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Reversal of cancer gene expression correlates
with drug efficacy and reveals therapeutic targets
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The decreasing cost of genomic technologies has enabled the molecular characterization of

large-scale clinical disease samples and of molecular changes upon drug treatment in various

disease models. Exploring methods to relate diseases to potentially efficacious drugs through

various molecular features is critically important in the discovery of new therapeutics. Here

we show that the potency of a drug to reverse cancer-associated gene expression changes

positively correlates with that drug’s efficacy in preclinical models of breast, liver and colon

cancers. Using a systems-based approach, we predict four compounds showing high potency

to reverse gene expression in liver cancer and validate that all four compounds are effective in

five liver cancer cell lines. The in vivo efficacy of pyrvinium pamoate is further confirmed in

a subcutaneous xenograft model. In conclusion, this systems-based approach may be

complementary to the traditional target-based approach in connecting diseases to potentially

efficacious drugs.
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R
apidly decreasing costs of molecular measurement
technologies not only enable profiling of disease sample
molecular features at different levels (for example,

transcriptome, proteome and metabolome)1–5, but also enable
measuring of cellular signatures of individual drugs in clinically
relevant models6–9. Exploring systematic approaches to find
drugs for diseases through various molecular features is critically
important in the discovery of new therapeutics. Among these
molecular features, gene expression has been the most widely
used8. The most commonly used approach starts with computing
a disease gene expression signature—by comparing disease
samples and control samples—followed by identifying drugs
that have a reversal relationship with the disease signature.
Although the majority of drug-induced gene expression
experiments have been conducted in three cancer cell lines, this
systems-based approach has led to the discovery of a number of
drug candidates for various cancers (for example, small cell lung
cancer10, metastatic colorectal cancer11, lung adenocarcinoma12,
Ewing’s sarcoma13 and renal cell cancer14), and remarkably even
in non-cancer diseases (for example, inflammatory bowel
disease15 and osteoporosis16). A few computational analyses
also demonstrated that this approach could recover a limited
number of known drug indications11,17,18. However, each of
the aforementioned studies evaluated this approach based on
a very small set of tested drugs. None of the studies to date
sought to explore the reversal relationship itself with drug
efficacy systematically.

In this study, we analyse over 66,000 compound gene
expression profiles from the Library of Integrated Network-
based Cellular Signatures (LINCS) L1000 data set9, more than 12
million compound activity measurements from ChEMBL19, over
1,000 cancer cell line molecular profiles from the Cancer Cell Line
Encyclopedia (CCLE)20 and over 7,500 cancer patient samples
from The Cancer Genome Atlas (TCGA)21. We quantify the
reversal relationship between disease and drug gene expression
signatures as the Reverse Gene Expression Score (RGES), a

measure of potency to reverse disease gene expression. We find
that the RGES positively correlates with half-maximal inhibitory
concentration (IC50), a quantitative measure of drug efficacy
often used to prioritize compounds in vitro. As a proof of
principle, four compounds with significant RGES were newly
identified as having efficacy against liver cancer, and each was
successfully validated to exert antiproliferative effects against five
liver cancer cell lines in vitro. Of these four compounds,
pyrvinium pamoate, which had the lowest IC50, was further
validated to significantly reduce the growth of subcutaneous
liver cancer cell xenografts in nude mice. This large-scale
computational analysis demonstrates the feasibility and
potential of investigating the potency to reverse disease
gene expression as a tool for hypothesis generation in the
drug discovery process.

Results
Disease gene expression signatures and RGES. We created
disease gene expression signatures from 7,514 samples across
14 cancers by comparing RNA-sequencing (RNA-Seq) gene
expression from tumours and adjacent normal tissues, using data
downloaded from TCGA. We then collected 66,612 compound
gene expression profiles consisting of 12,442 distinct compounds
profiled in 71 cell lines (with 83% of the measurements made
primarily in 15 cell lines), using data downloaded from LINCS.
Each profile involved the expression measurement of 978 genes,
termed ‘landmark genes’. The changes in the expression of
these landmark genes were computed after compounds were
tested in different concentrations (62% of the measurements
were made in conditions under 10 mM) for 24 h (49%) or 6 h
(51%; Supplementary Fig. 1). The computation of RGES
was adapted from the previous Connectivity-Map (CMap)
method8 (Fig. 1a, see Methods). A lower negative RGES
indicates higher likelihood to reverse disease gene expression
and vice versa. We focused on three cancers, breast-invasive
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Figure 1 | Retrieval of disease and drug gene expression profiles used for RGES computation. (a) Schematic diagram of computing RGES based on the

reversal relationship between disease and drug gene expression profiles. Lower RGES of a drug indicates higher potency to reverse disease gene expression.

(b) Workflow of selecting appropriate cancer types to study. The public database TCGA was used to create cancer gene expression signatures; LINCS

L1000 was used as the drug signature database; ChEMBL was used as the drug efficacy database; and CCLE was used to map cell lines among databases.

Expression of the landmark genes was used by default in this study. The detailed method is described in Supplementary Methods. (c) Statistics of three

selected cancers BRCA, LIHC and COAD. TCGA, The Cancer Genome Atlas; LINCS, Library of Integrated Network-based Cellular Signatures; CCLE, Cancer

Cell Line Encyclopedia.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16022

2 NATURE COMMUNICATIONS | 8:16022 | DOI: 10.1038/ncomms16022 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


carcinoma (abbreviated BRCA in TCGA), liver hepatocellular
carcinoma (LIHC) and colon adenocarcinoma (COAD), based on
the availability of relevant compound gene expression profiles on
these cancers in LINCS and compound efficacy data on these
cancers in ChEMBL19 (Fig. 1b). These three cancer types have
five (BRCA), two (LIHC) and 12 (COAD) cancer cell lines with
the same cell lineage (Fig. 1c and Supplementary Data 1). After
subsetting to the set of LINCS landmark genes, the signatures of
BRCA, LIHC and COAD generated from the TCGA data
included 83, 73 and 65 differentially expressed (DE) genes in
tumours compared to the normal tissues of each, respectively
(Fig. 1c and Supplementary Data 2). The signatures accurately
classified tumours and adjacent normal tissues (Supplementary
Fig. 2). These signatures were compared against all 66,612
compound gene expression profiles, resulting in one RGES
for each compound profile for each cancer (scores range
from � 1 to 1, Supplementary Fig. 3a).

RGES is dependent on biological conditions. Each of the 12,442
compounds has an average of five measured gene expression
profiles in LINCS. RGES of the same compound varies widely
across different expression profiles regardless of cell line and
lineage (Fig. 2a). For example, the most commonly profiled
compound, vorinostat, has 860 measurements and scores between
� 0.72 and 0.54 with the median � 0.38 across all five BRCA cell
lines. We observed that the variations of RGES were greater

across different cell lines than within different replicates of
the same cell line (when a compound was treated at the same
concentration and duration; Po2� 10� 16, Fig. 2b). In addition,
longer treatment durations (Z24 h) lead to lower RGES than
shorter durations (when a compound was tested in the same
cell line at the same concentration; o24 h; Po2� 10� 16, paired
t-test, Fig. 2c). Likewise, higher drug concentrations (Z10 mM)
lead to lower RGES than lower concentrations (o10 mM; when a
compound was tested in the same cell line for the same duration;
Po1� 10� 16, paired t-test, Fig. 2d). In addition, the variation of
RGES of each compound may vary in different cancer types.
For example, cytotoxic compounds (n¼ 9) have less variation
than targeted compounds (n¼ 69) in BRCA (P¼ 0.003), COAD
(P¼ 0.004), but not in LIHC (P¼ 0.09). Collectively, RGES is
dependent on cell line, drug concentration and treatment
duration.

We examined three compounds (vorinostat, geldanamycin and
gemcitabine) to further explore the effect of drug concentration
on the RGES for predicting drugs in BRCA. We chose these
compounds because they were tested under a sufficient number
of distinct concentrations (415) in the BRCA cell line MCF7.
We computed their RGES against the BRCA signature generated
from TCGA data, under different concentrations. For vorinostat,
the correlation between RGES and drug concentration is
r¼ 0.93 (P¼ 1.1� 10� 6) and r¼ 0.8 (P¼ 4.5� 10� 6) for 6 h
treatment and 24 h treatment, respectively (Supplementary
Fig. 4), suggesting that higher concentration of vorinostat
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causes greater reversal of disease signature. For geldanamycin
and gemcitabine, the correlation is significant (Po0.05) when
treated for 24 h, but not for 6 h (Supplementary Fig. 4). This
indicates that some compounds may exhibit specific reversal
potency only under certain concentrations and treatment
durations.

RGES correlates with drug efficacy in cancer cell lines. We
next evaluated whether the RGES of a compound correlates
with its efficacy in the same cell line. We chose cell lines
that include the most number of compounds with both efficacy
data in ChEMBL and gene expression profiles in LINCS for
each cancer. As a result, we selected the cell lines MCF7
(100 compounds), HepG2 (24 compounds) and HT29
(58 compounds) for BRCA, LIHC and COAD, respectively. The
median IC50 was used when one compound was reported to have
multiple IC50 measurements in ChEMBL. Since RGES varies
across drug concentrations and treatment durations, we set
10 mM and 24 h as a reference condition, and devised a method to
normalize RGES from other conditions to this reference
(see Methods). RGES and IC50 have a strong correlation in all
three cancer cell types after normalizing RGES (BRCA: Spearman
correlation rho¼ 0.33, P¼ 9.15� 10� 4; LIHC: rho¼ 0.58,
P¼ 2.7� 10� 3; COAD: rho¼ 0.41, P¼ 1.38� 10� 3; Fig. 3 and
Supplementary Data 3). We further categorized compounds into
a functionally effective group (IC50o10 mM) and a functionally
ineffective group (IC50Z10mM). The functionally effective group
of compounds presents with significantly lower RGES in three
cancers (BRCA: P¼ 8.68� 10� 3; LIHC: P¼ 2.25� 10� 2; and
COAD: P¼ 8.3� 10� 4, Student’s t-test, Fig. 3). Among these
cell lines, MCF7 is a model cell line for oestrogen receptor
(ER)-positive BRCA. We thus created a signature for this
specific subgroup from TCGA data, and computed RGES
against this signature. We found that the correlation is retained in
ER-positive subtype (rho¼ 0.37, P¼ 5.63� 10� 5, Suppleme-
ntary Fig. 5a).

Our data suggest that reversal potency is correlated to
drug efficacy in three cancer types, despite the large variations
in RGES and IC50. We also found that a number of effective
compounds do not show potency to reverse disease gene
expression (Fig. 3). For example, four microtubule inhibitors
(docetaxel, vinblastine, podophyllotoxin and epothilone-a), and
three microtubule inhibitors (vinblastine, podophyllotoxin and
vinorelbine) do not show any potency to reverse gene expression
in BRCA and COAD predictions, respectively. We further
investigated the RGES of vinblastine, which has a whole-genome
expression profile in MCF7 in an independent publicly available
gene expression data set (GSE69845), and observed that
vinblastine does not show any potency to reverse disease gene
expression (RGES¼ 0.01, P40.05, Supplementary Methods) in
that data set either.

Summarized RGES for individual compounds across conditions.
One compound may have multiple available expression profiles due
to its testing in various cell lines, drug concentrations, treatment
durations or even different replicates, resulting in multiple RGES
for one drug-disease prediction. Given these variations, we
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gene expression and its expression profiled in MCF7 cells. RGES was
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profiles. Median IC50 was used when one compound has multiple IC50s

from different studies. ANOVA and Spearman correlation were used to
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developed a summarization method to mitigate any bias and to
compute a score that is representative of the overall reversal
potency of a compound to a particular cancer, which we term
summarized RGES (sRGES). Briefly, we set a reference condition
(that is, 24 h and 10mM) and estimated a new RGES if a RGES was
not observed under the reference condition using a computational
model. We also weighted the RGES by the degree of correlation
between the gene expression profiles of the disease and the cell line
in which the compound was tested. We tested a number of known
methods to summarize scores and found that our method
outperforms others (Methods, Supplementary Data 4). Of note, the
approach that selects compounds based on the best RGES did not
lead to a strong correlation (BRCA: rho¼ 0.33; LIHC: rho¼ 0.42;
COAD: rho¼ 0.14, Fig. 4a), primarily owing to the large variation
of RGES across different profiles. In comparison, our new
summary score method led to the best correlation with drug
efficacy (BRCA: rho¼ 0.50; LIHC: rho¼ 0.61; COAD: rho¼ 0.30;
Fig. 4b–d and Supplementary Data 5). The correlation between
sRGES and IC50 remains significant in ER-positive BRCA
(rho¼ 0.46, Supplementary Fig. 5b).

We also observed that the average correlation between sRGES and
IC50 decreases after excluding the profiles of the cell lines from the
same lineage, but the correlation is still significant (BRCA: rho¼ 0.44;
LIHC: rho¼ 0.59; COAD: rho¼ 0.18; Fig. 4a). This suggests that
RGES that is solely based on gene expression profiles of the cancer
cell lines from different lineages could still provide a reliable measure
of drug reversal potency in these three cancers.

The efficacy of a drug may not be consistent across different
studies22 and can be measured by different matrices23; we thus
sought to examine whether the correlation between reversal

potency and drug efficacy remains significant while using
an external data set. We leveraged the recent large-scale
pharmacogenomic database Cancer Therapeutic Response Portal
(CTRP v2)24, where responses of 860 cancer cell lines to treatment
with each of the 481 compounds at various concentrations were
quantified. Instead of IC50, the area under concentration-response
(AUC) was used to measure drug efficacy. In total, 192 compounds
from LINCS were tested in 38 breast cancer cell lines, 22 liver
cancer cell lines and 49 colon cancer cell lines. The median was
used to summarize AUCs across multiple cell lines. The sRGES is
still significantly correlated with the AUC in BRCA (rho¼ 0.47,
P¼ 6.9� 10� 12), LIHC (rho¼ 0.43, P¼ 7.1� 10� 10) and COAD
(rho¼ 0.36, P¼ 3.67� 10� 7; Supplementary Fig. 6). In addition,
the growth rate (GR) inhibition metrics were recently proposed to
be superior to conventional metrics (IC50 and AUC) for assessing
the effects of compounds in dividing cells25. We downloaded
the GR data from the LINCS Pilot Phase Joint Project
(http://www.grcalculator.org/), where the dose-dependent sensiti-
vities of breast cancer cell lines were measured after the treatment
of each of 107 compounds. Among them, 31 compounds have gene
expression profiles in LINCS L1000. Although the number of
compounds is small, we observed that the sRGES is still
significantly correlated with the GR max in BRCA (rho¼ 0.38,
P¼ 0.03; Supplementary Fig. 7).

Experimental validation of drug hits for LIHC. Since we
observed that the sRGES significantly correlates with drug efficacy
using existing public data, we next used this approach to
identify novel compounds with high reversal potency for LIHC,
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a fatal malignancy with no effective treatment. Since only
1,845 compounds (15.8% of the tested chemical library in LINCS)
were profiled in LIHC cell lines HepG2 and Huh7, the compound
library would be limited if only these two cell lines were
considered. We thus used sRGES to prioritize all compounds
among the entire LINCS library consisting of over 66,000
compound profiles (Supplementary Data 6), and identified the top
four compounds that have not been previously studied in LIHC:
strophanthidin (sRGES: � 0.49), carbonyl cyanide p-trifluoro-
methoxyphenylhydrazone (FCCP, sRGES: � 0.45), CGK-733
(sRGES: � 0.56) and pyrvinium pamoate (sRGES: � 0.42; Fig. 5a
and Supplementary Data 6). Among these, CGK-733 was profiled
in non-LIHC cell lines. Strophanthidin is a cardiac glycoside acting
as an inhibitor of Naþ /Kþ ATPase26; FCCP is a mitochondrial
uncoupler commonly used as a biological probe27; CGK-733 was
originally defined as a selective inhibitor of the ataxia telangiectasia
mutated (ATM) and the ATM- related (ATR) kinases28; and
pyrvinium pamoate is an anthelmintic used to treat pinworm
infection, and is also a Wnt signalling pathway inhibitor29.

To test these four predicted candidate drug hits, we evaluated
them for antiproliferative effects in vitro in a panel of five LIHC

cell lines (HepG2, Huh7, Hep3B, PLC/PRF/5 and Hep40). The
median IC50s of strophanthidin, FCCP, CGK-733 and pyrvinium
pamoate are 0.72, 1.78, 3.18 and 0.07 mM, respectively (Fig. 5b
and Supplementary Table 1). When we annotated these four
compounds on the plot using their median IC50s in the five LIHC
cell lines (Fig. 5b), we observed that they are close to our
computed linear regression line (Fig. 5b). All four compounds
have very different chemical structures (Fig. 5c) and primary
mechanisms, yet they all show high likelihood to reverse LIHC
gene expression and are effective in LIHC cell lines, indicating
that sRGES can predict drug efficacy in vitro.

Further validation of pyrvinium pamoate, the compound
with the lowest IC50 value, showed that it significantly inhibited
colony formation of HepG2 and Huh7 cells at 50 nM (close to its
IC50 value; Fig. 6a). Recent studies suggested that pyrvinium
pamoate could inhibit the Wnt signalling pathway29,30, which is
frequently hyperactivated in LIHC31. Western blotting confirmed
that Wnt pathway proteins (LRP6, Cyclin D1, Axin-1, Survivin)
were inhibited in HepG2 and Huh7 cells (Fig. 6b). Using
the TOPflash luciferase reporter assay, we demonstrated that
pyrvinium pamoate indeed inhibited transcriptional activity
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mediated through the Wnt/beta-catenin pathway (Fig. 6c).
Intratumour administration of pyrvinium pamoate into
subcutaneous Huh7 xenografts also significantly reduced the
tumour volumes after 2 weeks of treatment, consistent with
in vitro antitumour effects (Fig. 6d). Wnt pathway proteins were
also inhibited in Huh7 xenografts (Fig. 6e), consistent with
in vitro data. These data provided proof-of-concept that the
sRGES can be used to accurately predict drug efficacy in in vitro

models of LIHC and that the drug hits will likely exhibit
antitumour effects in in vivo models of LIHC as well.

Reversal modules in each individual cancer. Since sRGES
evaluates compounds based on their overall reversal effect on a
spectrum of cancer-associated genes, we next wanted to identify
the genes that are specifically reversed by the effective
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compounds. We categorized compounds as functionally effective
(IC50o10mM) or functionally ineffective (IC50Z10mM) for our
three studied cancers, BRCA, LIHC and COAD; for LIHC, we
also added the four compounds newly validated (described above)
into the effective group. We then searched for post-treatment
gene changes that would best discriminate the effective
compounds from the ineffective compounds. As illustrated in
Fig. 7a, expression of MCM3, which is upregulated in LIHC
tumours compared to adjacent normal tissues, is suppressed
specifically by effective compounds in LIHC. Using a leave-one-
compound-out cross-validation approach to reduce over-fitting,
we identified eight genes that were significantly reversed by
the effective compounds in BRCA (Fig. 7b and Supplementary
Data 7), including DNA Polymerase Epsilon Subunit B (POLE2)
and Cyclin F (CCNF). Similarly, we identified 15 genes that were
significantly reversed by effective compounds in LIHC (Fig. 7c
and Supplementary Data 7), including Jun Proto-Oncogene
(JUN) and Survivin (BIRC5); and 13 genes for COAD (Fig. 7d and
Supplementary Data 7), including Aurora Kinase A (AURKA).
These genes formed distinct reversal modules in three cancers,
where genes were either suppressed or induced specifically by
effective compounds.

In each of these three cancers, effective compounds exhibit
the tendency to simultaneously suppress and induce multiple
disease genes that are not frequently mutated but are related to
disease progression and prognosis (Fig. 7b–d). For example,
BMP4 and GPER are suppressed and induced, respectively,
by effective compounds in COAD. BMP signalling promotes
the growth of primary human colon carcinomas in vivo32 and
activation of GPER exerts an inhibitory effect on colonic
motility33. Overexpression of RGS2, a gene induced by effective
compounds in BRCA, was reported to have an inhibitory effect

on BRCA cell growth34. BIRC5, the target of Wnt pathway, is also
highly expressed in LIHC tumours and is suppressed by effective
compounds in LIHC. Effective compounds including pyrvinium
pamoate in LIHC induced the expression of EGR1. EGR1 was
shown to suppress cell growth and malignant phenotypes in
LIHC35 and was one of the immediate early genes repressed by
Wnt signalling36. Together, this approach can potentially identify
genes that may be associated with disease progression and that
may be further investigated as therapeutic targets.

Discussion
A primary goal of the precision medicine initiative is to
identify new drugs for molecularly defined diseases37. The
commonly used target-based drug discovery approach that
focuses on interfering with individual targets is challenged by
lack of drug efficacy, drug resistance and off-target effects38–40.
The recent mixed results from the SHIVA trial, which selected
therapies primarily based on actionable mutations, indicate that
innovative approaches are going to be needed to increase the
success of personalized medicine41. The approach of identifying
drugs that reverse the molecular state of a disease may be a
complementary method to the traditional target-based approach.
Using gene expression as a representation of the molecular state, a
number of studies have demonstrated its potential in drug
discovery12,42,43; yet, there was no systematic way to correlate
reversal potency and drug efficacy. Our study leveraged the
emerging public cancer genomics and pharmacogenomics
databases to address this challenge, and we successfully
demonstrated that reversal potency correlates with drug efficacy
and can be used to predict potential new drug candidates for
several cancer types.
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By integrating several large-scale public data sets, and using
BRCA, LIHC and COAD as case studies, we demonstrated that
drug reversal potency (as measured by its sRGES after drug
treatment) is correlated to drug efficacy (measured by IC50 after
drug treatment), and yet the correlation is highly dependent on
cell line, drug concentration and treatment duration. Taking these
confounding factors into account using our summarization
method could significantly improve the overall correlation
between a drug’s reversal potency and its efficacy. Even though
cancer cell lines and patient tumour samples are different, a
recent study demonstrated that cell lines faithfully recapitulate
oncogenic alterations identified in tumours44. The positive
correlation between the sRGES and IC50 also indicates that
combining disease gene expression derived from clinical samples
and drug gene expression profiled in vitro could be a predictor of
drug efficacy. Importantly, we showed that this correlation is
retained even when the disease is not represented by cell lines
of its own lineage in the drug expression databases. Since the
15 cancer cell lines primarily used in LINCS do not cover all
cancer types, this finding suggests that our approach can be
generalized to predict drugs for other cancers and cancer
subtypes. As large volumes of drug gene expression profiles
under different biological conditions can be produced owing to
the rapidly decreasing costs of profiling technology, RGES can be
used to screen compounds very efficiently and cost-effectively.
More importantly, since RGES captures the molecular features of
clinical samples, RGES is expected to be a clinically relevant
predictor, compared to high-throughput screening technologies
that measure drug activity in specific cell lines20,24,45.

Our summarized RGES approach successfully predicted four
novel compounds of distinct chemical structure and primary
mechanisms, as being able to reverse LIHC gene expression.
Independent validation of all four compounds using an in vitro
antiproliferation assay in a panel of LIHC cell lines confirmed
that all four compounds have potent antiproliferative effects in all
five cell lines tested, providing proof-of-concept of our computa-
tional approach. Importantly, the most potent drug pyrvinium
pamoate also significantly reduced the growth of subcutaneous
xenografts of the LIHC cell line, Huh7, giving further confidence
to our predictions. Pyrvinium pamoate, an FDA-approved drug
for the treatment of pinworms, was reported to inhibit tumour
growth via targeting Wnt signalling in breast cancer30. It was
also reported to target the unfolded protein response46, CD133
(ref. 47) and autophagy addiction48. The promising in vitro and
in vivo antitumour effects of pyrvinium pamoate warrants a
further investigation into its mechanisms and its potential use as a
repurposed drug in liver cancer.

In addition to three primary cancers (BRCA, LIHC and
COAD), we observed the significant correlation between reversal
potency and drug efficacy in ER-positive BRCA, a subtype of
breast cancer. We focused on this subtype, as it is the only
subtype for which we could find sufficient activity and gene
expression data for the computational analysis. It would be of
great interest to explore this concept to identify drugs that reverse
oncogenic pathway signatures, chemoresistance signatures or
even individual patient signatures or to identify drug mimickers.
Notably, it is likely that cytotoxic drugs or epigenetic inhibitors
may present significant reversal potency to a variety of disease
signatures; hence, additional work is needed to remove these
nonspecific agents.

Besides its use to predict drug candidates, we demonstrated
that the RGES could also be used to provide insights into the
mechanisms of action of drug candidates. By studying the genes
specifically reversed by effective drugs compared to ineffective
drugs in each of the three cancer types studied, we found
that each cancer has its own set of genes that were reversed

(either induced or suppressed) by the effective drugs. These
commonly reversed genes in each of these cancers may be
common drug targets or downstream effector genes that mediate
the antitumour effects of the effective drugs, and may be further
investigated as potential therapeutic targets using traditional drug
discovery approaches. Some of these reversed genes have also
been reported to play functional roles in the progression of
cancer, and our results suggest that interference with their
expression (and therefore function) is associated with therapeutic
outcome. Although the reversed genes are not frequently mutated
in clinical tumour samples, it might be interesting to connect
them to commonly observed mutations through biological
pathways. Of note, this analysis was based on a limited number
of landmark genes profiled in LINCS; it is possible that other
relevant targets including those with high-frequent alterations
could be identified with a greater coverage of transcripts in the
drug expression profiles.

We also observed that the correlation of RGES to drug efficacy
is not outstanding, and a number of compounds do not follow the
trend. This may arise from several reasons. First, although IC50 is
one important measure of drug efficacy, it is known to vary across
different studies. For example, in the COAD drug predictions,
RGES of sorafenib reached as low as � 0.29, but its IC50 in
HT29 cells is as high as 335 mM in ChEMBL, while its IC50 in
HT29 cells is 8 mM in another database20. It would be interesting
to explore other matrices to measure drug efficacy22,23. Second,
although the 978 landmark genes, which were primarily used to
compute RGES, were carefully selected by the LINCS consortium,
expression changes of these genes may not reflect the mechanisms
of action of some compounds (for example, microtubule
inhibitors). The performance could be improved if expression
of the remaining genes could be inferred more accurately or other
sequencing technologies such as RNA-Seq with more coverage of
transcripts could be used. Third, since RGES depends highly on
drug concentration and treatment duration, some compounds
may need longer treatment durations or higher concentrations in
order to exert downstream effects. For example, docetaxel
presents different mechanisms under different doses49. We also
note that RGES is derived from a profile after 6 or 24 h treatment,
while IC50 is derived from a response curve after 72 h or longer
treatment. Lastly, it has been suggested that other types of data
(for example, proteomics, metabolomics) should be integrated in
computational drug discovery. For example, Niepel et al.50

proposed that protein-signalling networks could be used to
predict drug response in breast cancer cell lines, and Wei et al.51

suggested that metabolomics could be used to predict response to
neoadjuvant chemotherapy for breast cancer. Future improve-
ments to the RGES method will aim to address some of these
issues and to incorporate other types of omics data into its
computation and subsequent drug prediction.

In summary, our computational approach provided a systematic
way to connect disease gene expression with drug-induced
expression profiles, and successfully demonstrated that drugs
showing efficacy in cancer cells show enhanced potency to reverse
disease gene expression compared to ineffective drugs. By
analysing disease genes that are reversed by effective drugs, our
approach can also provide possible insights into the disease
development and drug mechanism. It also suggests the potential of
using this computational method to assess the potency to reverse
disease signatures composed by other molecular features (for
example, protein) in addition to gene expression. Furthermore,
since our method captures molecular features of patients, it is
possible to develop signatures for individual patients, and use these
to query and find more effective personalized treatments for
individual patients. Lastly, since our summarized RGES approach
provides one score for each drug based on its overall effect on a

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16022 ARTICLE

NATURE COMMUNICATIONS | 8:16022 | DOI: 10.1038/ncomms16022 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


given disease signature, further studies will investigate its predictive
power in multiple models that reflect the heterogeneous subtypes
of different cancers. Overall, our computational approach can be
broadly applied to other cases where reliable gene expression data
exist, and have the potential to speed up drug discovery in diseases
with high unmet needs.

Methods
Data sets. We collected RNA-Seq data of tumours and adjacent normal tissues
from TCGA (http://firebrowse.org/)21. The transcripts, for which the number of
tumour samples with raw count o1 is smaller than the number of normal samples,
were removed. The tumour samples that are not correlated to the cancer cell lines
from the same lineage in CCLE20 were removed. The correlation between tumours
and cell lines was computed by comparing their gene expression profiles52,53. Cell
lines among LINCS, CCLE and ChEMBL were mapped using cell line name
followed by manual inspection. Compounds between ChEMBL and LINCS were
mapped using InChI keys. Compound IC50s in cancer cell lines were retrieved from
ChEMBL (version 20). Each IC50 was manually inspected based on assay
description. The assays where cell lines were manipulated, for example, to have
acquired resistance to a drug, were ignored. As IC50 of one compound may vary
across different studies (Supplementary Fig. 8 and Supplementary Data 8) even in
the same cell lines, we used the median to summarize the IC50s. We also identified
9 cytotoxic compounds and 69 targeted compounds based on the previous
pharmacogenomics study44. The details of data harmonization are provided in
Supplementary Methods and in Supplementary Fig. 9.

Disease/drug gene expression signatures. RNA-Seq profiles were normalized
and proceed using the R package DESeq V1 (ref. 54). Disease gene expression
signatures were computed using the function nbinomTest (tumour samples versus
unpaired adjacent tumour samples, log 2 fold change 41.5, adjusted Po0.001).
Default parameters were used across all cancer types, unless specified. Drug gene
expression profiles were downloaded from LINCS and processed as previously
described55. Briefly, a full matrix composed by 476,251 signatures and 22,268 genes
including 978 landmark genes was downloaded from the LINCS website
(http://www.lincscloud.org/) as of September 2013. The meta-information
of the signatures (for example, cell line, treatment duration, treatment
concentration) was retrieved via the LINCS Application Program Interfaces
(APIs; http://api.lincscloud.org/a2/). The signature, derived from the comparison
of expressions between the samples treated with the perturbagen of interest
and vehicle control, represents gene expression change upon treatment. The
perturbagens can be small molecules, gene knock downs and gene overexpressions.
Only small-molecule perturbagens with high-quality gene expression profiles
(is_gold¼ 1, annotated in the meta-information) were further analysed.

Disease selection. In order to correlate RGES and IC50, a sufficient number of DE
genes (number of DE genes 450) and drug activities (number of drugs 430) are
needed for each cancer type (Threshold selection was justified in Supplementary
Methods and Supplementary Fig. 10). Among all the cancers available in TCGA,
only BRCA, LIHC and COAD met the criteria (Supplementary Methods). In
addition, ER-positive BRCA samples were identified from TCGA and their relevant
cell lines were identified according to the literature56,57.

RGES computation. The computation of RGES was modified from the
connectivity score developed in previous studies8,12. Genes were first ranked by
their expression values in each drug signature i. An enrichment score (es) of each
set of up- and downregulated disease genes was computed based on their positions
in the ranked list. Let P be the total number of genes in the drug signature and let m
be the total number of up- or downregulated disease genes. First construct a vector
V of the position (1yn) for each of the genes in the disease signature on the basis
of the values from the drug signature. Those were sorted in ascending order such
that V(j) is the position of disease gene j, where j¼ 1,2,ym. Then, for each set of
up- and downregulated disease genes, we computed aup, adown, bup and bdown using
the formulae provided in the Supplementary Material in Lamb et al.8. If aup4bup,
we set enrichment score esup¼ aup, otherwise, esup¼ � bup. If adown4bdown, we set
enrichment score esdown¼ adown, otherwise, esdown¼ � bdown. esup represents the
absolute enrichment of an up gene list in a given profile and esdown represents the
absolute enrichment of a down gene list in a given profile.

In the previous studies, a connectivity score is set as 0 when both esup and
esdown are either positive or negative, leading to the enrichment of score 0
(Supplementary Fig. 3b). The highly enriched score 0 would bias the correlation
analysis with drug efficacy (Supplementary Fig. 11). Therefore, we define
RGES¼ esup� esdown regardless of the direction. Different from the connectivity
score, RGES emphasizes the reversal correlation as it is aimed to capture the
reversal relation between the disease and efficacious drugs. LINCS only profiled the
expression of 1,000 landmark genes and imputed the expression of the rest of the
genome using a computational model. We found that using landmark genes alone
to compute RGES performs much better than including the imputed genes

(Supplementary Data 4). In order to exclude a possible artefact of limiting the
disease signature genes to only the landmark genes, we performed a similar analysis
using the Connectivity-Map data, where the whole-genome arrays in MCF7 were
provided. We found that 31 compounds have gene expression profiles and drug
efficacy in MCF7. The correlation between RGES and IC50 is 0.52 (P¼ 2.3� 10� 3)
while using the expression of the whole genome, and it decreased to 0.47
(P¼ 6.7� 10� 3) while using the expression of the landmark genes (Supplementary
Fig. 12). Although new methods are being developed to impute gene expression58,
we primarily used the landmark genes in this study based on our analysis and
previous studies55,59.

In addition, we also computed Spearman, Pearson and Cosine similarity
between disease and drug gene expression, which were suggested to be alternatives
in computing the reversal relationship60. We performed similar analysis using these
methods. We found that RGES led to the best correlation with drug efficacy
(Supplementary Data 4). Therefore, in the following analysis, we decided to use
RGES, computed based on the landmark genes.

RGES summarization. In previous studies using the CMap drug library, we
and others chose the profile with the best likelihood to reverse disease gene
expression12,15. Iorio et al.43 developed a computational method to merge multiple
gene expression profiles of one drug into a single profile and then compared each
individual merged profile with the disease gene expression signature. These
methods may not be directly applied to the new library LINCS L1000, where the
drug gene expression profiles are much more diverse in terms of cell lines and
treatment conditions than those in CMap. Existing tools such as L1000CDS2

(ref. 61) being developed by the LINCS consortium currently only provide
the scores of individual profiles for a given disease signature, without ranking
the overall reversal potency of individual drugs. In the LINCS cloud
(http://apps.lincscloud.org/), the mean connectivity score across multiple cell lines
in which the perturbagen connected most strongly to the query was used to
summarize connectivity scores. As drugs with a longer treatment and a higher
concentration tend to present higher reversal potency (Fig. 2), it is not reasonable
to compare the reversal potency of one drug under one treatment condition with
another drug under a different treatment condition. Therefore, we developed a
method to normalize RGES from other conditions to a reference condition, such
that all normalized RGES could be compared under the same condition.

A common condition in LINCS is 10 mM concentration and 24 h treatment
(accounting for 27% of all profiles)—we set this condition as a reference and any
other conditions as a target condition. The majority of target conditions are with
concentration o10mM and treatment duration o24 h. Some drugs may have
profiles under both conditions, while some may have profiles only under the target
condition. We used these drugs, which were profiled in the same cell line with at
least one target condition and at least one reference condition, to train a model. We
assumed that the difference in RGES between a target condition and the reference
condition is mainly dependent on its dose and time. We used f(dose(i), time(i)) to
denote the difference, and the following formula to summarize RGES:

sRGES ¼
XN

i

RGES ið Þþ f dose ið Þ; time ið Þð ÞÞ�w ið Þ=Nð ð1Þ

w ið Þ ¼ cor(cell(i), tumours)
�

maxk cor cell kð Þ; tumoursð Þ; ð2Þ

where N is the number of drug profiles. f(dose(i), time(i)) was estimated by a
computational model. Correlation between cell(i) and tumour samples was
estimated as the average of correlations between the cell line and individual
tumours. The maximum correlation between cell lines and tumour samples was
used to normalize correlation. The details of the model and its comparison with the
methods being used in the LINCS cloud are described in the Supplementary
Methods and Supplementary Fig. 13.

Identification of reversed genes. We first retrieved drug gene expression profiles
and drug efficacy data (IC50) from the cell lines that share the same lineage with a
given cancer type. For those with multiple IC50s, we chose their median IC50. For
those with multiple gene expression profiles, we chose the profile with the median
RGES. As a result, each drug has only one gene expression profile and one IC50.

Each profile was sorted by its expression values: upregulated genes were
ranked high (or on the top), and downregulated genes were ranked low (or on the
bottom). Let R(i, j) be the position of a up-/downregulated disease gene i in a
ranked profile j. Compounds were categorized into two groups: effective
(IC50o10mM) and ineffective group (IC50Z10mM) based on their activity in the
cell lines. We chose 10mM as the activity threshold because compounds with
activity greater than 10mM in primary screenings are often of little interest to
continue62. For the upregulated genes, we defined the reversal genes as those that
were ranked lower in the effective group than the ineffective group. For the
downregulated genes, we defined the reversal genes as those that were ranked
higher in the effective group than the ineffective group. One-sided Mann–
Whitney–Wilcoxon test was used to assess the difference of the ranked between
two groups. The gene with an adjusted P value less than 0.25 was considered as a
reversal gene.
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To find a list of robust reversed genes, we used a leave-one-compound-out
approach. For each trial, one compound was removed and reversed genes were
then identified using the approach described above. Only the genes that were
significantly reversed in all trials were kept.

Chemicals. FCCP and CGK-733 were purchased from Abcam (Cambridge, MA),
and pyrvinium pamoate was purchased from USP (Rockville, MD). These three
compounds were dissolved in dimethyl sulfoxide (DMSO) at stock solutions of
10 mM. Strophanthidin was purchased from Sigma-Aldrich (St Louis, MO) and
was dissolved in 100% ethanol at a stock solution of 10 mM. All stock solutions
were stored at � 20 �C for subsequent use in cell-based experiments.

Culture of LIHC cell lines. The LIHC cell lines HepG2, PLC/PRF/5 and Hep3B
were obtained from American Type Culture Collection (Manassas, VA), and the
Huh7 cell line was a gift from Dr Mark Kay (Stanford University, CA). Hep40 cell
line was a gift from Dr Xin Chen (University of California, San Francisco, CA).
The human LIHC cell lines were maintained at 37 �C in a humidified atmosphere
(5% CO2) in the following media types, supplemented with 10% fetal bovine serum,
100mg ml� 1 penicillin and 100mg ml� 1 streptomycin: Eagle’s Minimum Essential
Media (for HepG2, Hep3B and PLC/PRF/5) and DMEM (for Huh7 and Hep40).
All media and supplements were obtained from Invitrogen (Carlsbad, CA). All cell
lines were authenticated by short tandem repeat profiling (John’s Hopkins
University), and were mycoplasma-free.

Cell proliferation assay. Each of the five LIHC cell lines was seeded in 96-well,
clear bottom plates (BD Biosciences, Franklin Lakes, NJ), with 5,000 cells in 200 ml
of growth media per well. The cells were then treated with respective compounds in
fivefold serial dilutions ranging from 100 to 0.0064 mM. After treatment period of
72 h, the media and compounds were removed and replaced with 100 ml of fresh
growth media and 20 ml of CellTiter-96 AQueous One Solution Reagent (Promega,
Madison, WI). After incubation for 2–4 h, absorbance was measured at 490 nm
using the Powerwave XS microplate spectrophotometer (BioTek, Winooski, VT).
IC50s were calculated as an estimate of each compound’s efficacy. Three inde-
pendent experiments were done, each in triplicates.

Colony formation assay. Each of the LIHC cell lines was seeded in six-well plates,
with 5,000 cells in 2 ml of media per well. The cells were then incubated with
pyrvinium pamoate at 0.5, 5 or 50 nM for 10 days, until colonies became
sufficiently large to quantify. The media and compounds were replaced on days 3, 6
and 9. On day 10, the cells were washed once with 1� PBS, fixed in ice-cold
methanol for 10 min and stained with 0.5% crystal violet (in 25% methanol) for
10 min at room temperature. After rinsing with double-distilled water and drying
at room temperature, images of the colonies were obtained using an Epson scanner.
Each treatment was evaluated in triplicates, and representative images are shown.
For relative quantification of colony formation, we determined the colony
staining intensity by solubilizing the cell-associated dye in DMSO and measuring
absorbance (OD580) of the dye-DMSO solution in a Powerwave XS microplate
spectrophotometer (BioTek, Winooski, VT).

Xenograft mouse model and drug treatment. Animal work was approved by the
Administrative Panel on Laboratory Animal Care at Stanford University. Animal
studies were carried out in compliance with all federal and local institutional rules
for the conduct of animal experiments. To generate subcutaneous xenografts,
2� 106 Huh7 cells were suspended in 100 ml of Dulbecco’s PBS (Invitrogen);
after mixing with 100 ml of Matrigel (Corning, NY), the mixture was injected
subcutaneously near the right forelimb of 6-week-old female NOD scid gamma
(NSG) mice (The Jackson Laboratory, Bar Harbor, ME). Mice were then rando-
mized into two groups (n¼ 4 each), and given intratumour injections of 50 ml
DMSO (vehicle control), or 1 mg (dissolved in 50 ml DMSO) of pyrvinium pamoate
every 3 days for 2 weeks. Tumour size was measured with a caliper before each
treatment time point, and the tumour volumes were calculated using the formula:
V¼ (W2� L)/2. The full versions of western blots of the in vitro and in vivo
experiments are available in Supplementary Fig. 14.

Statistical analyses. All cell-based experiments were independently repeated at
least three times, and data from representative experiments are shown. All
quantitative data are reported as means±s.d. Unpaired t-test was used to calculate
statistical differences between control vehicle and treatment group. Differences
between two or more experimental groups were analysed by one-way analysis of
variance (ANOVA) or two-way ANOVA. P values ofo0.05 were considered sig-
nificant. No statistical method was used to predetermine sample size for all
experiments (in vitro and in vivo). The investigators were not blinded to allocation
for the in vivo experiments. All statistical analyses of validation results were carried
out using GraphPad Prism (GraphPad Software, San Diego, CA), and all other
computational analyses were carried out in R version 3.2.4.

Code availability. The code is available at https://github.com/Bin-Chen-Lab/RGES.

Data availability. The data necessary for the analysis are available at Synapse
(synapse.org; syn6182429). The rest of the data supporting the conclusions of this
study are available from the corresponding author.
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