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Skeletal muscle mass is subject to rapid changes according to growth stimuli inducing both hypertrophy, through increased protein
synthesis, and hyperplasia, activating the myogenic program. Muscle wasting, characteristic of several pathological states associated
with local or systemic inflammation, has been for long considered to rely on the alteration of myofiber intracellular pathways
regulated by both hormones and cytokines, eventually leading to impaired anabolism and increased protein breakdown. However,
there are increasing evidences that even alterations of the myogenic/regenerative program play a role in the onset of muscle wasting,
even though the precise mechanisms involved are far from being fully elucidated. The comprehension of the links potentially
occurring between impaired myogenesis and increased catabolism would allow the definition of effective strategies aimed at
counteracting muscle wasting. The first part of this review gives an overview of skeletal muscle intracellular pathways determining
fiber size, while the second part considers the cells and the regulatory pathways involved in the myogenic program. In both parts
are discussed the evidences supporting the role of inflammation in impairing muscle homeostasis and myogenesis, potentially

determining muscle atrophy.

1. Introduction

Skeletal muscle is the most abundant tissue in human body,
except in obese patients, and is involved in several physi-
ological functions. Indeed, glucose uptake and metabolism
take place primarily in the skeletal muscle, a tissue prone
to adaptation in size by means of both hypertrophy and
hyperplasia. The former relies on the regulation of protein
synthesis and degradation rates, while the latter involves the
myogenic process that is in charge of regulating myocyte
turnover as well as of supporting the rapid regeneration
following injury.

The counterpart of muscle hypertrophy is muscle atro-
phy, even defined as sarcopenia, that naturally occurs in
physiological conditions, such as aging [1]. Beyond aging,
muscle wasting is a feature associated with several patho-
logical states and chronic diseases such as immobilization
following fractures or bed rest, malnutrition, cancer, CHE,
CKD, COPD, burns, muscular dystrophies, AIDS, sepsis,

and immune disorders [2]. Muscle depletion has important
implications, exercise intolerance and inability to manage
daily activities that eventually translate into poor quality of
life. Most of the above mentioned pathological conditions
are associated with variable degrees of local and/or systemic
chronic inflammation, an element that could play a relevant
role in the onset of muscle wasting [2]. Indeed, inflammation
is considered one of the diagnostic hallmarks of cachexia, a
wasting condition that often occurs in chronic diseases [3].

The aim of this review is to summarize the evidences
supporting the role of inflammation, associated with several
illnesses, in impairing muscle homeostasis and myogenesis,
leading to muscle atrophy.

2. Muscle Homeostasis, Atrophy and
Hypertrophy Pathways

Skeletal muscle mass represents a determinant of phys-
ical performance, and muscle size varies according to
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physiological stimuli and pathological conditions that, in
turn, modulate the activation state of signaling pathways
involved in the control of protein turnover. Muscle atro-
phy occurs when the balance between protein degradation
and protein synthesis is poised towards degradation, lead-
ing to the loss of myofibrillar proteins and, consequently,
to reduced fiber cross section area, finally resulting in
impaired contraction ability and low force generation. Muscle
nitrogen balance is finely modulated by distinct agents,
both intrinsic (nutrient and energy availability, mechanical
stress) and extrinsic (humoral mediators: hormones and
cytokines). Moreover, muscle wasting, beyond the loss of
muscle mass, often determines a reduction of muscle quality,
that is, specific force, as reported in patients with CHF
[4] or cancer [5] or admitted to the intensive care unit
[6].

Protein breakdown in the skeletal muscle is mediated
by two main degradation systems, the ubiquitin-proteasome
and the autophagy pathways. The proteasome system pref-
erentially targets short-lived proteins, and several reports
considered the proteasome as the degradation machinery
mostly involved in wasting processes of distinct origin [7].

The autophagy system is in charge of degrading long-
lived proteins and organelles (mitophagy, pexophagy, etc.),
and recent observations suggest that, beyond the proteasome,
even autophagy plays a crucial role in muscle wasting [8]. In
addition to proteasome and autophagy dependent proteoly-
sis, intact myofilaments were postulated to undergo a prelim-
inary cleavage in order to be released from the myofibrils for
the subsequent ubiquitin dependent degradation, and such
activity was proposed to be carried out by calpains [9] or by
caspase-3 [10].

The observations reported above prompted the idea that
protein breakdown inhibition could be the right way to
prevent disease-associated muscle wasting. However, directly
targeting the different proteolytic systems is unlikely an
effective strategy. Indeed, proteasome inhibition proved
effective only in experimental muscle unloading [11], while
several reports show the detrimental effects of autophagy
suppression [12-14]. Reasonably, both defective and excessive
autophagy are deleterious by opposite mechanisms, namely,
the lack of damaged protein/organelle removal and the
exaggerated degradation, respectively. A distinct strategy in
order to reduce muscle protein breakdown would be to target
the muscle-specific ubiquitin ligases, since their activity
represents the limiting step in determining both substrate-
specificity and degradation rate. Since the beginning of
the 2000s, the discovery of muscle-specific E3 enzymes
and the characterization of their substrates have emerged
and are still growing. The first ones, MAFbx/atrogin-1 and
MuRFl/TRIM63 [15, 16], are actually the most commonly
used read-out measurements for the molecular assessment
of muscle protein catabolism, even though obvious limi-
tations are implied. Few years later, TRIM32 was shown
to target myofibrillar components [17], but its role seems
to be primarily related with muscular dystrophies rather
than wasting processes. The role of FBXO40, firstly char-
acterized in denervation-induced atrophy in 2007 [18], was
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then clearly established by the identification of IRS-1 as
substrate, thus defining a negative feedback on the anabolic
PI3K/Akt axis [19]. Finally, FBXO30/MUSALI was described
as a BMP-regulated gene required for denervation- and
fasting-mediated muscle loss [20]. However, investigations in
humans are still lacking and no evidence is actually available
in order to validate the use of ubiquitin ligases as therapeutic
targets for muscle wasting.

Muscle protein degradation systems are modulated by
a coordinated network of signaling pathways activated or
suppressed by hormones and cytokines (Figure 1). On one
hand, anabolic signals are activated by insulin, IGF-1, GH,
and androgens, while catabolism is stimulated by a variety
of proinflammatory cytokines as well as glucocorticoids
and ROS. IGF-1 promotes muscle hypertrophy, while low
IGF-1 circulating levels have been associated with several
muscle atrophy conditions [21]. IGF-1, and similarly insulin,
activates the PI3K/Akt pathway, which promotes protein
synthesis through mTOR and its downstream effectors,
mTORCI/2 complexes, not to mention that mTOR acti-
vation in the skeletal muscle results in autophagy inhibi-
tion [22], thus determining at the same time both protein
synthesis activation and inhibition of protein degradation.
Another IGF-1-mediated anticatabolic action is due to Akt
phosphorylation/inhibition of the FoxO transcription fac-
tor family, determining their inability to translocate to
the nucleus and promote the expression of the ubiquitin
ligases atrogin-1 and MuRF1 [23] and autophagy genes
[24].

Opposite to the IGF-1 pathway, one of the most relevant
inducer of muscle atrophy is myostatin, a member of the
TGE-f family. It signals through ACTRIIB, and recruiting
the transcription factors Smad2/3 leads to increased atrogin-
1 and MuRF1 mRNA levels [25]. The negative regulation
of muscle mass exerted by myostatin likely relies on the
suppression of Akt signaling [26].

In the complex network of signals relevant to muscle
homeostasis, the BMP pathway has been recently charac-
terized [20], showing that the downstream activation of
the transcription factors Smadl/5/8 regulates a fundamental
anabolic signal. In the same paper, the alternative activation
of either the myostatin or the BMP pathway, both competing
for Smad4 recruitment, was demonstrated. Indeed, BMP
inhibition reverts the hypertrophic phenotype of myostatin-
K.O. mice, suggesting that the balance between these signal
cascades is crucial for the modulation of muscle mass.

Finally, few signaling pathways, less characterized in the
skeletal muscle, displayed their relevance to muscle mass
regulation during wasting conditions. Histone deacetylases 4
and 5 were shown to abrogate Dach2 expression that in turn
lead to myogenin increase and ubiquitin ligase accumulation
[27]. Overexpression of ATF4 was sufficient to induce muscle
atrophy, regulating the expression of genes mainly related
to cell growth suppression [28]. Similar to ATF4 action, the
transcription factor and tumor suppressor p53 was able to
trigger muscle atrophy through the induction of the cyclin-
dependent kinase inhibitor p21 [29].
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FIGURE 1: Humoral mediators and associated pathways drive anabolic and catabolic responses in the skeletal muscle.

3. Inflammation Triggers Protein
Catabolism and Impairs the Anabolic
Response in the Skeletal Muscle

Loss of muscle mass, a common feature of chronic dis-
eases, is frequently associated with increased production
of proinflammatory cytokines such as TNF-«, IL-1, IL-6,
and IFN-y. For example, patients affected by chronic renal
or heart failure show increased circulating levels of TNF-
a and TNF soluble receptors [30, 31]. Similarly, several
proinflammatory cytokines are increased in cachectic cancer
patients (reviewed by [32]). Chronic inflammation may
depend on increased expression of proinflammatory medi-
ators but also on reduced levels of anti-inflammatory factors;
consistently, mice K.O. for IL-10, one of the best known anti-
inflammatory cytokines, display weakness and accelerated
muscle loss [33] that can be improved by treatment with
the anti-inflammatory, resveratrol rich, grape seed extract
[34]. In addition to cytokines, other factors are produced
during the inflammatory response, such as the so-called
acute phase proteins, markers of systemic inflammation. In

this regard, cancer cachexia and the acute phase response
appear to be correlated: the enhanced synthesis of acute
phase reactants in the liver has been proposed to drive
muscle protein hypercatabolism contributing to increase of
the resting energy expenditure [35]. Of interest, acute phase
proteins have been shown to be produced even by the skeletal
muscle itself [36].

Proinflammatory cytokines, together with altered home-
ostasis of classical hormones, put on a complex network
that results in inhibition of anabolic and/or anticatabolic
signals (see above), in favor of lipolysis and proteolysis.
In particular, proinflammatory cytokines are well known
to impinge on muscle protein metabolism. In this regard,
data obtained in both experimental models and human
pathology have demonstrated that systemic inflammation is
associated with reduced rates of protein synthesis paralleled
by enhanced protein breakdown, both accounting for the
loss of muscle mass. However, the precise mechanism by
which inflammation modulates protein turnover rates is still
poorly investigated. Data obtained in clinical studies show
a variegated situation: both rates are markedly increased



in severely burned patients, with the balance remaining in
favor of degradation [37]; synthesis rates are maintained in
face of enhanced degradation rates in critically ill septic
subjects [38], while in cancer patients with cachexia, protein
turnover rates have been described as increased, decreased,
or unchanged (reviewed in [39]).

The regulation of muscle protein metabolism by humoral
factors is widely accepted. In this regard, the activity of
both proteasome and lysosomes, the two proteolytic systems
mainly involved in muscle depletion, is known to be affected
by the hormonal and cytokine milieu. As an example, healthy
animals exposed to proinflammatory cytokines such as TNF-
a, IL-1, or IL-6 develop muscle wasting associated with
increase of both ubiquitin expression and proteasome enzy-
matic activity (reviewed in [40]). Consistently, few studies
demonstrated in the past that cytokines play a crucial role
in the onset of muscle wasting. Indeed, muscle depletion,
enhanced protein breakdown, and increased ubiquitin can
be prevented by treating tumor-bearing animals with anti-
bodies directed against IL-6, TNF-a, or IFN-y [41-43].
Proinflammatory cytokines contribute to muscle wasting also
in chronic diseases of noncancer origin. Indeed, increased
circulating levels of TNF-«, IL-1, and IL-6 in sepsis appear
to be correlated with disease severity and lethality. Simi-
larly, the proinflammatory shift occurring in AIDS patients
likely accounts for muscle protein hypercatabolism, a feature
frequently reported in these patients before the adoption
of combined antiretroviral therapy [44]. A recent report
shows that muscle wasting in diabetic rats is associated with
enhanced expression of TNF-q, IL-1, and IL-6 in the skeletal
muscle and that such increase can be corrected by exercise
training [45]. Finally, also sarcopenia and the loss of muscle
quality that characterize aging are associated with high levels
of proinflammatory mediators [46, 47].

The effects exerted by proinflammatory cytokines on
muscle mass are mediated, partially at least, by activating
the transcription factor NF-xB. The transcriptional activity is
regulated by the phosphorylation and consequent degrada-
tion of the inhibitor Ix-Ba, allowing the positive regulation
of MuRF1 [48] and other atrophy related genes, including
the inducible nitric oxide synthase [49]. Studies performed
on experimental models suggest that the NF-«B signaling
is activated in skeletal muscle during cancer cachexia, and
recently modulations of this transcription factor have been
observed in gastric and lung cancer patients [50, 51], as well
as in experimental models [52]. Another protein related to
the TNF-« cascade, TRAF6, was shown to coordinate the
activation of both proteasome and autophagy [53].

Among proinflammatory cytokines, TWEAK has been
shown to induce muscle wasting mainly by stimulating
proteasome-dependent proteolysis [54]. TWEAK-induced
downregulation of both PGC-1« expression and mitochon-
drial biogenesis has been proposed to mediate the effects
on muscle mass. Indeed, PGCla hyperexpression protects
against TWEAK-induced effects such as NF-«B activation,
increased ubiquitin ligase levels, and muscle wasting [55]. In
addition, several cytokines act on the JAK/STAT pathway, and
muscle STAT3 was demonstrated to induce atrogin-1[33] and
to block autophagy, leading to muscle degeneration [34].
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Proinflammatory cytokines act on muscle protein
metabolism not only by activating catabolic pathways, but
also by downregulating the anabolic ones. As an example,
lipopolysaccharide-induced muscle wasting is associated
with increased circulating levels of TNF-o and IL-1 that
lead to inhibition of the Akt/mTOR signal transduction
pathway [56, 57]. In this regard, treatments able to restore
Akt physiological activity appear to counteract TNF«-
induced wasting [58, 59]. Recent observations show that
cancer cachexia occurring in the Apc (Min/+) mice also
depends on the inhibition of mTOR activation due to the
high circulating IL-6 levels [60]. The antianabolic action
of proinflammatory cytokines is partially exerted through
interactions with the IGF-1-dependent signaling pathway.
Indeed, TNF-« leads to serine phosphorylation of IRS-1,
inhibiting its recruitment to the insulin/IGF-1 receptor.
TNF-a can impinge on the insulin/IGF-1 signaling via
direct interaction between the IKK complexes and IRS-1.
Alternatively, TNFa-induced activation of JNK may play a
role, as shown by the observation that the downregulation
of the IGF-1-dependent signaling exerted by the cytokine
does not occur in the presence of a JNK inhibitor (reviewed
in [61]). Finally, proinflammatory cytokines may modulate
anabolism also by inducing leucine-resistance, resulting
in decreased mTOR phosphorylation and reduced protein
synthesis [62].

4. Adult Myogenesis: Satellite Cells
and Adult Stem Cells

In addition to modulations of protein synthesis and break-
down rates, several reports in the last years suggest that
also alterations of the myogenic response may play a role
in the maintenance of skeletal muscle mass in the adult,
in both physiological and pathological states. Myogenesis is
the process that guarantees the generation of myoblasts to
give rise to skeletal muscle tissue. Embryonic myogenesis
is definitely better understood thanks to the extensive work
of developmental biologists that generate important genetic
tools to establish the exact hierarchical activations of skeletal
muscle transcription factors triggering the early embryonic
process. In the adulthood, the situation is more complicated
since those genetic tools are not sufficient to identify the
major key players involved in adult myogenesis. Skeletal
muscle injuries are extremely common and mainly caused by
intensive muscle exercise, trauma, laceration, burns, freezing,
and toxin exposure (the latter are also commonly used in
experimental models of muscle regeneration). These insults
result in muscle injury that determines a diffuse degeneration
followed by the induction of regeneration. However, the
characteristics of regeneration have been shown to differ
according to the type of injury; thus a direct comparison of
the results obtained in various studies is extremely difficult.

When skeletal muscle is damaged, muscular fiber degen-
eration is compensated by the regeneration of new fibers
formed at the expense of resident myogenic satellite cells
localized underneath the basal lamina of muscle fibers [63].
Each degeneration process is followed by a new regenerative
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cycle. Skeletal muscle regeneration is mainly sustained by
SCs [64, 65] and this is critical for chronic muscle diseases
including muscular dystrophies. In MDs, dystrophic SCs
share the same molecular defect and the newly formed fibers
during regeneration cycle are susceptible to degeneration.
With time, the reservoir of satellite cells is totally consumed
and the muscle tissue is progressively replaced by connective
tissue. In the adulthood, skeletal muscle represents half of the
body weight, and SCs are able to maintain their functionality
thanks to the generation of muscle precursor cells able to
proliferate and, upon fusion, to generate new fibers. All trunk
and limb muscle source cells are originated from embryonic
somite source, with exception of the head muscle [66]. Pax3
precursors were identified in the embryonic dorsal aorta; they
are able to give rise to both smooth and skeletal muscle cells,
suggesting a common origin in the two muscle lineages [67].
Oxidative-slow muscles contain a relatively high number
of SCs, up to six times more than fast-glycolytic muscles
[68]. SCs can be easily isolated after enzymatic digestion
and/or physical trituration [69] or by FACS for specific
surface markers including CXCR4, fSl-integrin, Sca-1, M-
cadherin, Syndecan-4, Notch-1, and NCAM/CD56 [70-72].
It is relevant to note that SC myogenic potential seems to be
diverse according to the markers considered for cell sorting,
thus revealing heterogeneity in SC populations. Pax7 is a
transcription factor considered as a biomarker for quiescent
and proliferating SCs [73], while Jagged-1 is considered a
marker of activated SCs [74]. The expression of Pax7, NCAM,
and c-Met has been shown also in human SCs. Numb is
an inhibitor of the Notch signaling but also a cell fate
determinant and was found asymmetrically distributed in a
SC subpopulation, suggesting that only a small subset of SCs
retains the stem cell characteristic and undergoes asymmetric
division [75]. There are still pending questions regarding
SC isolation and characterization. Although encouraging
results have been obtained in preclinical [76, 77] and clinical
[78] studies, the use of SCs for the treatment of muscle
degeneration is hampered by the inability of SCs to pass the
endothelial barrier when injected systemically. Further work
is needed to confirm and improve the therapeutic efficiency
of SC autologous injection for skeletal muscle degeneration.

Bone marrow cells, including MSCs, blood, and muscle-
derived CDI133" and SP cells, have been also implicated
in skeletal muscle regeneration [79]. Several studies have
demonstrated that MSCs are incorporated into regenerating
skeletal muscle fibers. However, in some cases, engrafted cells
failed to express skeletal muscle proteins, suggesting that
under standard conditions they fuse rather than differentiate
to skeletal muscle potency. In other cases, results have
been more encouraging. In bone marrow and peripheral
blood, stem cells characterized by the expression of the
CD133 antigen are present and have been shown to give rise
to dystrophin-positive fibers following their intramuscular
transplantation [79].

SP cells are referred to as a small subpopulation of stem
cells able to exclude Hoechst 33342 dye and participate to
adult myogenesis [80]. Related to the SP populations are the
CD34%/CD45" cells, known as Sk-34 cells that are apparently
derived from CD347/CD45", named Sk-DN cells [81]. Being

different from the other myogenic stem cells, they still retain
the ability to differentiate into vascular cells, including peri-
cyte, endothelial cell, and smooth muscle cells and peripheral
nerve cells as Schwann and perineurial cells [82]. Interstitial
Cajal-like cells or telocytes are recently discovered c-Kit cells
type populating the muscle interstitium [83]. These cells own
a small body (9-15um) and a certain number of telopodes
organized in network to maintain tissue homeostasis and
renewal through exosome delivery.

In the interstitium among the fibers are usually present
several cell types that were also showed to contribute to
adult myogenesis. Whether these cells are missing or altered
in pathological muscles and their origins are still heavily
debated. These cell types include FAPs, Tcf/L2" cells, and
Pwl" cells. Emerging evidences highlight that intramuscular
adipocytes and fibrocytes are the differentiated stages of
FAPs [84-86]. FAPs are isolated as CD34"/Sca-1" [84] or
as Sca-17/CD140a" [85] and they are able to differentiate
into myoblasts. These cells mediate the ability of HDAC
inhibitors to promote skeletal muscle regeneration in mdx
mice, animal model for DMD [86]. The key cytokines and
growth factors responsible for their paracrine positive effects
are still under investigation, and more information regarding
the human counterparts is necessary for translational clinical
implications. In murine models were identified a particular
class of fibroblasts expressing the transcription factor 7-like
2 (Tcf/L2 or Tcf4, [87]). These Tcf4™ fibroblasts present in
the connective tissue seem also to regulate muscle fiber
generation and as such they could be directly related to
FAPs. Pwl is a zinc-finger-containing transcription factor
expressed in myoblasts, and it seems as an important marker
for myogenic progenitor cells since postnatal muscle growth
is severely impaired in mice lacking Pwl in myogenic lineages
(88].

Muscle-derived stem cells are also identified in the skele-
tal muscle interstitium based on the expression of Flkl, Sca-
1, and desmin. Since they are able to differentiate into myo-
genic, adipogenic, osteogenic, chondrogenic [89], and even
hematopoietic [90] lineages, they are strictly associated with
mesoangioblasts and Pwl positive cells although comparative
studies are still missing.

Noncanonical progenitors of mesodermal tissues were
originally isolated from murine dorsal aorta and for their
multipotent characteristic to give rise to mesodermal cell
types in vitro and in vivo they were mesoangioblasts
[91]. MABs express CD34/c-Kit/Flk-1 but are negative
for NKX2.5/Myf5/Oct4 [92] and are able to give rise
to multiple mesodermal lineages in vitro and in vivo
[93]. In the adult muscles, MABs are usually isolated
and cloned using their pericyte markers, alkaline phos-
phatase, Sca-1, NG2 proteoglycan, CD140a, and CD140b
[94-99]. MABs are able to differentiate into myogenic,
osteogenic, chondrogenic, and adipogenic lineages [97,
98]. Also human MABs display pericyte markers, as
CD146/CD140bl/NG2, but are negative for hematopoietic or
SC markers CD45 /CD34™/CD56 /CD144™ /Pax7~ [96,100].
Since a few markers are shared between human pericytes
and MSCs (CD10/CD13/CD44/CD73/CD90), the origin and
the interaction between those multipotent stem cells are



still matter of debate [100, 101]. Interestingly, a comparison
among MSCs, MABs, and multipotent adult progenitor cells
resulted in specific differention/functional properties that can
be partially converted in vitro by culture conditions [102]. In
addition, Notch signaling seems to have a primary role in
modulating the myogenic potential of MSCs and MABs [99].

Stem cell biology in adult myogenesis is a very active and
fast moving field, and probably some redundancies in stem
cell type and function observed here will be explained with
further comparative studies. There is a clear need for more
basic research to better understand the interconnected roles
of stem cells in skeletal muscle regeneration and to explore
the integration of signaling pathways such as Notch and BMP.
This new information not only will improve our understand-
ing of the adult myogenesis process but also in principle could
reveal potential therapies for the enhancement of tissue repair
in acute and chronic skeletal muscle degenerations.

5. Inflammation Interferes with
the Myogenic Program

Changes in cellular composition of muscle microenviron-
ment are crucial for metabolic modifications occurring dur-
ing both acute damage with consequent muscle regeneration
and chronic degeneration. Overall, the pathophysiological
alterations occurring during the onset and the progression
of muscle diseases highlight the complexity of the possi-
ble interactions among muscle resident/recruited cells and
immunological mediators (Figure 2). The modulation that
takes place during acute events, such as muscle trauma
inducing regeneration after temporary atrophic conditions, is
different from the one occurring during chronic events, such
as long lasting inflammatory processes affecting muscle dur-
ing genetic diseases (MDs or myopathies), cancer-induced
muscle atrophy, and sarcopenia.

The inflammatory process during trauma or fractures is a
controlled and finely regulated event that through different
and defined stages can ensure a complete and efficient
reconstruction of muscle fibers. The process begins with
the release of chemoattractant molecules like desmin [103]
but also heat shock proteins and HMGBI among many
others, responsible for local activation of the innate immune
response and comprehensively recognized as damage asso-
ciated molecular patterns [104]. Muscle injury is usually
followed by a local increase in myeloperoxidase activity that
reflects neutrophils activation. Their contribution to skeletal
muscle regeneration and myofiber remodeling relies on the
oxidative and proteolytic modification of damaged tissue,
to allow phagocytosis of cellular and matrix debris [105].
Interestingly, targeted ablation of CDI1b" cells (including
neutrophils and monocytes/macrophages) reduces muscle
fiber repair after muscle injury [106]. Moreover, neutrophils
release proinflammatory cytokines such as TNF-a, IL-1f3,
IFN-y, TGF-f1, and IL-12 that reach a peak of concentration
24h after injury [107] and can modulate the regenerative
process in skeletal muscle [108]. Recent findings show that
IL-4 production mainly due to eosinophils could play a role
during early stages of muscle regeneration [109]. Coherently,
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muscle cells lacking IL-4 or its receptor show impaired
myotube formation [110].

Myogenic cells attract monocytes from the blood stream
to their location next to capillaries [111]. Indeed, this priv-
ileged position could be the reason for easy access and
activation through chemotactic molecules such as MCP-
1, macrophage-derived chemokine, fractalkine (CXCLL),
VEGE and the urokinase system [112]. However, in vivo
studies have reported that monocytes/macrophages recruited
into skeletal muscle after injury could come from the con-
nective tissue surrounding muscle/epimysium, where these
cells accumulate before invading muscle tissue in the site of
damage.

Notably, already twenty years ago, some studies reported
that the activation of M1 macrophages (CD68™#"/CD1637)
at days 1-2 after injury was concomitant to activation
and proliferation of SCs. By contrast, M2 macrophages
(CD68'°"/CD163") reach the peak of concentration closely to
the surface of regenerating myofibers just 4 days after injury,
when muscle differentiation is starting [113]. Consistently,
different in vitro studies showed that SCs increase their
proliferation rates when cocultured with M1 macrophages
[114], while they enhance both their fusion index and myo-
genin expression in the presence of M2 cells [106]. Muscle
regeneration in mice induced by cardiotoxin injection was
impaired after treatment with neutralizing antibodies against
Macrophage Colony Stimulating Factor, a cytokine able to
activate macrophages [115]. M1 to M2 transition, timing, and
correct sequence have been demonstrated to be essential
for both resolution of inflammation and myofiber repair.
Indeed, IL-10 administration after muscle injury leads to M1
disruption and M2 promotion, resulting in reduced myofiber
growth and regeneration [116]. Ablation of IL-10 in vivo
can disturb the transition from M1 to M2 macrophages and
decrease fiber growth. When cocultures of muscle cells with
macrophages activated through IL-10 to the M2 phenotype
are stimulated to proliferate, no effect on MyoD or myo-
genin expression is observed, showing that M2 macrophages
promote the early, proliferative stage of myogenesis [117].
Anyway, the window where IL-10 can promote regeneration
is short and if not respected can induce a delay in myogenic
program [116, 118]. Moreover, macrophage-derived IL-10
seems as well able to promote skeletal muscle differentiation
of MABs, vessel derived myogenic precursors, and IL-10
antibodies can effectively decrease the capabilities of these
cells to participate in myofiber commitment [118].

As IL-10, other mediators such as TNF-« and IFN-y
are produced in the muscle microenvironment and play a
role during muscle myogenesis. As an example, TNF-« can
impair regeneration, keeping SCs in the proliferation stage
and inhibiting differentiation, mainly by acting on NF-«xB
and MyoD [119, 120]. However, a second important role for
TNF-« is related to myofiber release of activin-A through
both NF-«B and p38 MAPK, activating the phosphorylation
of SMAD2/3 to inhibit SC differentiation and fusion [121]. M1
macrophages produce high levels of activin-A that, in vitro,
can act both on the further polarization of M1 macrophages
and on the inhibition of anti-inflammatory IL-10 release
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FIGURE 2: Secreted molecules and paracrine effects from resident and circulating cells involved in skeletal muscle inflammation.

from M2 cells [122]. Suppression of p38 MAPK signaling is
usually followed by Th2 cytokine elevation (IL-10 and TGF-
B), suggesting the switch in macrophage phenotype during
skeletal muscles regeneration [116].

The mechanisms through which IFN-y can directly
influence muscle regeneration are still poorly understood
and, so far, the knowledge is limited to some in vitro data,
reporting a delay in proliferation, impaired fusion, and
low expression of terminally differentiation markers when
this cytokine is added to myoblasts cultures [123-125]. All
of these data confirm the vision of skeletal muscle as an
endocrine organ able to secrete specific myokines endowed
with both paracrine and endocrine functions [126]. Indeed,
leukemia inhibitory factor [127] and IL-15 [128] are usually
mentioned among the paracrine effectors, while myokines,
such as myonectin [129], IL-6 [130], irisin [131], calprotectin
[132], and oncostatin M [133], once secreted from muscle
tissue, especially during contraction but also in pathologic
conditions, are able to induce anti-inflammatory cytokines
(IL-1 receptor antagonist and IL-10 [134]).

Despite a transient and finely tuned activation of the
inflammatory system required to sustain muscle repair after

injury, chronic inflammation can be deleterious, driving
uncontrolled wound healing and fibrosis, as well as triggering
muscle wasting. For these reasons, systemic administration of
immune-modulators can reveal beneficial effects, particularly
in the case of anti-inflammatory drugs able to reduce Ml-
macrophages, as shown, for example, in DMD patients [135].
Interestingly, treatment with cyclosporin A, well-known
immunosuppressant drug, was found to have multiple bene-
ficial effects on the myopathic and mitochondrial phenotype
of collagen VT al-null mice, recovering muscle strength and,
recently also, increasing Pax7" pool and stimulating the
formation of new myofibers [136-138]. This effect may be
exerted through an indirect regulation of the inflammatory
state that occurs during muscle regeneration [139]. All of
these findings have been as well supported by the increased
muscle regeneration observed in Ullrich patients undergoing
CsA treatment, pointing on one side to immunosuppressive
drugs as potent inducer of myogenesis and on the other
side underlining the involvement of immune system with
myogenesis, at least for these myopathies. Administration of
neutralizing antibodies against TNF-« to mdx mice reduced
p38-dependent inflammation, increased Pax7" cells, and



impaired the growth of regenerating fibers [140], suggesting
the occurrence of an epigenetic link among inflammation,
activated p38 MAPK, and Pax7 expression from SCs during
regeneration [140].

Further studies are needed to understand the function
of SCs and their possible induction to differentiate as a
means to counteract muscle atrophy. Increased Pax7 and
decreased myogenin levels have been reported also in the
cachectic muscle of mice bearing the C26 carcinoma and in
cancer patients, opening the possibility that cancer-driven
inflammation induces muscle atrophy, dysregulating SC dif-
ferentiation program [52, 141, 142]. SC accumulation was
demonstrated to be due to an increase in the ERK MAPK
signaling able to maintain the cells in an undifferentiated
state [141]. Treatment with a chemical inhibitor of ERK
phosphorylation can indeed rescue the levels of Pax7 and
myogenin [141]. Lately, this process of SC accumulation has
been pointed as contributing to muscle atrophy and has
been related to NF-xB, known transcription factor able to
be activated by many proinflammatory cytokines. In the
skeletal muscle of cachectic mice, NF-«B is able to sustain
Pax7 expression [52], and moreover, in the same study,
the authors revealed that other muscle precursors, such
as MSCs, participate in muscle wasting since they cannot
complete their myogenic commitment. Chronic injury and
proinflammatory cytokines due to tumor progression could
be responsible for differentiation program failure.

When mesenchymal progenitors are missing or are
unable to display their prodifferentiation effects on SCs,
these latter ones actually contribute to fibrosis in mdx mice,
leading to pathogenic effects in MDs [143]. In the last
years, cells expressing CD34/Scal/PDGFRa and not related
with other lineages, such as hematopoietic, endothelial, or
skeletal muscle, have received more and more attention.
Indeed, these cells can both differentiate in vitro and in
vivo towards fibroblast and adipocytes producing aSMA
and perilipin, respectively [84, 143]. Recently, suppression
of fibroadipogenic phenotype of mesenchymal cells through
HDAC inhibitors has been demonstrated to induce the myo-
genic transcriptional activity in young mice by upregulating
MyoD. On the contrary, FAPs taken from old mice fail in
the activation of promyogenic phenotype mainly because of
HDAC inhibitor resistant [144]. These last results already
suppose a different behavior of the microenvironment that is
actually acting on the myogenic program of SCs in the elderly.
Aging of skeletal muscle should not be underestimated when
considering myogenic potential. Indeed, geriatric SCs show
reduced proliferation and differentiation potential and can
easily switch from a quiescent to a senescent state [145].
Some studies have already focused on the importance of the
microenvironment where SCs are studied, since if old murine
SCs are exposed to a young environment or growth factors,
their ability to proliferate and differentiate is partly restored,
suggesting the extreme importance the environment has on
the single cells and on the other side the plasticity cells can
have [146]. During aging, extrinsic factors can alter SC func-
tions, starting from the niche where they lay, since fibrous
connective tissue is usually increasing [147, 148]. In addition,
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SCs in the elderly were shown to convert to a fibrogenic
lineage mainly due to humoral factors. In particular, this
lineage conversion seems to depend on Wnt signaling [149].
Lately, a comparison between old and young SCs identified an
increased expression in JAK-STAT pathway with aging that
could avoid their differentiation in old conditions [150]. This
pathway is of particular importance in chronic inflamma-
tory conditions, since infiltration of inflammatory cells and
increased circulating levels of proinflammatory cytokines
(such as TNF-a) can have together a detrimental effect on
skeletal muscle regeneration [151]. Moreover, this pathway
has usually a pivotal role in transduction of extracellular
signals from cytokines and growth factors with particular
importance for inflammatory cells [152]. Interestingly, in a
recent work, murine and human SCs were demonstrated to
progress in their differentiation thanks to STAT3 and a fine
regulation of the activation of this protein could interfere
with myogenesis [153]. The authors indeed speculate that
chronic degenerative stimuli could favor this prodifferentia-
tive pathway leading to exhaustion of the SC pool. Indeed, in
chronic regenerative conditions, a pharmacologic inhibition
of STAT3 could have a therapeutic relevance.

6. Conclusions

Inflammation is a common trait of several pathological
conditions characterized by the loss of muscle mass. During
the past, a direct link was established among proinflamma-
tory cytokines, modulation of intracellular signaling path-
ways, and protein breakdown. In recent years, an additional
hypothesis, suggesting the impairment of the myogenic
program as underlying cause of muscle atrophy, is becoming
popular. In this line, the importance of a finely orchestrated
balance between pro- and anti-inflammatory cytokines in
regulating physiological myogenesis is a well-established
concept, while data suggesting the relevance of inflammation
in impaired myogenesis are growing. Inflammation likely
contributes to muscle depletion by both enhancing protein
breakdown and impairing myogenesis in parallel and no
priority between the two processes can actually be identified.
The other way round, an effective strategy aimed at counter-
acting muscle wasting should take into consideration not only
anabolic/catabolic aspects but analogously the continuous
involvement of the myogenic counterpart. In addition, the
role of interstitial and circulating progenitors involved in
myogenesis and paracrine effects is also critical to modulate
inflammatory responses in muscle wasting conditions.

The adoption of anti-inflammatory agents for the treat-
ment of chronic wasting diseases has been widely described
[154] and is not the topic of the present review; however, the
modulatory effect on inflammation exerted by exercise train-
ing deserves a short consideration. Regular, nonstrenuous
exercise seems to be protective against inflammation. Indeed,
combined endurance and resistance training in elder sub-
jects resulted in decrease of proinflammatory CD14"/CD16"
monocytes and low levels of TNF-a production in vitro
[155]. Moreover, circulating IL-10 and regulatory T-cells

(CD4*/CD25"/CD127"°") increase in well-trained athletes
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with respect to a sedentary age matched population, even
in resting conditions [156]. Keeping in mind the above-
mentioned anti-inflammatory effect and considering that
exercise is the most physiological stimulus able to coordinate
both myogenesis and muscle hypertrophy, the adoption
of patient-tailored exercise protocols will potentially have
impact on muscle wasting associated with distinct patholo-
gies.
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