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Draft Genome Sequences of Two Xanthomonas fragariae Strains
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ABSTRACT Xanthomonas fragariae is the causal agent of angular leaf spot of straw-
berry. Short-read sequences were generated for two X. fragariae strains with different
virulence phenotypes on the lllumina HiSeq 2000 platform. These genome sequen-
ces will contribute to a better understanding of pathogen evolution and the genes
contributing to virulence in X. fragariae.

anthomonas fragariae causes angular leaf spot of strawberry, a problematic dis-

ease in strawberry nursery production (1-4). Genome sequences of X. fragariae
strains with similar virulences have been published (1-3). Here, we present the draft
genome sequence assemblies of two X. fragariae strains reported as having different
virulence phenotypes. Xf100 and Xf1431 were isolated in the 1990s from symptomatic
plants in Florida; Xf1431 was reported as nonpathogenic on cultivar Dover (5, 6). The
strains were received from John Hartung (USDA-ARS) and stored at —80°C.

A single colony per strain was transferred from a 3- to 4-day-old culture on sucrose
peptone agar into sucrose peptone broth for 1 to 2days at 25°C; genomic DNA was
extracted from the colonies using a DNeasy blood and tissue kit (Qiagen, Germantown,
MD) and sent to BGI (Shenzhen, Guangdong, China) for sequencing on the Illlumina
HiSeq 2000 system. For each strain, two libraries (~470-bp and ~6,300-bp inserts)
were prepared (7) and sequenced with 90- and 50-bp reads, respectively. The sequen-
ces were processed with bioinformatics tools using default parameters unless stated
otherwise. The raw reads were quality controlled with Trimmomatic v0.39 (8). After
eliminating the low-quality reads, the clean reads (>160x coverage per strain) were
used for de novo genome assembly with SOAPdenovo r242 (9, 10). Gene prediction
and annotation were performed with the prokaryotic genome annotation program
PROKKA v1.14.5 (11). The similarity of amino acid sequences to the LMG-25863 refer-
ence genome (GenBank accession no. GCA_000376745.1) (3) was measured using AAI-
Profiler (12). The trimmed and paired reads were aligned to LMG-25863 with HISAT2
v2.2.1 (13); genomic variants were identified with the GATK haplotype caller v4.1.9.0
(14). Variants in the coding regions were functionally annotated with SnpEff v5.0 (15).
The LMG-25863 protein sequences from the types Il, lll, IV, and VI secretion systems
and the toxin-antitoxin (TA) system were compared against those of Xf100 and Xf1431
using BLASTP.

Xf100 and Xf1431 are highly similar to LMG-25863 (Table 1); all strains lacked sev-
eral critical genes for pathogen-host interactions found in other xanthomonads, includ-
ing the xcs genes in the type Il secretion system, phenolics degradation | and Il, glyoxy-
late shunt, and xylan degradation clusters | to lll. All three strains share the same type
ll-xps, Ill, IV, and VI secretion systems, except for the ClpB T6SS protein present in Xf100
and Xf1431 but highly fragmented in LMG-25863. For genes in the TA system, Xf1431
harbors two copies of RelB and RelE, while Xf100 and LMG-25863 each have one; DinJ
and YafO in Xf100 shared 44% and 88% identity to those in Xf1431 and LMG-25863.
Only 148 variant sites (142 single nucleotide polymorphisms [SNPs], 3 insertions, and
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TABLE 1 Sequencing statistics of Xf100 and Xf1431 in comparison to the reference X. fragariae strain LMG-25863

No. of
No. of Assembly GC protein-coding
Strain No. of reads bases (Mbp) size (bp) No. of contigs N, (kbp) content (%) genes?
Xf100 5,365,874 755 4,155,724 136 77.3 62.30 3,841
Xf1431 4,678,916 688 4,203,715 121 91.5 62.27 3,896
LMG-25863 8,185,858 1,022 4,182,545 96 1314 62.20 3,919

a As predicted with PROKKA.

3 deletions) were found between Xf100 and Xf1431, which may explain their different
virulence phenotypes, but they shared increased variation (685 SNPs, 30 insertions,
and 34 deletions) from LMG-25863 (isolated in Belgium), which could be attributed to
their geographical distance. The genome sequences of Xf100 and Xf1431 will be im-
portant additional resources for understanding virulence in X. fragariae.
Data availability. The assembled sequences are available under GenBank assembly
accession no. GCA_016792245.1 and GCA_016792185.1; the raw reads are available
under SRA accession no. SRR13617564 and SRR13617565 for Xf100 and SRR13618019
and SRR13618020 for Xf1431.
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