently, the results from different distributions are comparable:
three main-effect QTLs and seven pairs of epistatic QTLs, covering
all QTL detected by other methods, are identified with Bayesian
robust mapping with a t-distribution, and followed by one main-
effect QTL and four pairs of epistatic QTLs with slash distribution
for residuals, one main-effect QTL and three with contaminated

normal distribution for residuals and one main-effect QTL and two
pairs of epistatic QTL with normal distribution for residuals, whereas
only one main effect QTL on seventh LG with non-Bayesian method.
This implies that Bayesian robust analysis has higher power than
traditional Bayesian model selection and non-Bayesian method.
Most of the main-effect and epistatic QTLs increase the PKV in
rice, except for a third main-effect QTL and ninth pair of QTLs.
All three different cases of two QTLs that involve the epistatic
effects are found: (1) both QTLs are the main, as fourth and eighth
pairs of QTL; (2) both QTLs are not the main, as seventh pair of
QTL and the rest are that only one QTL is the main. Figures 1
and 2 (in Section 2 of supplementary data) plot the one-dimensional
profiles of BFs for main effects and two-dimensional profiles of BFs
for epistatic effects obtained from Bayesian robust mapping with a
t-distribution for residuals, respectively. They intuitively illustrate
the results from Bayesian robust analysis for genetic architecture of
quantitative traits.

5 DISCUSSION
Within the framework of Bayesian model selection for mapping
genome-wide interacting QTLs, we develop a Bayesian robust
mapping strategy for analyzing continuous non-normal quantitative

Table 4. Estimated QTL positions (LG-position) obtained from Bayesian robust mapping with different distribution for residual on PKV in rice

QTL no. Distribution

t Slash Contaminated Normal

1 1-438.7 – – –
2 7-327.6 7-320.9 7-326.2 7-322.7
3 16-164.5 – – –
4 (1-435.9)×(16-162.8) (1-440.8)×16-183.6) (1-439.2)×(16-175.2) –
5 (1-309.4)×(12-11.5) (1-302.1)×(12-13.2) – –
6 (1-443.2)×(6-23.8) (1-447.5)×(6-33.2) (1-436.2)×(6-32.6) (1-450.8)×(6-30.7)
7 (1-65.6)×(1-253.2) – – –
8 (7-327.6)×(16-164.5) – – –
9 (4-24.8)×( 16-160.8) – (4-28.3)×( 16-162.1) –

10 (9-27.3)×(16-168.7) (9-25.9)×(16-175.1) – (9-28.4)×(16-162.1)

Table 5. Estimated QTL effects obtained from Bayesian robust mapping with different distribution for residual on PKV in rice

QTL no. QTL type Distribution

t Slash Contaminated Normal

1 Main Effect 0.46(1.96) – – –
2 Main Effect 10.05(5.65) 9.54(4.38) 9.82(5.13) 9.61(2.46)
3 Main Effect −4.77(2.77) – – –
4 Epistatic 13.46(9.03) 13.98(7.56) 12.95(8.78) –
5 Epistatic 9.00(5.13) 10.36(6.13) – –
6 Epistatic 7.07(4.29) 7.45(5.82) 7.56(5.13) 7.31(4.69)
7 Epistatic 8.06(3.17) – – –
8 Epistatic 2.73(3.45) – – –
9 Epistatic −5.46(3.18) – −4.98(3.89) –

10 Epistatic 3.04(2.55) 3.95(2.41) – 2.59(4.02)

The numbers in parentheses are the 2logBF values.
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traits, by replacing the normal distribution for residuals in multiple
QTL model with the normal/independent distributions. Compared
with Bayesian mapping for normal data, the Bayesian robust
mapping strategy additionally sample ‘weight’Wi and the robustness
parameter df with the Gibbs sampler or Metropolis/Hastings
algorithm in the MCMC process. Although computations for the
robust models may be more than for their normal counterparts, the
flexibility of the Bayesian robust mapping for either non-normal
or normal data is enough to compensate for the cost. Of course, if
the robustness parameter is assumed to be known, e.g. simply fixed
at a small value (Gelman et al., 1995), the implementation of the
Bayesian robust mapping will be even easier. In practice, however,
unless there is a strong reason to believe in the adequacy of the
normality assumption for residuals, it may be safer to use a robust
model (Rosa et al., 2003, 2004).

Except for the three common normal/independent distributions
discussed in this study, other distributions can also be considered,
such as the Laplace and the double exponential distributions. Which
distribution is optimal for fitting residuals depends on peculiarities
of the dataset, such as the proportion of outliers and how far these are
from the ‘center’ of the distribution. The t-distribution is the most
commonly used thick-tailed distribution for robust inference, and is
often a good alternative to a normal distribution. The contaminated
normal distribution is the most flexible among the three robust
distributions, but at the expense of an additional parameter. The
slash distribution, although not often encountered in the literature,
is the easiest one to implement in hierarchical modeling, because all
conditional posterior distributions have closed forms.

Rohr and Hoeschele (2000) first implemented a robust Bayesian
method for mapping QTL. Their study was different from ours in
that: (1) their mapping analysis aimed at outbred population whereas
ours at linecross; (2) their proposed method was based on a single
QTL model whereas ours was based on a multiple QTL model;
and (3) they used skewed Student’s t-distributions to describe
phenotypic residuals in the analysis whereas we adopted a student’s
t-distribution. In the single QTL model, it may be reasonable
to assume that residuals follow skewed Student’s t-distributions,
because the ‘skewness’ may absorb the effects of other QTLs on
phenotypes. However, no ‘skewness’ is necessary for the multiple
QTL model.

A complete Bayesian mapping requires the sampling of genotypes
for QTL and missing markers and aggravates the computational cost
of Bayesian robust analyses. To alleviate this problem, we evenly
partition the entire genome into small intervals by a number of
points and restrict putative QTL to these fixed points, as proposed by
(Yi et al., 2005). This strategy greatly reduces computational time
by estimating all expected values of indicator variables for putative
QTL by using conditional probability of their genotypes on two
flanking markers before the MCMC procedure starts. Other ways to
improve the efficiency of analyzing many QTL effects with Bayesian
model selection include specifying prior inclusion probability for
epistasis and using Metropolis/Hastings algorithm to perform fast
sampling for binary indicator (Yi et al., 2007).
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APPENDIX A
Specification of prior for degree of freedom df in normal/
independent distributions

In the t-distribution, we adopt a flat prior for df as df −1, yielding
p(df )∝df −2 (Liu, 1996); A Gamma(a, b) distribution with small
positive values of a and b (b�a)can be adopted as a prior for df
in the slash distribution; and the prior for df of contaminated
normal distribution involves two parameters, i.e. df = (vτ ). Herein, a
Uniform (0, 1) distribution is used as a prior for τ and an independent
Beta (a, b) is adopted as prior a for v.

APPENDIX B
Forms of posteriors for w and degree of freedom df in
normal/independent distributions

For a t-distribution, the fully conditional posterior density for each

element of w is a Gamma distribution with parameters 1+df
2 and

2

[
df + 1

σ 2

n∑
i=1

(yi −µ−
q∑

j=1
xijbj)2

]−1

, corresponding conditional

posterior density of df is

p
(
df

)∝
[

2
df
2 �

(
df

2

)]−n
df

ndf
2 −2exp

[
−df

2

n∑
i=1

(
wi −lnwi

)]

which does not have an explicit form but a Metropolis/Hastings
or rejection sampling step (Ripley, 1987) can be embedded in the
MCMC scheme to obtain draws for df.

For slash distribution,

wi ∼Truncated−Gamma
(

n
2 +df , 1

2σ 2
e

(
yi −Gi

)T (
yi −Gi

))
with

df ∼Gamma
(
a+n, b−∑n

i=1 lnwi
)
.

For contaminated normal distribution, the fully conditional
posterior density for wi is also non-closed form: p(wi)∝
wn/2

i v

(
1−wi
1−τ

)
(1−v)

( wi−τ

1−τ

)
×exp

{
− wi

2σ 2

(
yi −Gi

)T (
yi −Gi

)}
with

v∼Beta

[
a+ 1

1−τ

m∑
i=1

(1−wi), b+ 1
1−τ

m∑
i=1

(wi −τ )

]
.
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