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Abstract: Establishing the metabolism pathway of the drug undergoing the hepatic biotransformation
pathway is one of the most important aspects in the preclinical discovery process since the presence
of toxic or reactive metabolites may result in drug withdrawal from the market. In this study, we
present the structural elucidation of six, not described yet, metabolites of an antipsychotic molecule:
molindone. The elucidation of metabolites was supported with a novel photocatalytical approach
with the use of WO3 and WS2 assisted photochemical reactions. An UHPLC-ESI-Q-TOF combined
system was used for the registration of all obtained metabolite profiles as well as to record the high
resolution fragmentation spectra of the observed transformation products. As a reference in the
in vitro metabolism simulation method, the incubation with human liver microsomes was used.
Chemometric comparison of the obtained profiles pointed out the use of the WO3 approach as being
more convenient in the field of drug metabolism studies. Moreover, the photocatalysis was used in
the direction of the main drug metabolite synthesis in order to further isolation and characterization.
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1. Introduction

Molindone (3-ethyl-2-methyl-5-(morpholin-4-ylmethyl)-1,5,6,7-tetrahydroindol-4-one) is a
medicine originally and mainly used in schizophrenia treatment. In addition, its use is also considered
in ADHD therapy (attention-deficit/hyperactivity disorder) [1–3]. The mechanism of molindone action
assumes D2S, D2L, D5 dopamine, and 5-HT2B serotonin receptor antagonist activity and remains strictly
in correlation with the dopamine hypothesis of schizophrenia [4–9]. It should also be noted that
patients treated with molindone are exposed to the occurrence of side effects, for instance, tardive
dyskinesia or akathisia, according to the commonly known mechanism of neuroleptics dopamine
antagonistic potential [10–12]. The drug is considered to undergo the hepatic metabolism pathway
and its use in treatment should be monitored due to possible hepatotoxic impact [13,14]. Nevertheless,
molindone reveals activity corresponding to leading antipsychotics and does not influence weight
gain, which is an infrequent property in the field of neuroleptic drugs [15,16]. As molindone has been
introduced anew to market and is used in schizophrenia therapy, the issue of the hepatotoxicity origin
is still not better known.

Moreover, the liver is an organ that is mainly responsible for drug metabolism, intoxification, and
preparing to excrete intermediates from the human organism. The medicine molecule participating
in biochemical processes changes its physicochemical properties, which can be responsible for the
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formation of toxic metabolites [17–20]. As these multidirectional processes occur and at the same time
lead to the formation of many derivatives, a detailed understanding of the transformation pathways of
a medicinal compound as well as metabolites brings knowledge of both the mechanisms of drug action
and underlies further research on the drug. The activity that the liver shows in the metabolism of
medicines has become the basis for developing an in vitro assay for determining drug metabolism [21].
The human liver microsomes (HLMs) used for this purpose provide satisfactory results with reference
to drug molecules undergoing the hepatic pathway [22–24]. In spite of its unequivocal usefulness
in drug metabolism studies, this approach also reflects minor drawbacks. Due to the co-presence of
biological interferences such as cell matrix, proteins, and phospholipids, the use of HLM incubation in
metabolite isolation is a complex process and requires a time-consuming workflow [25]. Additionally,
the explicit decrease in reaction efficiency relative to the incubation time further limits the use of this
method as an simple and effortless source of metabolites [26].

The further attempts to decrease severe costs associated with drug development studies have
contributed to involve photo-assisted catalysis with the use of metal oxide nanoparticles in metabolism
simulation processes [27–30]. This new approach benefits from economic efficiency, a simple procedure,
and also requires less human resources. The principle of this method is based on metal oxide
semiconductor properties with the ability to create reactive oxygen species (ROS) in aqueous solution
and under simultaneous adequate UV irradiation [31,32]. Generated radicals act as a strong oxidizing
agents and cause molecule oxidation in the presence of the tested drug substance in solution. Despite
the fact that heterogeneous photocatalysis was originally applied in drug metabolism studies with
the use of model substance Degussa P25 titanium dioxide (TiO2), tungsten oxide (WO3) assisted
photocatalysis turned out to provide satisfactory and promising results [33,34]. The synthesis and
isolation of metabolites is a distinct issue. Since the conventional approach of obtaining metabolites
assumes organic synthesis, some modern techniques such as biosynthesis, enzymatic methods, and
electrochemical (EC) synthetic reactions are particularly gaining attention [35–40]. In this context, the
photocatalytic transformation of drugs in order to further metabolite isolation seems to become a
promising tool. This method simplifies the procedure and given the lack of the use of any organic
solvents, conforms to the principles of green chemistry.

The aim of this study was to develop a simple, fast, and cheap method for preliminary drug
metabolism research. The detailed molindone metabolism pathway was established in accordance
with WO3 and tungsten disulfide (WS2) ssisted photocatalysis. Furthermore, the feasibility of study,
assuming the use of the photocatalytic protocol in order to further metabolite isolation, was successfully
confirmed. In addition, structural elucidation of molindone metabolites was carried out based on the
ultra-high-pressure liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass
spectrometry (UHPLC-ESI-Q-TOF MS) combined system, which is a highly useful tool in drug
metabolism studies [41–44].

2. Results and Discussion

2.1. Photocatalytic Degradation Kinetics

In the pilot study, the adsorption of molindone on WO3 and WS2 was tested in the 0–60 min
time range and no significant differences were found in the concentrations of the analyzed compound.
Therefore, a 60 min adsorption–desorption equilibrium time was defined for both catalyzed samples.
Subsequently, the degradation kinetics were studied within the given time ranges of 0–20 min for WO3

and 0–30 min for the WS2 photocatalytic experiments. The obtained results show that the photocatalytic
decomposition of molindone yielded pseudo-first kinetics for the WO3 assisted (k = 0.1634 min−1,
t1/2 = 4.3 min, r = 0.9532) and WS2 assisted (k = 0.0129 min−1, t1/2 = 63 min, r = 0.9948) photochemical
reaction (Figure 1).
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Figure 1. Kinetics of molindone photocatalytic decomposition presented as a normalized 
concentration (C/C0) against time (min). 
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In order to perform a preliminary comparison between WS2 and WO3 photo-assisted catalysis 
with regard to the HLM metabolite profile of molindone, a multivariate chemometric analysis was 
performed. All of the obtained chromatographic profiles (24 chromatograms) registered in 
time-of-flight (MS) mode were aligned with Mass Profiler Professional (MPP) software, giving 176 
entities. After a build-in MPP filtration including sample abundance and the Mann–Whitney u-test 
(p < 0.05, FC > 1.1), 17 entities were finally selected for the chemometric study. The PCA analysis 
based on this data showed a visible categorization of all of the analyzed groups of the registered 
metabolic profiles (Figure 2). Two types of photocatalytic profiles remained in a short distance from 
each other, however, the samples belonging to WO3 inducted photocatalysis were closer to the HLM 
samples. Negative control samples (Cont) stood out from the other profiles, which confirmed the 
occurrence of metabolic reactions. The achieved results suggest that WO3 photocatalytic profiles are 
substantially more similar to hepatic metabolism profiles than WS2. In the presented principal 
component analysis (PCA), the first three components (PC) explained 95.0% of the total variance. 

Taking this into account, the proposed WO3 photocatalytic method could be considered as a 
more suitable approach for mimicking the phase I metabolism reactions. Moreover, considering the 
degradation kinetic parameters (Section 2.1.), this catalyst is also more suitable for the production 
and isolation of the main metabolites of molindone.  

Figure 1. Kinetics of molindone photocatalytic decomposition presented as a normalized concentration
(C/C0) against time (min).

2.2. Multivariate Comparison of Human Liver Microsome (HLM) Metabolites and Photocatalytic Products

In order to perform a preliminary comparison between WS2 and WO3 photo-assisted catalysis
with regard to the HLM metabolite profile of molindone, a multivariate chemometric analysis was
performed. All of the obtained chromatographic profiles (24 chromatograms) registered in time-of-flight
(MS) mode were aligned with Mass Profiler Professional (MPP) software, giving 176 entities. After a
build-in MPP filtration including sample abundance and the Mann–Whitney u-test (p < 0.05, FC > 1.1),
17 entities were finally selected for the chemometric study. The PCA analysis based on this data showed
a visible categorization of all of the analyzed groups of the registered metabolic profiles (Figure 2). Two
types of photocatalytic profiles remained in a short distance from each other, however, the samples
belonging to WO3 inducted photocatalysis were closer to the HLM samples. Negative control samples
(Cont) stood out from the other profiles, which confirmed the occurrence of metabolic reactions. The
achieved results suggest that WO3 photocatalytic profiles are substantially more similar to hepatic
metabolism profiles than WS2. In the presented principal component analysis (PCA), the first three
components (PC) explained 95.0% of the total variance.

Taking this into account, the proposed WO3 photocatalytic method could be considered as a
more suitable approach for mimicking the phase I metabolism reactions. Moreover, considering the
degradation kinetic parameters (Section 2.1), this catalyst is also more suitable for the production and
isolation of the main metabolites of molindone.
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Figure 2. PCA plot of HLM (blue triangles), WS2 (grey diamonds), and WO3 (brown spheres) with the
control group (red squares) profiles of molindone.

2.3. Metabolites Identification

Six metabolites of molindone were identified in this study. Metabolite structures were elucidated
by UHPLC-ESI-Q-TOF analysis with the use of recorded high resolution MS/MS spectra. The
fragmentation patterns of molindone and its metabolites are summarized in Table 1, and an example
of the total ion chromatogram obtained for the HLM experiment is presented in Figure 3.

In order to perform accurate structural elucidation of the main metabolite (M1), an additional
WO3 assisted photocatalytic experiment was performed. Based on our preliminary photocatalysis
optimization process, the loading level of the parent compound as well as the irradiation time were
increased, which provided the opportunity to obtain a semi-preparative level of this metabolite
(Section 3.2). Next, the ultra-fast liquid chromatography (UFLC) reversed-phase system was used for
M1 isolation; after evaporation and dissolution in deuterated methanol, 1H NMR spectroscopy was
carried out.



Molecules 2020, 25, 1367 5 of 15

Table 1. Q-TOF accurate mass elemental composition and MS/MS fragmentation and of the analyzed substances.

Name Reaction Type Retention Time
[min]

Measured Mass
[m/z]

Theoretical
Mass [m/z]

Mass Error
[ppm]

Molecular Formula
[M + H]+

MS/MS
Fragmentation [m/z]

Fragmentation Ion
Formula [M + H]+

MO – 6.53 277.1910 277.1910 0.00 C16H24N2O2

190.1206
176.1057
116.0708
100.0761
82.0657
70.0658

C12H16NO
C11H14NO
C5H10NO2
C5H10NO

C5H8N
C4H8N

M1 Al-OH 2.50 293.1860 293.1859 0.34 C16H25N2O3

275.1726
221.1169
160.0605
100.0761
70.0660

C16H23N2O2
C12H17N2O2

C9H8N2O
C5H10NO

C4H8N

M2 Dealk 5.24 251.1762 251.1754 3.18 C14H23N2O2

178.1220
160.1132
122.0929
74.0610

C11H16NO
C11H14NO

C8H12N
C3H8NO

M3 Al-OH 4.90 293.2012 293.1859 52.18 C16H25N2O3

206.1131
194.1113
188.1022
100.0760
74.0586

C12H16NO2
C11H16NO2
C12H14NO
C5H10NO
C3H8NO

M4 Al-2OH
Dehydrog 3.32 307.1654 307.1652 0.65 C13H23N2O4

289.1458
188.1040
100.0759
84.0793

C16H21N2O3
C12H14NO
C5H10NO
C5H10N

M5 Al-OH
Dehydrog 3.70 291.1694 291.1703 −3.09 C16H23N2O3

204.1039
176.1069
162.0896
136.0735
100.0760

C12H14NO2
C11H14NO
C10H12NO
C8H10NO
C5H10NO

M6 Dehydrog 4.30 275.1754 275.1754 0.00 C16H23N2O2
188.1036
100.0769

C12H14NO
C5H10NO

Abbreviations: Al-OH—aliphatic hydroxylation, Al-2OH—aliphatic dihydroxylation, Dealk—dealkylation, Dehydrog—dehydrogenation.
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The protonated molecular ion for molindone (Figure S1) was observed at m/z 277.1910
(C16H24N2O2 [M + H]+) and the fragmentation at 16.9 eV collision-induced dissociation (CID)
energy resulted in methylmorpholine moiety detachment, which corresponded to the most abundant
ion in the spectrum (m/z 100.0761, C5H10NO [M + H]+) and its further decomposition finally led
to 2-(methylamino)prop-2-en-1-ylium ion formation (m/z 70.0658, C4H8N [M + H]+). In addition,
parent molecule fragmentation also resulted in {3-[(2-hydroxyethyl)amino]propylidyne}oxidanium ion
formation (m/z 116.0708, C5H10NO2 [M + H]+). The ion with m/z 190.1206 (C12H16NO [M + H]+) is
another product of the morpholine moiety loss and its decomposition gradually led to the formation of
the 2-methyl-1H-pyrrol-1-ium ion (m/z 82.0657, C5H8N [M + H]+).

The main metabolite, M1 (m/z 293.1860, C16H25N2O3 [M + H]+), was identified as a aliphatic
hydroxyl derivative of molindone, 3-ethyl-2-(hydroxymethyl)-5-[(morpholin-4-yl)methyl]-1,5,6,
7-tetrahydro-4H-indol-4-one (Figure S2). The hydroxylation occurred in aliphatic methyl side
chain of the compound. The ion with m/z 275.1726 (C16H23N2O2 [M + H]+) testifies to
the hydroxyl group detachment and its morpholine ring decomposition resulted in ions with
m/z 221.1169 (C12H17N2O2 [M + H]+) formation and then in structural rearrangement of the
4,5-dihydro-1H-pyrano[3,4-b]pyrrolo[2,3-d]pyrrol-7-ylium radical ion (m/z 160.0605, C9H8N2O
[M + H]+). The ion with m/z 100.0761, (C5H10NO [M + H]+) was the most visible peak, similar
to that in the parent molecule spectrum.

1H NMR analysis also confirmed the introduction of the hydroxyl group in the methyl substituent
in position 2 of the tetrahydroindol-4-one ring. First of all, absence of the distinct singlet signal of the
above methyl group in the region δ 2.1 was observed, and simultaneously, the characteristic singlet for
the hydroxymethyl group at δ 4.57 was registered. The presence of the ethyl group was confirmed by
typical signals at δ 1.03 (t, J = 10 Hz) and δ 2.62 (q, J = 10 Hz). Two multiplets corresponding to the
prochiral CH2, β to the pyrrole ring, appeared at δ 1.95/2.19. The observed multiplet at δ 3.82 (4H)
belongs to the morpholine moiety while the remaining hydrogens appear as multiplets at δ 2.75–3.15.

The M2 metabolite (m/z 251.1762, C14H23N2O2 [M + H]+) was identified as a result of morpholine
ring cleavage (Figure S3). The ion with m/z 178.1220 (C11H16NO [M + H]+) was the most abundant ion
in the spectrum and testifies to morpholine ring loss. Its further fragmentation led to the formation of
ions with m/z 160.1132 (C11H14NO [M + H]+) and m/z 122.0929 (C8H12N [M + H]+). The ion with m/z
74.0610 (C3H8NO [M + H]+) as the result of the aforementioned morpholine ring cleavage was also
clearly visible.

The M3 metabolite (m/z 293.2012, C16H25N2O3 [M + H]+) was identified as another hydroxyl
derivative of molindone with substitution most likely located in position C-7 in the cyclohexyl ring
(Figure S4). The fragmentation lead to methylmorpholine moiety detachment (m/z 100.0760, C5H10NO
[M + H]+) with its following degradation to ions with m/z 74.0586 (C3H8NO [M + H]+). The further
decomposition of the ion with m/z 206.1131 (C12H16NO2), formed as a second fragment of morpholine
moiety detachment from the parent compound, led to the formation of the ion with m/z 194.1113
(C11H16NO2 [M + H]+) with the remaining hydroxyl group.
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The M4 metabolite (m/z 307.1654, C13H23N2O4 [M + H]+) was identified as a dihydroxy derivative
of molindone (Figure S5). Dehydrogenation with a double bond formation in the tetrahydroindol-4-one
ring is the second reaction that took place regarding the parent compound structure. Its fragmentation
gradually led to both the removal of the hydroxyl groups, and the ion with m/z 289.1458 (C16H21N2O3

[M + H]+) testifies to the first step of this process. The ion with m/z 188.1040 (C12H14NO [M + H]+)
was a product of the second hydroxyl group and morpholine moiety detachment simultaneously with
the double bond retained. Furthermore, the ion with m/z 100.0759 (C5H10NO [M + H]+) was the most
abundant ion in recorded spectrum.

The M5 metabolite (m/z 291.1694, C16H23N2O3 [M + H]+) was identified as a hydroxyl substituted
molindone most likely located in position C-7 in the cyclohexyl ring (Figure S6). Dehydrogenation
in the tetrahydroindol-4-one ring was the second reaction that occurred with regard to the parent
compound. The most abundant ion with m/z 100.0760 (C5H10NO [M + H]+) belonged to the detached
methylmorpholine moiety, whereas the fragment with m/z 204.1039 (C12H14NO2 [M + H]+) testifies
to the retention of the double bond and hydroxyl group in the second part of the fragmented
metabolite structure. Further fragmentation of this ion consisted of two paths. One led to
hydroxyl group detachment and the ion with m/z 176.1069 (C11H14NO[M + H]+) was formed in
this case. The second path assumed rearrangement with the formation of the ion at m/z 162.0896
(C10H12NO [M + H]+), followed by additional rearrangement resulting in the formation of the
5-ethyl-6-(hydroxymethyl)pyridin-3-ylium ion (m/z 136.0735, C8H10NO [M + H]+)

The protonated molecular ion for the M6 metabolite was observed at m/z (275.1754, C16H23N2O2

[M + H]+). Measured m/z and the generated formula indicated the presence of an unsaturated bond
located in the tetrahydroindol-4-one ring. The mild fragmentation at 10.0 eV CID energy resulted in
methylmorpholine moiety detachment, which corresponded to the ion with m/z 100.0769 (C5H10NO [M
+ H]+). The rest of the metabolite structure with m/z 188.1036 (C12H14NO) was also visible (Figure S7).

2.4. Transformation Pathways

The study resulted in the confirmation of one major and five minor metabolites of molindone
obtained during microsomal incubation. As shown in Table 1, the parent compound underwent several
metabolic reactions: hydroxylation (M1 and M3), dealkylation (M2), combination of hydroxylation
and dehydrogenation (M4 and M5), and dehydrogenation (M6). It was noticeable that the aliphatic
hydroxylation process was found to be the process responsible for the main metabolite (M1) formation
(Figure 4A), and this reaction was successfully simulated with the use of both photocatalysts.
The multivariate chemometric comparison of the distribution of this metabolite in the analyzed
photocatalytic samples also confirmed their similarity to the biological experiment (Figure 5). Moreover,
the WO3 assisted photocatalysis allowed us to observe four minor metabolites (M3, M4, M5, and M6),
whereas the WS2 assisted photocatalysis allowed to observe three minor metabolites (M3, M5, and M6).
It should be also noted that the photocatalytic methods significantly improved the identification of the
minor metabolites due to their higher abundances and better detection with the use of the MS method.
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The proposed metabolic pathway of molindone is presented in Figure 6.



Molecules 2020, 25, 1367 10 of 15
Molecules 2020, 25, x FOR PEER REVIEW 6 of 16 

 

 
Figure 6. The proposed metabolic pathway of molindone. 

3. Materials and Methods 

3.1. Chemicals and Reagents 

Molindone hydrochloride was obtained from Toronto Chemicals (Toronto, Canada). Water 
(LC-MS Ultra grade), β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt 
hydrate (NADPH), human liver microsomes (HLMs), sodium phosphate monobasic monohydrate salt, 
sodium phosphate dibasic anhydrous salt, and tungsten (VI) oxide nanopowder < 100 nm particle size 
were obtained from Sigma-Aldrich (St. Louis, Missouri, USA). Tungsten disulfide (IV) nanopowder 
40–80 nm particle size, amorphous was obtained from U.S. Research Nanomaterials, Inc. (Houston, 
Texas, USA). Acetonitrile (hypergrade for LC-MS), were purchased from Merck (Darmstadt, Germany) 
and 98% formic acid (mass spectroscopy grade) was obtained from Fluka (Taufkirchen, Germany). 

Figure 6. The proposed metabolic pathway of molindone.



Molecules 2020, 25, 1367 11 of 15

3. Materials and Methods

3.1. Chemicals and Reagents

Molindone hydrochloride was obtained from Toronto Chemicals (Toronto, ON, Canada). Water
(LC-MS Ultra grade), β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt
hydrate (NADPH), human liver microsomes (HLMs), sodium phosphate monobasic monohydrate salt,
sodium phosphate dibasic anhydrous salt, and tungsten (VI) oxide nanopowder < 100 nm particle
size were obtained from Sigma-Aldrich (St. Louis, MO, USA). Tungsten disulfide (IV) nanopowder
40–80 nm particle size, amorphous was obtained from U.S. Research Nanomaterials, Inc. (Houston,
TX, USA). Acetonitrile (hypergrade for LC-MS), were purchased from Merck (Darmstadt, Germany)
and 98% formic acid (mass spectroscopy grade) was obtained from Fluka (Taufkirchen, Germany).

3.2. Photocatalytic Experiments

The photocatalytic reactions were performed in the aqueous solution at a concentration of 25 µM
of the tested drugs. The applied catalyst loadings were set to 100 mg L−1 of WO3 and 100 mg L−1

of WS2. For all experiments, suspensions were transferred into 3.5 mL quartz caped cells (l = 1 cm)
and stirred at 500 rpm (microstirrer Cimarel: Telemodul, Thermo Electron LED GmbH, Osterode am
Harz, Germany) in the dark for 60 min to achieve adsorption–desorption equilibrium. Next, reaction
cells were mounted horizontally in an Atlas Suntest CPS+ photostability chamber with a D65 filter
(Linsengericht, Hesse, Germany), and irradiated simultaneously with stirring. The irradiance was set to
765 W m−2, which corresponded to an energy dose of 2854 kJ m−2 h−1. The temperature in the chamber
was controlled and kept below 35 ◦C. Aliquots (100 µL) were collected at proper intervals and the
following time ranges were set to: 0–25 min for WO3 and 0–30 min for WS2 photocatalytic experiments.
All suspensions were then centrifuged at 15,000 rpm for 5 min (Eppendorf 5424R, Germany), 50 µL
aliquots were collected, and UHPLC-ESI-Q-TOF analysis was performed.

In order to perform the isolation of the main metabolite (M1), 2 mg mL−1 solution of molindone
with the addition of WO3 was irradiated for 6 h under the same conditions and next semi-preparative
chromatography was realized.

3.3. In Vitro Simulation of Metabolism by Human Liver Microsomes

Phase I metabolism reactions were performed in vitro with the use of the HLM fraction. The
incubation system consisted of 50 µM substrate, 55 mM phosphate buffer (pH 7.4), and 0.5 mg mL−1

microsomes. The incubation system was pre-incubated at 37 ◦C for 2 min (Eppendorf ThermoMixer C
equipped with Eppendorf ThermoTop, Hamburg, Germany) and then the metabolic reactions were
initiated by the addition of 10 µL NADPH (20 mM). Total volume of the reaction suspension was 200 µL
and no organic solvent was added into the system. The reaction was terminated after 0, 30, 60, 120, and
180 min of incubation with 200 µL of ice-cold acetonitrile:methanol mixture (1:1). Next, the precipitated
samples were centrifuged at 15,000 rpm for 10 min at 4 ◦C (Eppendorf 5424R, Hamburg, Germany)
and the supernatants (50 µL) were transferred into autosampler vials for LC-MS analysis. The negative
control samples were prepared as described above without the addition of NADPH solution.

3.4. Analytical Procedures

The LC-MS analysis was performed with the use of an Agilent Accurate-Mass Q-TOF LC/MS
G6520B system with a dual electrospray (DESI) ionization source and Infinity 1290 ultra-high-pressure
liquid chromatography system consisting of binary pump G4220A, FC/ALS thermostat G1330B,
autosampler G4226A, DAD detector G4212A, TCC G1316C module (Agilent Technologies, Santa Clara,
CA, USA), and a Kinetex C18 (2.1 × 50 mm, dp = 1.7 µm) column with a C18 precolumn guard
(Phenomenex, Torrance, CA, USA). A mixture of water containing a 0.1% solution of formic acid with
5% addition of acetonitrile (A), and acetonitrile (B) was used as a mobile phase. The gradient elution
was carried out at a constant flow 0.3 mL min−1 from 95%A (5%B) to 85%A (15%B) for 0–9 min, then
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to 5%A (95%B) 9–9.50 min, and a 1.50 min post time was performed to return to initial conditions.
The injection volume was 2.0 µL and the column temperature was maintained at 35 ◦C. MassHunter
workstation software in version B.08.00 was used for the control of the system, data acquisition,
qualitative, and quantitative analysis.

The optimization of the instrument conditions started with the proper tuning of the Q-TOF
detector in a positive mode with the use of an Agilent ESI-L tuning mix in the extended dynamic range
(2 GHz). The following instrument settings were applied: gas temp.: 325 ◦C, drying gas: 10 L/min,
nebulizer pressure: 40 psig, capillary voltage: 3500 V, fragmentor voltage: 175 V, skimmer voltage:
65 V, octopole 1 RF voltage: 750 V.

Data acquisition was performed in centroids with the use of TOF (MS) and auto MS/MS mode. The
spectral parameters for both modes were: mass range: 60–950 m/z and the acquisition rate: 2.0 spectra/s.
To ensure accuracy in the mass measurements, a reference mass correction was used and the masses of
121.050873 and 922.009798 were used as lock masses.

Semi-preparative chromatography was executed with the use of a Shimadzu UFLC (ultra-fast
liquid chromatography) system consisting of: pump LC-20 AD, degassing DGU-20A5R, column oven
CTO-10AS VP, DAD detector SPD-M20A (Shimadzu Corporation, Kyoto, Japan), and Zorbax SB-C18
(9.4 × 150 mm, dp = 5 µm) semi-preparative column (Agilent, Santa Clara, CA, USA). A mixture of
water with the addition of 0.1% solution of formic acid and acetonitrile (96.5:3.5, v/v) was used as the
mobile phase. The isocratic elution was carried out at a flow of 4 mL min−1 for 65 min. The injection
volume was 500 µL, and the column temperature was maintained at 30 ◦C. A Gilson FC 203B (Gilson
Inc., Middleton, WI, USA) fraction collector was used to collect the proper fraction containing the M1
metabolite. The received fifteen fractions were pooled and evaporated using a Hei-VAP Value G3
rotary evaporator (Heidolph, Schwabach, Germany) under 50 mbar vacuum at a temperature of 35 ◦C.
The residue was dissolved in 2 mL of acetonitrile and evaporated under the nitrogen stream. Identity
and purity of the residuals were controlled using the LC-MS, and then NMR analyses were performed.

The NMR spectra were recorded on a Bruker Avance III (500 MHz, Bruker, Billerica, MA, USA)
spectrometer. Chemical shifts are given in parts per million (δ) downfield from tetramethylsilane as
the internal standard. Methanol-d4 was used as the solvent.

3.5. Chemometric Analysis

Four metabolism experiments: HLM (after 120 min of incubation), control sample (HLM without
NADPH), WO3 photocatalytic (after 5 min of irradiation), and WS2 photocatalytic (after 30 min of
irradiation) were performed in six replications for each experiment. In this manner, a set of twenty
four samples for four different experiments for one of the tested drugs was obtained. For all of
these samples, high resolution LC-MS analysis was performed in TOF (MS) mode and their specific
chromatographic/spectral profiles were recorded. The molecular feature extraction (MFE) algorithm
from the Mass Hunter Qualitative Analysis software version B.06.00 (Agilent) was used for data
background ion noise cleaning and to extract the list of the ion characteristics for the metabolite profiles
of the analyzed substances. The MFE parameters were optimized and the following settings were
applied: single charge state of the analyzed ions, more than 2000 counts for the compound filter;
isotope model: common organic molecules with peak spacing tolerance 0.0025 m/z. In order to perform
the multivariate chemometric analysis, the obtained results were then exported to the Mass Profiler
Professional (MPP) software version 12.61 (Agilent and Strand Life Sciences Pvt. Ltd., Santa Clara,
CA, USA. With the use of this software, the data were normalized and aligned, and the principal
component analysis (PCA) was performed.

4. Conclusions

The characterization of six, previously not described metabolites of molindone was the main
accomplishment of this study. Tungsten disulfide was successfully introduced in the drug metabolism
simulation, however, tungsten oxide (VI) provided a better reproduction of the metabolic profile in
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accordance with applied multivariate chemometric comparison. Moreover, the photocatalysis was
utilized for the first time as a noteworthy technique in drug metabolite synthesis in order for possible
future isolation and research.

The obtained high-resolution MS/MS spectra were found to hold a peculiar value in drug
metabolite identification. The UHPLC-ESI-Q-TOF MS combined system proved its usefulness as a
preferred analytical tool in drug metabolism studies.

Supplementary Materials: The following are available online: Figure S1: MS/MS spectrum and fragmentation
pathway of molindone, Figure S2: MS/MS spectrum and fragmentation pathway of M1, Figure S3: MS/MS
spectrum and fragmentation pathway of M2, Figure S4: MS/MS spectrum and fragmentation pathway of M3,
Figure S5: MS/MS spectrum and fragmentation pathway of M4, Figure S6: MS/MS spectrum and fragmentation
pathway of M5, Figure S7: MS/MS spectrum and fragmentation pathway of M6,
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34. Gawlik, M.; Trawiński, J.; Skibiński, R. Photocatalysis as a Tool for in Vitro Drug Metabolism Simulation:
Multivariate Comparison of Twelve Metal Oxides on a Set of Twenty Model Drugs. Catalysts 2020, 10, 26.
[CrossRef]

35. Gul, T.; Bischoff, R.; Permentier, H.P. Electrosynthesis methods and approaches for the preparative production
of metabolites from parent drugs. TrAC Trends Anal. Chem. 2015, 70, 58–66. [CrossRef]

http://dx.doi.org/10.4088/JCP.09l05219yel
http://www.ncbi.nlm.nih.gov/pubmed/20031106
http://dx.doi.org/10.1002/14651858.CD002083.pub2
http://www.ncbi.nlm.nih.gov/pubmed/17253473
http://dx.doi.org/10.1002/med.1016
http://dx.doi.org/10.1093/toxsci/65.2.166
http://dx.doi.org/10.3390/ijms15046990
http://dx.doi.org/10.1007/s12010-009-8689-6
http://dx.doi.org/10.3109/00498254.2015.1047429
http://www.ncbi.nlm.nih.gov/pubmed/26068523
http://dx.doi.org/10.1124/dmd.108.025551
http://www.ncbi.nlm.nih.gov/pubmed/19196846
https://reader.elsevier.com/reader/sd/pii/S0223523416304834?token=4357C7C17B76634A86BC9152B3E97D3394109F6110507C92AA2991D7FBF0CD73A3888B5CCEF74
https://reader.elsevier.com/reader/sd/pii/S0223523416304834?token=4357C7C17B76634A86BC9152B3E97D3394109F6110507C92AA2991D7FBF0CD73A3888B5CCEF74
E2E0E969858250D04B1
http://www.ncbi.nlm.nih.gov/pubmed/16963792
http://dx.doi.org/10.1016/j.healthpol.2010.12.002
http://dx.doi.org/10.1016/S1044-0305(01)00319-1
http://dx.doi.org/10.1016/j.jpba.2004.01.001
http://dx.doi.org/10.1002/dta.334
http://dx.doi.org/10.1038/238037a0
http://dx.doi.org/10.1143/JJAP.44.8269
http://dx.doi.org/10.1016/j.jpba.2019.07.024
http://dx.doi.org/10.3390/catal10010026
http://dx.doi.org/10.1016/j.trac.2015.01.016


Molecules 2020, 25, 1367 15 of 15
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