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Abstract: Corynebacterium pseudotuberculosis is a Gram-positive bacterium that causes caseous
lymphadenitis, a disease that predominantly affects sheep, goat, cattle, buffalo, and horses, but has
also been recognized in other animals. This bacterium generates a severe economic impact on
countries producing meat. Gene expression studies using RNA-Seq are one of the most commonly
used techniques to perform transcriptional experiments. Computational analysis of such data through
reverse-engineering algorithms leads to a better understanding of the genome-wide complexity of
gene interactomes, enabling the identification of genes having the most significant functions inferred
by the activated stress response pathways. In this study, we identified the influential or causal genes
from four RNA-Seq datasets from different stress conditions (high iron, low iron, acid, osmosis, and
PH) in C. pseudotuberculosis, using a consensus-based network inference algorithm called miRsigand
next identified the causal genes in the network using the miRinfluence tool, which is based on
the influence diffusion model. We found that over 50% of the genes identified as influential had
some essential cellular functions in the genomes. In the strains analyzed, most of the causal genes
had crucial roles or participated in processes associated with the response to extracellular stresses,
pathogenicity, membrane components, and essential genes. This research brings new insight into the
understanding of virulence and infection by C. pseudotuberculosis.

Keywords: Corynebacterium pseudotuberculosis; RNA-Seq; co-expression networks; influence genes;
stress condition

1. Introduction

In the past few years, several genomic, transcriptomic, and proteomic studies have been performed
to understand the biological basis of Corynebacterium pseudotuberculosis; these studies allowed the
identification and understanding of the genomic mechanisms that contribute to the virulence and
infection processes used by the bacteria [1–7]. C. pseudotuberculosis is a Gram-positive intracellular
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bacteria and the etiologic agent of caseous lymphadenitis, a chronic, pyogenic, and contagious disease
that affects small ruminants causing considerable economic losses for the farmers and meat industries
in many countries [5,8]. The gene expression studies, using RNA-Seq under different conditions,
can explain which genes inside the genome are responsible for the bacterial maintenance in precarious
and restricted situations in order to prevent bacterial infection and propagation [2,3]. These studies
generated a significant amount of data from the bacteria, and such data can help perform new
bioinformatics studies to understand the genome complexity and the relationship between the genes
using network inference algorithms.

Co-expression network inference is a popular computational domain where several algorithms
have been developed for predicting genetic interactions. These models are built using statistical
techniques on high-throughput experimental gene expression data (such as RNA-Seq and/or
microarrays) [9–13]. These models allow the construction of co-expression networks (CEN) to describe
the correlation and interactions between the transcriptional genes in the organism. This type of
network allows for the understanding of the regulatory mechanisms and processes in the biological
system [11,13]. The CEN shows the relationship between genes and the regulatory processes by
following the central dogma of regulatory control; network analysis on the CEN can identify significant
genes possessing stronger influence or causality in the network [11,13,14].

The influential genes are the minimal set of causal genes (seed nodes) in the network that, when
perturbed initially, leads to influence diffusion to other nodes and finally impacts the maximal number
of genes in the network. This concept is based on the popular influence maximization algorithms from
the social network domain. The activated seed genes can spread their influence by probabilistically
activating their neighboring genes based on their expression levels and the edge weights in the CEN.
Such influential genes could play a crucial role in the regulation of the gene expression process under
specific conditions, such as stress [15,16].

In this study, we identified the influential or causal genes using four RNA-Seq datasets from
C.pseudotuberculosis, first by using the miRsigpipeline to obtain the predicted gene coexpression
network [17] and next applying the miRinfluence tool to identify the influential and causal genes
inside the network [15]. We adapted the methodology in these tools to determine the critical genes
that play a causal role in the signaling cascade through influence diffusion and hence may regulate the
overall gene expression of the entire network.

2. Methodology

2.1. Bacterial Strains and Growth Conditions

In this study, we used four strains of Corynebacterium pseudotuberculosis, isolated from different
animals. C. pseudotuberculosis 1002 (CP-1002) was a wild strain belonging to biovar ovis, isolated
from a caprine host in Brazil [18]. C. pseudotuberculosis 258 (CP-258), biovar Equi, was isolated
from a horse in Belgium [19]. The variation CP-T1 was a pathogenic wild-type belonging to biovar
ovis, isolated from a caseous granuloma found in CLA-affected goats in Brazil [20]. the strain
CP-13 was an iron-acquisition-deficient mutant and was generated by [20], employing the in vivo
insertional mutagenesis of the reporter transposon-based system TnFuZ in the strain T1. The molecular
characterization of the Cp13 mutant showed that the insertion disrupted the ciuA gene, which encodes
a putative-iron transport binding protein of the ciuABCD operon [21,22].

The strains of CP-1002 and CP-258 were subjected to different stress levels (acid, osmotic, and heat).
The bacteria were grown in Petri dishes containing brain heart infusion (BHI) media. For the acid
stress condition, the media was supplemented with hydrochloric acid (which changed the pH to 5);
osmotic stress was achieved with 2 M NaCl; thermal stress was induced by pre-heated BHI medium
to 50 ◦C; and in the control condition, the bacteria were grown in BHI medium at physiological
condition [2,3,19].
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The strains CP-T1 and CP-13 were grown individually either in the presence of the iron chelator
2, 2′-dipyridyl (DIP) (low iron condition) or without it (high iron condition). The iron-chelated BHI
medium was prepared with 250 µM of ferrous iron chelator 2, 2′-dipyridyl (Sigma Aldrich), which due
to its low aqueous solubility, was prepared with 40% (v/v) of ethanol (0.5 M 2, 2′-dipyridyl stock
solution) [22].

2.2. Expression Datasets

The cDNA samples from CP-258 and CP-1002 were used to prepare eight individual single-end
libraries that were sequenced using the SOLiDTM 3 Plus system platform, to produce 50-nucleotide
RNA reads [3]. The datasets used in this study were obtained from the ArrayExpress repository with
the accession numbers E-MTAB-2017 and E-MTAB-9217.

From CP-T1 and CP-13, the cDNA samples were used to prepare 14 individual single-end
libraries, with three replicates per stress condition, to produce fragments with an average size of
100–200 nucleotides. The Ion Proton Platform was used to perform two rounds of sequencing [22].
The sequencing data were obtained from the Gene Expression Omnibus (GEO) repository with the
accession number GSE114125.

Raw data quality was examined using the FastQC tool v0.11 [23]. Per-base quality filtering
was performed with Trimmomatic v0.39 [24] with a sliding window trimming approach, with the
following parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:14 MINLEN:30 for CP-258 and
CP-1002; and LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 for CP-13 and CP-T1.
The adapters in CP258 and CP-1002 were removed using Cutadapt [25] using the SOLID Small RNA
Adapter sequences.

The RNA-Seq expression data were quantified and aligned using the Salmon [26] tool, where the
genomes CP-13 (NZ_CP014998), CP-258 (NC_017945.3), CP-T1 (NZ_CP015100.2), and CP-1002B
(NC_017300.2) were used as references. The RNA-Seq expression profile was normalized by transcripts
per kilobase million (TPM) [27]. Table 1 shows a summary of the replicon information from NCBI [28].
Table 2 presents the average nucleotide identity (ANI), which signifies the nucleotide-level genomic
similarity in the coding regions between the C. pseudotuberculosis strains, calculated using pairwise
ANI in [29].

Table 1. Replicon information summary of each C. pseudotuberculosis strain.

Strains Size (Mb) GC% Protein Genes

CP-13 2.34 52.2 2013 2135
CP-T1 2.34 52.2 2008 2125
CP-258 2.37 52.1 2038 2165
CP-1002B 2.34 52.2 2009 2124

Table 2. Average nucleotide identity (ANI) similarity between the C. pseudotuberculosis strains.

Strains 1 Strains 2 ANI%

CP-13 CP-258 98.9036
CP-13 CP-1002B 99.9966

CP-1002B CP-258 98.9051
CP-1002B CP-T1 99.9968

CP-T1 CP-258 98.904
CP-T1 CP-13 100

The whole genome gene (WEG) expression datasets were selected from all the expressed genes
in the differential expression tests. An analysis of differential expression was performed using the
GFOLD tool [30] for CP-258 and CP-1002 data and edgeR [31] for CP-T1 and CP-13 data to generate
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the differentially expressed gene (DEG) datasets. To select the DEG, we used a fold-change of 2 and a
p-value < 0.05 [32].

2.3. Network Analysis

The predicted gene interaction networks (or equivalently termed as gene coexpression networks
in some cases) were built with miRsig [17]. This tool applies seven different network inference
algorithms on the gene expression data that individually reverse-engineer the interaction scores
between the genes. Next, a consensus-based approach was applied in miRsig to estimate the overall
score of every gene-gene interaction using an average ranking based approach to infer finally the gene
coexpression network with scores on edges depicting the likelihood of possible genetic interactions
between them. This algorithm was adopted in this work to perform the network analyses with the
gene expression data.

For each strain, we inferred two gene coexpression networks: (I) with the whole genome
expression and (II) only with the differentially expressed genes in all the stressed conditions.

For the consensus ranking scores, we selected 0.85 as the cut-off for the all expressed genes dataset
and the differentially expressed genes datasets; these cut-offs ensured high confidence on the edge
scores on gene coexpression networks on which the following causal gene identification methods were
applied [15].

2.4. Identification of Causal Genes

To identify the causal genes inside the network, we used the miRinfluence algorithm [15];
this algorithm uses network diffusion theory to quantify the influence of individual genes on the signal
transaction process in the gene interaction networks across different conditions or stress. The algorithm
ranks all the genes in the network according to their influence scores after calculating the optimal
coverage (in terms of the number of nodes influenced in the network) with 10,000 Monte Carlo
simulation based random walks.

We selected the top twenty causal genes from the whole genome expression networks while we
selected the top ten causal genes for the DEG networks. These top genes showed a higher influence
score in the influence diffusion model of miRinfluence inside the network.

The final list of causal genes was compared to the database of Online GEne Essentiality
(OGEE) [33] using the Mycobacterium tuberculosis dataset, which is a phylogenetically close organism to
C. pseudotuberculosis available in the database and also with the Rocha et al. reference genes’ study [34].
The OGEE classifies genes into three types: essential, nonessential, and a particular condition called
conditionally essential genes with variable essentiality statuses across datasets.

2.5. Network Clustering

To analyze the gene interaction network’s inherent structure, we performed a cluster analysis
using the K-means [35,36] algorithm within ClusterMaker [37] in Cytoscape [38], where the distance
between the genes was calculated by the Euclidean distance. We used the same tool to discover the
optimal number of clusters through the silhouette metric for each network. K-means was performed
to identify the cluster with one or more influential genes present using the betweenness-centrality,
degree, and closeness-centrality node attributes as the clustering input.

2.6. Sub-Network Detection and Enrichment Analysis

We selected the sub-networks having one or more influential genes present to perform the gene
annotation analysis. The enrichment analysis was performed with the GO FEAT platform [39] using
the gene influence nucleotide sequences and StringApp v.11.0 [40] in Cytoscape Version 3.8.0 [38] using
Corynebacterium pseudotuberculosis as reference species, with > 0.70 for the confidence cut-off and < 10
for the maximum additional interactors’ score. The enrichment of the clusters’ metabolic pathways
was performed using the clusterProfiler R package using the enrichKEG with CP-1002 (KEGG ID: cpk)
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and CP-258 (KEGG ID: coe) as reference organisms [41,42]. Visual representation was created using
ggplot2 v.3.3.0 [43] and ggpubr v.0.3.0 [44].

3. Results

Read quality assessment was done through FastQC v0.11. Samples CP-1002 and CP-258 presented
a Phred score distribution among 16–29, while CP-13 and CP-T1 produced Phred scores between 20
and 26. Base quality trimming was performed with Trimmomatic; for samples of the CP-T1 and CP-13
strains, this procedure excluded 1% and 5% of the total reads, respectively; for samples CP-259 and
CP-1002, eight to 10% of total reads were excluded from each one. Adapter filtering was performed
with CutAdapt in CP-258 and CP-1002. Trimmed datasets produced by this method were mapped to
CP-1002B (NZ_CP012837), CP-T1 (NZ_CP015100.2), CP-258 (NC_017945), and CP-13 (NZ_CP014998)
reference genomes. For CP-258, the percentage of mapped reads to the reference genome ranged
from 57% to 67%; CP-1002 presented mapped read percentages ranging from 58% to 72.68%; CP-13
strain mapping covered between 63.48% and 90.59% of reads; and CP-T1 mapped between 54.55% and
67.60% of trimmed reads (Table 3).

Differential expression analyses were performed with edgeR [31] on the CP-13 and CP-T1 samples.
A total of 93 genes for CP-T1 and 62 genes for CP-13 were found to be differentially expressed between
control and high iron conditions. We utilized GFold [30] to perform differential analyses in CP-258 and
CP-1002; this method yielded 167 differentially expressed genes in CP-1002 and 138 genes in CP-258
(Table 3).

Table 3. Sizes of the gene expression datasets.

Strains CP-13 CP-258 CP-1002 CP-T1

Whole Genomes 2113 2064 2091 2093
Differentially Expressed Genes 63 139 168 93

Using the miRsig tool, we built gene coexpression networks with four datasets, two for each
C. pseudotuberculosis strain; Table 1 shows the sizes of these datasets. For the whole genome expressed
datasets, we predicted a network with 86,367 gene-gene interactions for Cp-13, 9376 interactions for
CP-258, 6682 for CP-1002, and 107,202 for CP-T1 (Figure 1). For the differentially expressed networks,
we predicted a total of 46 gene-gene interactions for CP-13, 165 interactions for CP-258, 155 for CP-1002,
and 98 for CP-T1. The whole genome and differentially expressed genes networks are provided in the
Supplementary File 1: Datasheet 1 and Datasheet 2.

We selected the influential genes using the coexpression network as the input to the miRinfluence
tool. From the output set of ranked genes based on their respective influence scores, we selected the
top 20 for the whole genome expressed network and the top 10 for the DEG network. Tables 4 and 5
show the gene annotation for each network. Seventy-five percent of these genes showed a high degree
distribution compared with the average of the other nodes in the network.

From the causal genes’ list obtained from the whole genome expressed datasets, we found that
15% of the genes in Cp-258, 25% in CP-13, 10% in CP-T1, and 25% in Cp-1002 were considered as
essential and conditionally essential genes in Mycobacterium tuberculosis according to the OGEE [33,34].
This implied that these genes may be involved in important functions within the strains of the bacteria
that were studied.
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Figure 1. Whole expressed gene dataset networks. (A) The network generated by the data isolated
from C. pseudotuberculosis 1002. (B) The network generated by the data from C. pseudotuberculosis strain
CP-13. (C) The network generated by the data from C. pseudotuberculosis 258. (D) The network
generated by the data from C. pseudotuberculosis strain T1.

In the whole expressed genome list, the genes galU and argS were categorized as essential,
and gene rmlD was conditionally essential in strain CP-258. In CP-T1, the genes pdpB and trpC were
classified as essential genes. In strain Cp-1002, the genes uvrD3, whiB, rplO, udgA, and uvrA were
conditionally essential genes. serC, mraY, and glmS were listed as essential, and the genes sdaA and
lpdA were classified as conditionally essential genes according to [33,34].

For the DEG list, the gene metX in CP-13, dnaK in CP-1002, and lysA2 in CP-T1 were labeled as
essential genes. cdd in CP-1002 and cstA in CP-258 were classified as conditionality essential according
to [33,34].

We made the functional annotation using GO FEAT [39] and Cytoscape StringApp [40]; these
tools allowed the characterization and functional annotation of the causal gene groups present in each
of the studied genomes in the whole genome expression and differential genome expression datasets.

Figure 2 shows the pathways of the genes in the whole expressed genome datasets. The pathways
with more genes in CP-13 were the biosynthesis of antibiotics with 13 genes and biosynthesis of amino
acids with nine genes; the nucleotide excision repair and pyrimidine metabolism were the more active
pathways with seven genes and five genes respectively in CP-1002; for CP-258, the two-component
system pathway with four genes and propanoate metabolism pathway with three genes were activated.
In CP-T1, the ABC transporter was the more activated pathway.

Figure 3 shows the KEGG pathways found in the DEG datasets. We found 11 pathways
in four C. pseudotuberculosis strains; the pathway with the most genes related to porphyrin and
chlorophyll metabolism, expressed in CP-1002 and CP-T1. Other important pathways were metabolic
pathways, fatty acid metabolism, citrate cycle (TCA cycle), biosynthesis of unsaturated fatty acids, and
biosynthesis of amino acids; these pathways are involved in the cell walls’ components and protect the
bacteria from environmental stress [45].
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Table 4. Products generated by the top 20 influential genes identified in the networks built with the whole genome expression data from Cp-13, Cp-258, and Cp-1002.

Genes Cp-13 Product Genes Cp-258 Product Genes Cp-1002 Product Genes Cp-T1 Product

mca Mycothiol S-conjugate amidase CP258_RS02980 Methylmalonyl-CoA
carboxyltransferase 12S subunit Cp1002B_RS03590 Hypothetical protein pknL Serine/threonine

protein kinase

hisN Histidinol-phosphatase CP258_RS03105 LPxTG domain-containing protein mcbR TetR family
transcriptional regulator fhs Formate–tetrahydrofolate

ligase

rbsK Ribokinase CP258_RS03110 Aminotransferase ureE Urease accessory
protein UreE ogt Methylated-DNA–protein-cysteine

methyltransferase

pepC2 M18 family aminopeptidase tcsS4 Two component system
sensor kinase protein uvrD3 DNA helicase Cp13_RS09405 Oxidoreductase

tcsR3 Two-component system
transcriptional regulatory protein CP258_RS04420 Hypothetical protein Cp1002B_RS02755 Abi family protein pbpB Penicillin binding protein

transpeptidase

Cp13_RS10225 Antimicrobial peptide
ABC transporter ATPase rimJ Ribosomal-protein-alanine

acetyltransferase cmtB Trehalose corynomycolyl
transferase B nodI Nod factor export ATP-

binding protein I

ald Alanine dehydrogenase CP258_RS03575 ABC transporter ATP-binding
protein whiB Transcriptional

regulator WhiB Cp13_RS04005 Hypothetical protein

mrpD Na(+)/H(+) antiporter subunit D tehA C4-dicarboxylate transporter/malic
acid transport protein rplO 50S ribosomal protein L15 pafA2 Pup–protein ligase

serC Phosphoserine transaminase CP258_RS03580 Antibiotic biosynthesis
monooxygenase Cp1002B_RS02920 LPxTG domain-containing

protein Cp13_RS01180 Secreted hydrolase

mgtA Glycosyl transferase group 1 echA6 Enoyl-CoA hydratase echA6 rluC Ribosomal pseudouridine
synthase trpC N-(5’-phosphoribosyl)anthranilate

isomerase

Cp13_RS01600 ABC-type metal ion transport system,
periplasmic component/surface adhesin rmlD dTDP-4-dehydrorhamnose reductase yhcL Cryptic C4-dicarboxylate

membrane transporter dcuD Cp13_RS08505 Acetyltransferase

sdaA L-serine dehydratase CP258_RS07545 Hypothetical protein Cp1002B_RS01655 ABC transporter inner
membrane protein nagB Glucosamine-6-phosphate

deaminase

Cp13_RS07170 Glyoxalase/bleomycin resistance
protein/dioxygenase galU UTP–glucose-1-phosphate

uridylyltransferase Cp1002B_RS10840 LPxTG domain-containing
protein Cp13_RS03565 Hypothetical protein

Cp13_RS01385 Hypothetical protein cstA Response regulator Cp1002B_RS01705 Hypothetical protein Cp13_RS05420 ABC transporter ATP-binding
protein

lpdA Flavoprotein disulfide reductase argS Arginine–tRNA ligase Cp1002B_RS10170 ABC transporter yvrC ABC transporter substrate-binding
protein

mraY Phospho-N-acetylmuramoyl
pentapeptide-transferase hpf Ribosome hibernation

promoting factor fadF Protein fadF fagA Hypothetical protein

Cp13_RS08655 Hemolysin III-like protein deoA Thymidine phosphorylase udgA UDP-glucose 6-dehydrogenase mnmA tRNA-specific 2-thiouridylase MnmA

copD

Copper resistance D domain-
containing protein/Cytochrome c
oxidase caa3 assembly factor
(Caa3_CtaG)

mprA_2 Two component system
response regulator gltT Sodium/glutamate symporter Cp13_RS06640 Hypothetical protein

glmS Glutamine–fructose-6-phosphate
aminotransferase [isomerizing] oppC2 Oligopeptide transport

system permease OppC Cp1002B_RS01200 Serine proteases of the peptidase
family S9A Cp13_RS07860 Phosphoglycerate dehydrogenase

Cp13_RS10090 NYN domain-containing protein scpB Segregation and condensation
protein B uvrA UvrABC system protein A Cp13_RS03800 Putative secreted protein
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Table 5. Proteins produced by the top 10 influential genes identified in the networks built with the differentially expressed genes’ data from Cp-258 and Cp-1002.

Genes Cp-13 Product Genes Cp-258 Product Genes Cp-1002 Product Genes Cp-T1 Product

desA3 Stearoyl-CoA 9-desaturase CP258_RS02710 Putative secreted protein cynT Carbonic anhydrase pyc Pyruvate carboxylase

htaA Cell-surface hemin receptor CP258_RS02905 Hypothetical protein Cp1002B_RS03070 HtaA domain-containing
protein fecE Fe(3+) dicitrate transport

ATP-binding protein FecE

Cp13_RS02285 Hypothetical protein vapI Virulence-associated protein Cp1002B_RS02920 LPxTG domain-containing
protein hmuT Hemin-binding periplasmic

protein

lutB Putative iron-sulfur protein tetR3 TetR family transcriptional
regulator cdd Cytidine deaminase Cp13_RS04105 LUD_dom domain-containing

protein

Cp13_RS04105 LUD_dom domain-containing
protein rshA Anti-sigma factor Cp1002B_RS03075 Hypothetical protein Cp13_RS02285 Hypothetical protein

htaB Cell-surface hemin receptor cstA Response regulator Cp1002B_RS03455 Oxidoreductase lysA2 Diaminopimelate decarboxylase

Cp13_RS02610 Stearoyl-CoA 9-desaturase
electron transfer partner gluC Glutamate transport system

permease protein gluC Cp1002B_RS03180 Hypothetical protein icd Isocitrate dehydrogenase [NADP]

Cp13_RS09955 Flavin reductase odhI Oxoglutarate dehydrogenase
inhibitor ftn Ferritin sprT Trypsin

metX Homoserine O-acetyltransferase yecS ABC transporter domain-containing
protein dnaK Chaperone protein DnaK gluA Glutamine ABC transporter

ATP-binding protein

ripA_2 HTH-type transcriptional
repressor of iron protein A ykoE HMP/thiamine permease

protein ykoE glpQ_1 Glycerophosphoryl diester
phosphodiesterase lutB Putative iron-sulfur protein
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Figure 2. The pathways that involve the top 20 genes identified in the whole expressed genome
network in CP-258, CP-13, CP-T1, and CP-1002.

Figure 3. Pathways involved with the top 10 genes identified in the differential expression network in
Cp-258 and Cp-1002.

Supplementary File 2, Figures S1–S3, shows the results of the gene ontology analysis for the top
20 causal genes. The cell adhesion, SOS response, cell division, carbohydrate metabolism process,
transmembrane transport, methylation, and regulation of transcription-DNA-templated were the
biological processes in which the most genes participated in the four studied strains. Concerning
cellular components, most of the causal genes were part of the cytoplasm, integral component
membrane, and plasma membrane in the four strains. The majority of causal genes in these genomes
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participated in molecular functions such as ATP binding, ATPase activity, metal ion binding, DNA,
and transferase activity.

Considering the top 10 causal genes identified in the differentially expressed datasets (Figure 4),
most of these genes participated in molecular functions such as iron-sulfur clusters’ binding,
transmembrane transport activity, DNA binding, transferase activity, and oxidoreductase activity.
In the cellular components’ ontology, these genes were part of the integral components of the
membrane and the cytoplasm. Considering the biological processes, the top 10 differentially
expressed genes related to processes such as cell adhesion, cellular iron ion homeostasis, the nitrogen
compound transport nucleoside metabolic process, the phosphorelay signal transduction system,
and other processes.

Figure 4. Gene Ontology results of differentially expressed genes in CP-1002, CP-258, CP-13, and CP-T1.
Left: biological process; center: cellular components; and right: molecular function.

We performed the K-means algorithm in all the coexpression networks. For whole expressed
genomes in Cp-13, the silhouette metric predicted 24 clusters, and the causal genes were present in 12
of these clusters. In Cp-258, the metric identified 21 clusters with all the causal genes present in four
clusters. In the CP-1002 strain, it identified 16 clusters, and the casual genes were distributed into four
clusters. Finally, in CP-T1, we identified 30 clusters, and the causal genes were assigned to five clusters
(Supplementary File 3, Datasheet 1).

In the differentially expressed genes’ network for CP-258, the silhouette metric split the network
into six clusters, and the causal genes were distributed into two clusters. For CP-1002, we detected
six clusters, and all the influential genes were represented in four clusters. In the CP-13 strain,
the network was divided into four clusters, and the causal genes were present in three clusters. Finally,
the network of CP-T1 was split into five clusters, and the causal genes were assigned to three clusters
(Supplementary Files 3, Datasheet 2).

In the clusters with causal genes, we performed gene enrichment analysis using the clusterProfiler
package to identify the KEGG pathways in these clusters. Figure 5 shows the pathways involved in
the clusters from the whole expressed genes network in CP-13 and CP-1002; the other clusters’ figures
are in Supplementary File 2, Figures S4 (CP-258) and S5 (CP-13). The more representative pathways
in the clusters in all the strains were metabolic pathways and biosynthesis of secondary metabolites,
which were present in almost all the clusters of the studied genomes. Other interesting pathways
activated by the causal genes in these clusters were biosynthesis of amino acids, microbial metabolism
in diverse environments, quorum sensing, ribosome, and carbon metabolism metabolites.
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Figure 5. Pathways of the clusters where the influential genes were present in the whole expressed
genome network. Left: CP-1002; right: CP-T1.

For the top 10 influential genes from the differentially expressed genes’ networks, we found
that the metabolic pathway was the more activated one in all strains. Other pathways with more
representation in the strains were biosynthesis of antibiotics, microbial metabolism in diverse
environments, biosynthesis of secondary metabolites, ABC transporters, and carbon metabolism.
The figures are in Supplementary File 2, Figures S6–S9.

4. Discussion

Intracellular pathogens have mechanisms of response to conditions of harmful extracellular
stresses caused by the host. Among the types of stresses that a bacterium can face are the drastic
change in temperature, pH alteration, sudden changes in osmolarity, and the presence of reactive
oxygen species, among others. In this study, we identified the influential genes referring to the
stresses mentioned above from experiments performed by [3,22]. In the strains analyzed, the genes
that controlled most interactions within the co-expression network were related to the response to
extracellular stresses, pathogenicity, membrane components, and essential genes.

The stress conditions faced by C. pseudotuberculosis during the infectious process are diverse,
from entry into the host, through the lymphatic system, to intracellular replication in macrophages,
and the establishment of lesions within the organs [46]. The strains CP-13 (mutant) and CP-T1 (wild)
were subjected to restriction of iron, an essential micronutrient for the proliferation of pathogens.
In the strains CP-1002 and CP-258, three types of stresses were applied: acidic, thermal, and osmotic.
These conditions simulated the environment found by the bacteria during infection in the host.

Between the top 20 causal genes of the CP-13, a mutant with the disrupted ciuA gene that
encodes a putative iron transport binding protein from the ciuABCD operon may be involved in
the stress response. These genes are mca, Hisn, rbsK, pepC2, tcsR3, MRPD, ALD, LPDA, COPD, and
Cp13_RS10225 Cp13_RS07170 (Table 4). The products of these genes showed a relationship with
reactive oxygen species (ROS). ROS can cause oxidative stress, which is a condition of imbalance
between ROS production and its removal through systems (enzymatic or non-enzymatic) that remove
or repair the damage caused by them [47]. Bacteria are regularly exposed to free radicals present in the
extracellular environment.

Actinobacteria, the phylum that C. pseudotuberculosis is included in, are capable of resisting
extracellular ROSs present in the phagocytic environment, produced by macrophages against pathogen
invasion [48]. In response to ROSs, neutralization mechanisms, called antioxidants, are used.
For example, the mca gene is involved in the mycothiol metabolic process (Figure 4). This compound
is believed to act as an antioxidant like glutathione, keeping the intracellular medium free of alkylating
agents and other toxins in Gram-positive bacteria [49]. The mycothiol loss in Mycobacteria is associated
with slow growth and increased sensitivity to reactive oxygen species and antibiotics [50]. Moreover,
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the hisN gene encodes a protein involved in histidine biosynthesis, which in Actinobacteria is converted
into the antioxidant ergothioneine [51,52].

In the differential expression analysis, the genes Cp13_RS02610 and Cp13_RS09955 were repressed
in the iron limitation condition (Supplementary Material). They are involved in redox processes,
in which they usually occur during cellular respiration or in oxidative stress conditions producing free
radicals [47]. These two genes could be participating in the production of ROS, but they may have
been repressed with the expression of antioxidants. Other genes identified in CP-13 encode proteins
related to cell adhesion.

The T1 wild-type strain also showed genes that may be involved in the stress response, such as the
ogt, Cp13_RS09405, and Cp13_RS07860 genes. The Cp13_RS09405 and Cp13_RS07860 genes are related
to redox reactions. The ogt gene is involved in the DNA methylation and repair process (Figure 4).
DNA repair pathways are essential to maintain the integrity and stability of the genome. Pathogenic
bacteria are constantly under external pressure, from the environment and from the interaction with
the host, which can cause damage to bacterial DNA [53]. Consequently, the presence of this gene
among the influential ones in the co-expression network determines its importance in the face of
possible stresses that can destabilize the bacterium’s genome, impairing its survival.

In the differential expression analysis of the CP-T1 strain, the Cp13_RS02285 gene (uncharacterized
protein) was induced six times. It is an integral membrane protein. Furthermore, the hmuT and sprT
genes were induced three times (Supplementary File 4). The hmuT gene encodes a periplasmic protein
that plays a role in the acquisition and transport of hemin. This gene was identified as an influencer
and corroborated the results found by [22], who found these genes to be involved in the transport
of hemin.

The strains CP-1002 and CP-258 showed causal genes related to stresses ureE, uvrA (CP-1002),
and tcsS4, mprA_2 (CP-258). Urease (ure) has a route in which bacteria try to alkalize their environment
during acidic stress. The neutralization of acids results from the production of ammonia (NH3), which
combines with a proton from the cytoplasm to produce ammonium (NH+

4 ), thus raising the internal
pH [54]. The urease enzyme promotes the hydrolysis of urea, which acts as an H+ ion receptor,
generating a neutral pH inside the bacteria, which gives, for example, H. pylori resistance to gastric
acidity. Most of the urease synthesized by the bacterium is located in its cytoplasm [55]. The uvrA gene
also has an adaptive response to acidity [56].

The tcsS4 and mprA_2 genes encode an osmosensor kinase and a two-component system
response standard (Table 4). Two-component systems may be involved in response to osmotic
stress. Osmosensors regulate the expression of genes that encode osmoregulators, constituting
two-component systems: the sensor located on the membrane has a histidine kinase domain that in
the presence of the stimulus, transmits the information via phosphorylation to the response regulators.
In E. coli, the EnvZ-OmpR system, which regulates the expression of the OmpC and OmpF porins,
facilitates the diffusion of hydrophilic molecules. In response to an increase in osmotic pressure,
the expression of OmpF is decreased, and OmpC has its expression increased [57].

In addition, coders were identified in relation to cell adhesion: the Cp1002B_RS02920 (CP-1002),
Cp1002B_RS10840, and CP258_RS03105 (CP-258) genes. These genes encode adhesive proteins that are
important for binding the receptor to host cells during pathogenesis. For example, Escherichia coli PapG
adhesin from pilus P is necessary for binding to the human renal receptor during the pathogenesis of
pyelonephritis [58].

In the analysis of differential expression, the Cp1002B_RS02920 gene was repressed in osmotic
stress (Supplementary Material). The vapI gene (CP-258) encodes a protein associated with virulence
(induced in osmotic stress). Furthermore, the rshA gene (CP-258) produces an anti-sigma factor and
contains a CXXC motif like a thiol-disulfide redox switch [59]. This gene was induced in acid stress
(Supplementary Material), confirming that this condition is essential for the analysis of the genes of
C. pseudotuberculosis that may be involved in the host’s infection, mainly related to the infection of
phagocytic cells.
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The biosynthesis of the antibiotic pathway, which is regulated by phosphate (Figure 2), is activated
by the environment’s nutritional stress such as carbon or nitrogen limitation. The antibiotics produced
for this pathway can destroy or inhibit the growth of other bacteria in the microfilms in the nutrients’
competition; furthermore, some antibiotics may have inter-cellular communication functions in the
communities [60,61]. Other critical pathways are microbial metabolism in a diverse environment
related to the stress response [45]; the biosynthesis of amino acids pathways are connected with central
carbon, nitrogen, and sulfur metabolism [62], and nucleotide excision repair can help repair DNA that
has been damaged by different stresses [63].

Through these pathways were identified by the gene clusters in the whole genome expression and
differentially expressed gene datasets, we could infer that the causal genes identified in the network
allowed the bacteria to respond to the stress’ stimulus, activating and co-regulating the expression of
their neighbors. These influential genes could send some alert signals to activate the regulatory factors
in these pathways to stimulate or inhibit the translation, transcription, or the expression of other genes,
to generate a physiological and biochemical adaptation in response to the environmental stress [3].
An essential point in the network analysis is the highest degree rates represented for the clusters with
more influential genes, which could indicate their regulatory role in controlling their other neighbors,
whose expressions are correlated in the network [14].

The influential genes identified in the differential expression datasets were correlated with basal
cellular processes inside the genome. Moreover, we identified pathways using KEGG [42], and essential
genes were compared in our results with the dataset of Mycobacterium tuberculosis from OGEE [33],
which were related to the defense and adaptation of bacteria to different stresses; this could mean that
these influential genes play a critical role in the synthesis of proteins and the survival process of the
bacteria under the different stress conditions. It is important to highlight that bench-top experiments
are required to validate these genes as essential in C. pseudotuberculosis.

5. Conclusions

In this work, we developed a co-expression network analysis to identify the ranked influential
and causal gene sets using the gene expression datasets from four strains of C. pseudotuberculosis under
different stress conditions. The network analyses were performed using computational methods based
on the information diffusion concept to identify these genes. For the analysis, we used both cases of
considering all the expressed genes and only the deferentially expressed genes to compare the detected
genes in both networks. These causal genes were shown to play a critical role in activating other genes
to generate the bacterial response against the stress conditions in the environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/794/s1,
File 1, Networks Files: contains the files with the interaction networks obtained by the miRsig algorithm. File 2,
Supplementary Figures- contains the supplementary figures of the paper: Figure S1-Biological process results
of whole expressed genes in CP-1002, CP-258, CP-13, CP-T1; Figure S2-Cellular Components results of whole
expressed genes in CP-1002, CP-258, CP-13, CP-T1; Figure S3-Molecular function results of whole expressed genes
in CP-1002, CP-258, CP-13, CP-T1; Figure S4-Pathways of the clusters where the influential genes are present in
the whole expressed genes network in CP-258; Figure S5-Pathways of the clusters where the influential genes are
present in the whole expressed genes network in CP-13; Figure S6-Pathways of the clusters where the influential
genes are present in the Deferentially expressed genes network in CP-25; Figure S7-Pathways of the clusters where
the influential genes are present in the Deferentially expressed genes network in CP-1002; Figure S8-Pathways of
the clusters where the influential genes are present in the Deferentially expressed genes network in CP-13 and
Figure S9-Pathways of the clusters where the influential genes are present in the Deferentially expressed genes
network in CP-T1. File 3, Network Analysis and Clusters: contains the network analyses performed by Cytoscape
and the results of the clustering analysis. File 4, Differentially Expressed Genes’ Result: contains the results of
differential expression analyses performed with the Gfold and edgeR tools.
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