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The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells
and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article
discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death
profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the
Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile
induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.

1. Introduction

Natural products or their derivatives represent approxi-
mately 60% of all chemotherapeutic agents approved by
the Food and Drug Administration (FDA), including vin-
cristine, vinblastine, and Taxol [1–3]. However, the search
for medicinal plants with anticancer properties has inten-
sified in recent years since chemotherapeutic agents are
limited by a high rate of drug resistance and by severe
side effects. Additionally, some of the current drugs used
in cancer therapy are very expensive to produce [2, 4].
Therefore, there is great interest in the discovery and
identification of effective anticancer compounds and mol-
ecules with low production costs and high target cell
selectivity [5–7].

Brazil is considered to be the territory with the richest
biodiversity in the world [8–11]; the Cerrado is the second

main biome, exhibiting a great diversity of natural plants
[9, 12, 13]. The Cerrado is located in the middle west of
Brazil, encompassing almost 2 million km2 that covers 21%
of the Brazilian territory [14, 15].

Numerous studies have evaluated the biological effects of
extracts from medicinal plants from the Cerrado. These
extracts include Stryphnodendron adstringens, popularly
known as barbatimão, which has displayed antiulcerogenic
and antifungal effects [16], and Campomanesia adamantium,
popularly known as Guavira, which has presented antidia-
betic properties, anti-inflammatory, and diuretic actions
[17]. Another plant from the Brazilian Cerrado is Senna
velutina; little is known about its biological effects, but
an important study investigated its antitumour activity in
a leukaemia cell lineage [18]. In addition, the Jacaranda
[19] and Harconia [20] genera are other examples of
medicinal plants from the Cerrado commonly used in folk
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medicine and with some described biological properties,
mainly antioxidant activity. Finally, Schinus terebinthifolius
and Guazuma ulmifolia are used in traditional medicine to
treat ulcers, diarrhoea, arthritis, and infections [21] and
inflammation, gastrointestinal diseases, and diabetes [22],
respectively. The botanical features and geographical dis-
tribution of plants from the Brazilian Cerrado are outlined
in Table 1.

This review article discusses the antioxidant properties of
extracts obtained from medicinal plants from the Brazilian
Cerrado and the cell death profile induced by these extracts
in malignant cells. Next, we describe the capacity of other
medicinal plants from the Cerrado to protect against
chemotherapy-induced cell toxicity.

2. Redox Balance Potential

Natural antioxidants are molecules that protect cells from
the damage induced by reactive oxidative species (ROS)
[4, 66]. These ROS, including superoxide anion (O2

•−)
and hydrogen peroxide (H2O2), are involved in various
cellular processes (host immune defence, cell signaling,
cellular respiration process, and others); however, if they
are not properly regulated by the antioxidant system,
ROS initiate a number of deleterious effects, which may
cause the oxidation of biomolecules [67, 68]. For example,
excessive ROS results in lipid peroxidation, a process in
which free radicals attack polyunsaturated fatty acids, a
lipid present in the cell membrane, resulting in membrane
rupture and the production of toxic molecules, especially
malondialdehyde (MDA), associated with cell damage and
mutagenicity [68–70].

Superoxide is generated from diverse metabolic pathways
in cells, including the mitochondrial respiratory chain and
the enzymatic action of cytochrome p450 and NADPH oxi-
dases [71, 72]. The superoxide that results from these reac-
tions can undergo dismutation to generate water (H2O) by
superoxide dismutase (SOD), an enzyme in the antioxidant
system or can react with nitric oxide (NO•), to generate
reactive nitrogen species, such as peroxynitrite (ONOO−),
the most powerful oxidant [67, 69].

Superoxide dismutase catalyses the dismutation of O2
•−

to hydrogen peroxide (H2O2), which is a less reactive species
and a substrate for other enzymes involved in the antioxidant
system. Successively, in a Fenton reaction, H2O2 can be mod-
ified to a toxic hydroxyl radical (OH-) in the presence of
transmission metals, such as iron (Fe2+), and therefore
should be decomposed to H2O. For this step, the most
efficient enzymatic antioxidants are catalase (CAT) and/or
glutathione peroxidase enzymes (GPx) [73, 74]. GPx reduce
peroxides to water (or alcohol) through oxidation of selenol
residue to selenenic acid (RSe-OH) groups which are con-
verted back to selenols by the tripeptide glutathione (GSH).
Oxidazed gluthatione (GSSH) is oxidazed back to GSH by
glutatione reductase [67, 69, 73].

Numerous studies have evaluated the antioxidant poten-
tial of extracts from plants from the Cerrado. Campos et al.
[18] studied the effects of S. velutina on radical scavenging
activity. Extracts prepared from the leaves of S. velutina in

an ethanol solvent were found to be very potent inhibitors
of radical scavenging activity by the DPPH (2,2′-diphenyl-
1-picrylhydrazyl) method, and the concentration necessary
for the 50% inhibition (IC50) of DPPH of these extracts
was lower than that of the commercial antioxidant butyl-
ated hydroxytoluene (BHT) (6 3 ± 1 3 versus 21 3 ± 1 2 μg
/mL). Similarly, Dos Santos et al. [46] evaluated the anti-
oxidant capacity of a leaf extract of Hancornia speciosa in
an ethanolic solvent and also observed a potential activity
by the DPPH method and improved IC50 values in rela-
tion to BHT (9 4 ± 0 8 versus 66 1 ± 23 6 μg/mL).

Espindola et al. [38] found that an extract prepared from
the root of C. adamantium in an aqueous solvent and BHT
had similar antioxidant capacities by the DPPH method
(IC50 37 3 ± 4 1 versus 36 1 ± 9 1 μg/mL) [38]. Baldivia
et al. [16] evaluated the antioxidant effects of an extract from
the stem bark of S. adstringens by the DPPH and ABTS
methods (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)). The antioxidant efficacy of S. adstringens is similar
to that of ascorbic acid according to both methods (DPPH
IC50, 3 81 ± 0 02 versus 2 65 ± 0 03 μg/mL; ABTS IC50, 1 83
± 0 15 versus 1 34 ± 0 01 μg/mL).

These results demonstrate that the extracts obtained from
S. velutina,H.speciosa,C.adamantium, andS.adstringensmay
directly react with free radicals by electron donation radical
scavenging, thereby inhibiting ROS-induced damage. These
actions can be attributed to the presence of phenolic com-
pounds. The antioxidant efficiency of a phenolic com-
pound depends on the capacity of a hydrogen atom in a
hydroxyl group on an aromatic structure to be donated
to a free radical [75, 76]. Among the phenolic compounds
described as major potential antioxidants, gallic acid is a
well-described phenolic compound with antioxidant and
antihaemolytic activities in human erythrocytes [77–79].
Procyanidins are also excellent antioxidants capable of pro-
tecting erythrocytes from oxidative haemolysis [80, 81].
Furthermore, flavonoids known as catechins [82, 83],
rutin [84, 85], and quercetin [86, 87] are among the most
abundant and important chemical constituents of plant spe-
cies and are described as lipid peroxidation inhibitors.
The phenolic compounds identified in extracts of C. ada-
mantium, S. velutina, and S. adstringens are listed in Table 2.

The extracts from these plants also showed antioxidant
activity and demonstrated lipid peroxidation prevention
in 2,2′-azobis(-amidinopropane) dihydrochloride- (AAPH-)
induced erythrocyte haemolysis as evidenced by MDA pro-
duction. Importantly, MDA is related to cell damage and
mutagenicity and the inhibition of this process can restore cell
homeostasis and prevent the development of oxidative stress-
related disease [88].

Casagrande et al. [19] evaluated the activities of SOD,
CAT, and GPx antioxidant enzymes in human erythrocyte
lysates and found that a hydroethanolic extract of Jacaranda
decurrens subsp. symmetrifoliolata leaves increased the
enzyme activity of glutathione peroxidase and reduced the
activity of superoxide dismutase and catalase. Rocha et al.
[21] showed that the enzymatic activity of SOD and GPx
enzymes increased upon treatment of human erythrocytes
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with an extract prepared from the leaves of S. terebinthifolius
in methanol solvent. Based on these results, it seems that J.
decurrens and S. terebinthifolius may modulate the endoge-
nous antioxidant system.

Extracts of C. adamantium, in addition to scavenging
activity, were described to reduce MDA in vitro and
in vivo [38]. The capacity of C. adamantium to present
in vivo antioxidant effects represents a major advantage for
the development of new products. In many cases, in vitro
findings are not reproduced in an organism due to various
factors, such as enzyme inactivation, poor absorption, and
tissue distribution [89, 90]. This finding suggests that the
C. adamantium extract showed a bioavailability profile
suitable for use in vivo.

These results demonstrated that these extracts are very
potent antioxidants due to their radical scavenging capacity
and their capacity to protect the cell against lipid peroxida-
tion. Furthermore, the synthetic antioxidants commonly
used are reported to be mutagenic and cause liver injury
[91]. The search for new antioxidants that are more effective
and have a better toxicity profile than current antioxidants is
desirable, and the plants described here may represent inter-
esting targets for this purpose.

3. Antioxidants and Cancer

Cancer is a multistage process resulting in an uncontrolled
cell cycle and cell division and apoptosis resistance and is
one of the main diseases that cause mortality worldwide
[92]. Carcinogenesis is a process that involves multiple steps,
including an initiation phase that can occur after exposure to
a carcinogenic agent, and commonly results in increased
production of ROS [93, 94]. The initialization of cancer cells
commonly depends on mutations in genes related to the reg-
ulation of the cell cycle, apoptosis, and/or growth factor sig-
nalling pathways, which can be induced by ROS-mediated
DNA mutations [95, 96].

The interaction between antioxidants and cancer cells
can occur in at least three ways:

(i) Prevention: the ability of antioxidants to protect cells
from ROS-induced DNA damage is the basis of the
association of antioxidants with cancer prevention
[97–99]

(ii) Protects against chemotherapy toxicity: chemother-
apy commonly increases the production of ROS,
which induces oxidative stress in cancer cells and
other tissues. Excessive ROS may cause a disruption
in cellular homeostasis, which can lead to toxicity.
Therefore, to improve the clinical response to che-
motherapy, combination approaches with antioxi-
dants are being investigated by providing protection
against toxic side effects [100, 101]

(iii) New anticancer molecules: recent evidence has sug-
gested that antioxidants can also be used to eliminate
cancer cells. Over the last few decades, antioxidant
extracts from medicinal plants have shown a great
cytotoxic potential [102, 103]

4. Cell Death Pathway in Cancer Cells

Currently, cell death continues to be considered a complex
process that results in a variety of pathways [104–106]. The
fact that cells die through different death pathways and that
cancer cells can be resistant to each cell death signalling path-
way is a relevant aspect in the development of new drugs for
anticancer therapy [107, 108]. To date, knowledge of the cell
death pathway induced by medicinal plants from the Cerrado
is still scarce [109, 110].

4.1. Classical Cell Death. Apoptosis is a regulated and con-
trolled process accompanied by a series of hallmarks,
including cell shrinkage, chromatin condensation, DNA
fragmentation, and apoptotic body formation, which is
dependent on the activation of a protease enzyme family
called caspases [111, 112]. In apoptosis, a change in the
membrane of the cell marks the cell for recognition and
phagocytosis by macrophages [113, 114].

Despite the modulation of apoptosis by drugs in cancer
cells, the activation of the intrinsic pathway is a critical step
[109, 115]. In response to insults, the opening of pores occurs
in the mitochondrial membrane and the release of proapop-
totic factors, such as cytochrome c, then forms an apopto-
some complex in the cytosol together with the apoptosis
inductor factor and pro-caspase-9, leading to caspase-9
activation. Caspase-9 then activates effector caspases such as
caspase-3, resulting in the cleavage of several cellular targets
involved in all aspects of apoptosis. The release of proapopto-
tic factors from mitochondria is regulated by proapoptotic
(BAX) and antiapoptotic (Bcl-2) proteins [116–118].

In addition to the Bcl-2 family, the intrinsic pathway
can also be modulated by intracellular calcium [119–121]
and the ROS generated by mitochondria [71, 72, 122].
The ROS generated by mitochondria, or elsewhere in the
cells, can activate p53, which activates proapoptotic Bcl-2
proteins that can inhibit the functions of antiapoptotic
proteins [71, 122–124]. Moreover, ROS cause mitochondrial
membrane depolarization and/or open Bax/Bak channels on
the mitochondrial membrane, which allows for the release of
apoptosis-inducing factor, endonuclease G, cytochrome c,
and Smac/Diablo into the cytosol [72, 124]. Furthermore,
the perturbation of intracellular Ca2+ homeostasis is also
associated with cell death. Endoplasmic reticulum stress
responses can induce lesions that affect membrane integrity
and the release of Ca2+ [120, 121, 125]. Following Ca2+ efflux
into the cytoplasm, the proapoptotic proteins Bak and Bax,
which are located in both the reticulum and mitochondria,
may be delivered to the cytosol. Calcium overload can induce
mitochondrial dysfunction and cell death accompanied by
membrane rupture, a process called necrosis [119, 125].

4.2. Alternative Cell Death Pathway. For several decades,
apoptosis was depicted as programmed cell death in malig-
nant and healthy cells and as a pivotal target for new thera-
pies. Recently, other forms of cell death have also been
increasingly noted [111, 126]. Discovering novel therapeutic
strategies that may induce alternative cell death pathways
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appears to be especially useful for opposing malignant cell
resistance to caspase-dependent apoptosis [127].

Necroptosis is a form of necrosis that occurs under
caspase-deficient conditions [128, 129].At themolecular level,
necroptosis depends on the activation of serine/threonine
receptor-interacting protein kinases 1 and 3 (RIPK1 and
RIPK3)bydeath receptor ligands,which leads to theactivation
of mixed lineage kinase domain-like pseudokinase (MLKL)
[130–132], allowing for a cascade of intracellular events
involving Ca2+ influx, ROS production, and membrane rup-
ture [133]. Moreover, accumulating evidence has shown that
necroptosis promotes an anticancer immune response [134].

Lysosome-dependent cell death is initiated by pertur-
bations of intracellular homeostasis and is demarcated by
the permeabilization of lysosomal membranes [135–137].
Upon lysosomal stress, lysosome-dependent cell death
proceeds through membrane permeabilization, resulting
in the release of proteolytic enzymes from the cathepsin
family to the cytoplasm, which activates death signalling
pathways. More commonly, ROS play a prominent causal
role in lysosomal permeabilization. The production of
hydroxyl radicals by Fenton reactions destabilizes the
lysosomal membrane upon lipid peroxidation, but an
increase in cytoplasmic Ca2+ is also a key regulator repor-
tedly involved in the activation of lysosomal cell death
[138, 139]. Moreover, lysosomal dysregulation may be
associated with alterations in autophagy and the role of
ROS in homeostasis and cell death [137]. Autophagy is a
self-digestive process that involves lysosomal fusion to
degrade unnecessary or dysfunctional cellular components
[140]. The role of autophagy in cancer is controversial;
thus, the modulation of autophagy depends on each sub-
type of malignant cells and an improved understanding
of this pathway in the cancer environment [141].

5. Cell Death Profile Induced by Plants from
the Cerrado

Several reports from our group [16–19] have demonstrated
the potential anticancer properties of medicinal Cerrado
plants. Assessing the cell death profile induced by these
extracts, through cell death inhibitors and/or caspase
detection indicated the involvement of different cell death
pathways for each plant extract. For example, many stud-
ies have demonstrated the antitumour potential of plant
extracts through caspase-independent cell death, including
H. speciosa [20] and J. decurrens [19], while others such as
C. adamantium [17], S. velutina [18], and S. adstringens
[16] killed malignant haematologic cells or melanoma cells
through apoptosis (Figure 1 and Table 2).

Campos et al. [18] studied the effect of an extract from
the leaves of S. velutina in two leukaemia cell lines: Jurkat
cells, acute T cell leukaemia cells, and K562, Philadelphia
chromosome-positive cells. Jurkat cells were found to be
more sensitive to the cytotoxic effect of S. velutina than
K562 cells, and this effect was accompanied by caspase-3 acti-
vation, mitochondrial depolarization, and cell cycle arrest at
the S and G2 phases. Furthermore, these features were
reversed by chelation of calcium, demonstrating the
involvement of calcium as the main regulator of cell death
mediated by S. velutina. Castro et al. [142] evaluated the
effect of an extract from the roots of S. velutina on a mel-
anoma cell line B16F10-Nex2 and also evaluated the anti-
metastatic effect of this extract using models of tumour
volume progression and pulmonary nodule formation in
C57Bl/6 mice. The extract reduced cell viability and pro-
moted apoptotic cell death, caspase-3 activation, with
increased intracellular calcium and ROS levels, and cell cycle
arrest at the sub-G0/G1 phase. In vivo, the tumour volume

Apoptosis

Lysosome

Cathepsin
release

Lysosome permeabilization

Necroptosis

RIP3
RIP1 MLKL

Necroptosome
formation

Caspase 3 activation

Mitochondria

Mitochondrial permeabilization

I: S. velutina
II: C. adamantium

IV I, II, III I, IV, V

III: S. adstringens
IV: H. speciosa

V: J. mimosifolia

ROS Ca2+

Cytochrome c
        release

Figure 1: Cell death profile induced by extracts and/or compounds from medicinal plants of Cerrado.
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progression and pulmonary metastasis of S. velutina-treated
mice decreased by over 50%. Taken together, these results
show that S. velutina had in vitro and in vivo antitumour
effects, predominantly through apoptosis, thus demonstrat-
ing its promising potential as a therapeutic agent in the treat-
ment of melanoma, leukaemia, and possibly other types of
cancer.

Other studies have identified the in vitro antiproliferative
activity of the extract from leaves of C. adamantium in many
cell lineages, including murine melanoma cells (B16-F10)
[143], prostate cancer cells (PC-3) [144], breast adenocarci-
noma cells (MCF-7), cervical adenocarcinoma cells (HeLa),
and glioblastoma cells (M059J) [145]. However, none of
these studies evaluated the cell death profile induced by
extract of C. adamantium. In another study, Campos
et al. [17] studied the cell death profile induced in Jurkat
cells by an extract prepared from the leaves and roots of
C. adamantium. A dose-dependent inhibition of viability
occurred in cells incubated with the leaves and roots of
C. adamantium. This effect was dependent on the accu-
mulation of cytosolic Ca2+ and on cell cycle arrest at the
S phase. In addition, the cell death induced by extracts
was likely mediated by the intrinsic apoptotic pathway, since
both extracts induced the activation of caspase-9 and
caspase-3, and cell death was reversed after incubation with
a general caspase inhibitor.

Baldivia et al. [16] found a similar profile of cell death in a
study evaluating the effect of a hydroethanolic extract of the
stem bark from S. adstringens on the melanoma cell line
B16. S. adstringens increased the production of ROS, which
may have induced the disruption in mitochondrial mem-
brane potential that caused the apoptotic cell death observed
in melanoma cells. These in vitro experiments demonstrated
that S. adstringens is a potent cytotoxic extract that induces
apoptosis-mediated cell death [16]. Kaplum et al. [146]
investigated the in vitro anticancer activity of a proanthocya-
nidin polymer-rich fraction of the stem bark from S. adstrin-
gens (extracted in acetone :water) in cervical cancer cell lines,
including HeLa (HPV18-positive), SiHa (HPV16-positive),
and C33A (HPV-negative) cells, and evaluated in vivo
anticancer activity. HeLa and SiHa cells treated with the
extract exhibited intense oxidative stress, mitochondrial
damage, and increased Bax/BCL-2 ratio and caspase-9 and
caspase-3 expression. The inhibition of ROS production by
N-acetylcysteine significantly suppressed oxidative stress in
both cell lines. In vivo, the extract significantly reduced
tumour volume and weight of Ehrlich solid tumours and sig-
nificantly increased lipoperoxidation, indicating that it also
induced oxidative stress in the in vivo model. These findings
indicate that the proanthocyanidin polymer-rich fraction of
S. adstringens may be a potential chemotherapeutic candi-
date for cancer treatment. Sabino et al. [147] investigated
the in vitro anticancer activity of a fraction isolated from an
aqueous leaf extract of S. adstringens in breast cancer cell
lines. The fraction was cytotoxic against two human breast
cancer cell lines: the estrogen receptor-positive cell line
MCF-7 and the triple-negative cell line MDA-MB-435.
Treatment with the fraction increased the expression of
Bax, caspase-9, active caspase-3, caspase-8, LC-3, and

beclin-1 and decreased the expression of Bcl-2, caspase-3,
and pro-caspase-8 in cancer cells. Taken together, these
results show that S. adstringens had in vitro and in vivo
antitumour effects, predominantly through apoptosis, thus
demonstrating its promising potential as a therapeutic agent
in the treatment of melanoma, cervical cancer, breast cancer,
and possibly other types of cancer.

Despite the benefits of the pharmacological cancer
therapies, the high toxicity of chemotherapeutic drugs is
one of the main identified problems. Importantly, in this
context, S. adstringens and C. adamantium show less
toxicity against healthy normal cells and peripheral blood
mononuclear cells (PBMCs) than tumour cells. In parti-
cular, extracts made from the leaves of C. adamantium
did not change the viability of PBMCs at the evaluated
concentrations but exhibited an IC50 of 40 μg/mL in
Jurkat cells. Although there was a cytotoxic effect of S.
adstringens on PBMCs, this effect only occurred at the
highest concentration evaluated (≥200μg/mL), which is
comparable to the IC50 (65μg/mL) exhibited against B16
cells, suggesting a high therapeutic index. These experi-
ments indicate that these plants show selective effects against
cancer cells and possibly do not confer any toxicity to healthy
normal cells. New targeted therapies with low toxicity and
limited side effects are promising for the development of
new anticancer agents [148].

Dos Santos et al. [46] evaluated the cell death profile of an
extract from H. speciosa in an acute myeloid leukaemia cell
line, Kasumi-1. The extract from H. speciosa promoted
caspase-independent apoptosis because the pancaspase
inhibitor did not inhibit the cytotoxic activity of these
extracts. This extract killed Kasumi-1 through the involve-
ment of cathepsins and necroptosis and consequently, an
alternative pathway of cell death. Cell signalization depen-
dent on lysosomal degradation remains not yet understood,
and it seems to modulate autophagic flux [137]. Thus, addi-
tional studies evaluating the modulation of autophagic flux
mediated by H. speciosa are desirable.

Casagrande et al. [19] evaluated the cell death profile
induced by extracts from J. decurrens in K562 erythroleukae-
mia cells. These researchers found concentration-dependent
cytotoxic activity against the malignant cells studied, which
occurred through late apoptosis and necrosis, the activation
of caspase-3, and a decrease in mitochondrial membrane
potential. Clinically, this cell death pathway (necrosis and
necroptosis) is promising for the development of new anti-
cancer compounds against malignant cells resistant to apo-
ptosis [149, 150]. Moreover, accumulating evidence has
shown that necroptosis promotes an anticancer immune
response [134]. The great potential of necroptosis induced
by H. speciosa and J. decurrens suggests further evaluation
of the immunogenicity capacity of these medicinal plants.

Many phenolic compounds derived from Cerrado plants
have demonstrated potential anticancer properties. At high
concentrations, the phenolic compounds can act as prooxi-
dants and impair the redox balance of malignant cells
[151–155]. Gallic acid is a phenolic compound found in both
C. adamantium and S. adstringens. Gallic acid induces
death in various cell lines via the intrinsic apoptotic pathway
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[79–81]. S. velutina also has a large number of phenolic com-
pounds; specifically, the phytochemical analysis of roots
identified flavonoid-like molecules, such as epigallocatechin,
epicatechin, rutin, kaempferol glycosides, and dimeric and
trimeric proanthocyanidins [18], and identified the main
compounds to be the flavonoid derivatives of catechin and
piceatannol (active metabolite of resveratrol) groups and
dimeric tetrahydroanthracene derivatives [142].

Accordingly, several flavonoids, such as luteolin, jacar-
anone, triterpenes, ursolic acid, and oleanolic acid, have
been identified in the genus Jacaranda and their cytotoxic
activities have been described [155–158]. Further studies
to isolate and identify the compounds in the medicinal plants
H. speciosa, J. decurrens, S. velutina, C. adamantium, and
S. adstringens and clinical trials to study these extracts
and/or isolated compounds have potential to facilitate the
development of alternative therapeutic strategies and the
design and selection of new drugs for cancer therapy.

6. Protection against Chemical Toxicity by
Plants from the Cerrado

Chemotherapy commonly increases the production of ROS,
which induces oxidative stress in cancer cells and other
tissues [160, 161]. Excessive ROS may disrupt cellular
homeostasis, leading to toxicity [162–164]. In fact, after
chemotherapy treatment, oncology patients exhibit signs
of lipid peroxidation in plasma, reduced levels of antioxidant
vitamins in the blood, and decreased levels of GSH in tissues
[165]. For example, drugs such as taxanes (paclitaxel and
docetaxel) and vinca alkaloids (vincristine and vinblastine)
induce cell death by cytochrome c release from mitochondria
and interfering with the electron transport chain, resulting in
the production of superoxide radicals [166]. Other drugs,
such as anthracyclines (for example, doxorubicin), also
generate extremely high ROS levels [167].

Combinatory approaches with antioxidants can protect
the health tissues against toxic side effects, improving the
clinical response of chemotherapy [164, 168–170]. Regard-
less of the role of plant antioxidants from the Cerrado in che-
motherapy, two recent studies evaluated the effect of
doxorubicin on chemotherapy using in vitro and in vivo
models. Dos Santos et al. [22] evaluated the capacity of
G. ulmifolia extract to protect against doxorubicin injury
in vitro and in vivo. The oxidative stress markers in human
erythrocytes exposed to doxorubicin, including haemolysis
and MDA, were reduced by the combined use of G. ulmifolia
extract and doxorubicin. G. ulmifolia extract also induced
cardioprotection in rats treated with doxorubicin. G. ulmifo-
lia extract was able to prevent MDA production in the car-
diac tissue of animals treated with doxorubicin. Similarly,
Rocha et al. [21] described the potential of S. terebinthifolius
to protect against doxorubicin injury in vitro and in vivo. The
treatment of C57Bl/6 mice with a S. terebinthifolius leaf
extract protected against doxorubicin-induced cardiotoxi-
city, corroborating the results of the reduced oxidative
haemolysis in vitro. The cotreatment of doxorubicin with
G. ulmifolia or S. terebinthifolius did not attenuate cytotoxic-
ity in erythroleukaemic cells, confirming that these antioxi-

dants do not specifically interfere with the cytotoxic efficacy
of this anticancer agent. In conclusion, G. ulmifolia and
S. terebinthifolius have been found to be capable of protecting
against the damage caused by doxorubicin and can offer a
therapeutic opportunity for treating cancer.

Other studies have evaluated the antimutagenic potential
of some plants from the Cerrado. As discussed previously,
carcinogenesis initiation, progression, and promotion are
processes related to increased intracellular ROS. Martello
et al. [171] described the antimutagenic activities of
C. adamantium hydroethanolic extract in Swiss mice treated
with cyclophosphamide. When the extract was administered
in combination with cyclophosphamide, the micronucleus
frequency and apoptosis were reduced. Extract components
might affect cyclophosphamide metabolism, which possibly
leads to the increased clearance of this chemotherapeutic
agent. Thus, caution should be exercised when consuming
these extracts, especially when received in combination
with other drugs. de Oliveira et al. [172] investigated the
capacity of C. adamantium fruits to protect HepG2 cells
(hepatocytes) from carbon tetrachloride- (CCl4-) induced
toxicity. Carbon tetrachloride (CCl4) is a highly toxic chem-
ical that is used to investigate hepatotoxicity. Pretreatment
of HepG2 cells with pulp or peel/seed hydroalcoholic extract
significantly protected against the cytotoxicity induced by
CCl4. Additionally, the cells treated with both extracts (both
at 1000 μg/mL) showed normal morphology (general and
nuclear), in contrast to the apoptotic characteristics of the
cells only exposed to CCl4 [172].

In another study, using a similar model, Abdou et al.
[173] found that the administration of an ethanol extract
of leaves from S. terebinthifolius significantly protected
against CCl4 liver damage in Wistar rats. Interestingly, S.
terebinthifolius extract inhibited hepatocyte apoptosis as
revealed by an approximate 20-time downregulation in
caspase-3 expression compared with the CCl4-untreated
group. Endringer et al. [97] investigated the capacity of
H. speciosa to induce antioxidant response element (ARE)
activation in HepG2 cells transfected with ARE-luciferase
plasmid. ARE is a regulatory enhancer gene encoding pro-
tective proteins, including phase II detoxification enzymes
such as NAD(P)H:quinone oxidoreductase and antioxidant
enzymes such as glutathione (GSH) S-transferases (GST).
Extracts and fractions (methanol and methanol : water (1 : 1))
caused ARE induction.

7. Conclusion

The evidence discussed in this review indicates that the
medicinal plants from the Cerrado show antioxidant activity,
anticancer activity, and protective effects against chemical
toxicity. These plants are potential candidates for the identi-
fication of effective pharmacological compounds. Therefore,
the in vivo assay followed by clinical trials may provide clear
evidence on the potential benefits of these extracts and/or
isolated compounds and may facilitate the development of
alternative therapeutic strategies and the design and selection
of new drugs for cancer therapy.
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