

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of 4-chloro-N-[2-(piperidin-1-yl)ethyl]benzamide mono**hvdrate**

K. Prathebha,^a D. Reuben Jonathan,^b B. K Revathi.^a S. Sathva^a and G. Usha^a*

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and ^bDepartment of Chemistry, Madras Christian College, Chennai-59, India. *Correspondence e-mail: gugmc@yahoo.com

Received 2 December 2014; accepted 7 December 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{14}H_{19}ClN_2O_2 \cdot H_2O$, the piperdine ring adopts a chair conformation. The dihedral angle between the mean plane of the piperidine ring and that of the phenyl ring is 41.64 (1)°. In the crystal, molecules are linked by $O-H \cdots N$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds involving the water molecule, forming double-stranded chains propagating along [010].

Keywords: crystal structure; piperidine; benzamide; monohydrate; hydrogen bonding.

CCDC reference: 1038084

1. Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013, 2014). For the biological activities of piperdine derivatives, see: Pandey & Chawla (2012); Jayalakshmi & Nanjundan (2008); Parthiban et al. (2005); Aridoss et al. (2008); Ramachandran et al. (2011). For related structures, see: Prathebha et al. (2014); Ávila et al. (2010); Al-abbasi et al. (2010).

2. Experimental

2.1. Crystal data

C14H19ClN2O·H2O $M_r = 284.78$

Monoclinic, $P2_1/n$ a = 14.9115 (6) Å

b = 6.6899 (3) Å OPEN a ACCESS c = 15.6215(7) Å $\beta = 102.956 (2)^{\circ}$ V = 1518.67 (11) Å³ Z = 4

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.939, \ T_{\max} = 0.951$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.160$	independent and constrained
S = 1.01	refinement
3780 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\overline{O1W-H1WA\cdots N1^{i}}$ N2-H2···O1W	0.83 (2) 0.86	2.03 (2) 2.06	2.851 (3) 2.855 (2)	174 (2) 153
$C6-H6B\cdots O1W$	0.97	2.59	3.406 (3)	142

data reports

Mo $K\alpha$ radiation

 $0.25 \times 0.23 \times 0.20$ mm

12566 measured reflections

3780 independent reflections

1953 reflections with $I > 2\sigma(I)$

 $\mu = 0.25 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.036$

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: XPREP in SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5034).

References

- Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.
- Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.
- Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, 01630.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jayalakshmi, N. & Nanjundan, S. (2008). Int. J. Chem. Sci. 6, 1177-1188.
- Pandey, P. & Chawla, P. (2012). Int. J. Pharm. Pharm. Sci. 2, 305-309.
- Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.

- Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, 0771.
- Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, 01424.

Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). *Acta Cryst.* D65, 148–155. Westrip, S. P. (2010). *J. Appl. Cryst.* 43, 920–925.

supporting information

Acta Cryst. (2015). E71, o39-o40 [doi:10.1107/S2056989014026851]

Crystal structure of 4-chloro-N-[2-(piperidin-1-yl)ethyl]benzamide monohydrate

K. Prathebha, D. Reuben Jonathan, B. K Revathi, S. Sathya and G. Usha

S1. Comment

The piperidine derivatives were reported to have antimicrobial activity. Piperidine derivatives have been synthesized for pharmaceutical research as they are very efficient against resistance microorganisms. The substituted piperidine derivatives were also reported to have antimicrobial activity (Pandey & Chawla, 2012; Jayalakshmi & Nanjundan, 2008; Parthiban *et al.*, 2005; Aridoss *et al.*, 2008; Ramachandran *et al.* 2011).

In the title compound, Fig. 1, the piperidine ring is *cis* to the phenyl ring. The C—N distances [1.335 (2) - 1.464 (2) Å] are in the normal range and are in good agreement with values of from similar structures (Ávila *et al.*, 2010; Prathebha *et al.*, 2014). The bond angle sum around atoms N1 and N2 [333.2 (4)° and 359.97 (1)°, respectively] shows sp³ hybridization. The C=O distance [1.231 (2) Å] is comparable with the value reported previously (Al-abbasi *et al.*, 2010). The piperdine ring adopts a chair conformation with puckering parameters of q2 = 0.6994 (0) Å, φ 2 = 88.60 (0)° q3 = -0.0267 (0) Å, QT = 0.6999 Å and θ 2 = 92.19 (2)°.

In the crystal, adjacent molecules are linked by O-H···N, O-H···O and C-H···O hydrogen bonds, involving the water molecule, forming double stranded chains propagating along [010]; see Table 1 and Fig. 2

S2. Experimental

The title compound was synthesized following a publish procedure (Prathebha *et al.*, 2013, 2014). In a 250 mL roundbottomed flask 120 mL of ethylmethylketone was added to 1,2-aminoethylpiperidine (0.02 mol) and stirred at room temperature. After 5 min triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. Then 4-chlorobenzoylchloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for ca. 2 h. A white precipitate of triethylammoniumchloride was formed. It was filtered and the filtrate was evaporated to give the crude product. It was recrystallized twice from ethylmethylketone (yield: 82%) giving colourless block-like crystals of the title compound.

S3. Refinement

The water H atoms were located in a difference Fourier map and freely refined. The NH and C-bound H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 - 0.97 Å, N—H = 0.86 Å with U_{iso} (H) = $1.5U_{eq}$ (C) for methyl H atoms and = $1.2U_{eq}$ (N,C) for other H atoms.

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view along the *b* axis of the crystal packing of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1 for details; C-bound H atoms have been omitted for clarity).

4-Chloro-N-[2-(piperidin-1-yl)ethyl]benzamide monohydrate

Crystal data	
$C_{14}H_{19}CIN_2O\cdot H_2O$	$V = 1518.67 (11) \text{ Å}^3$
$M_r = 284.78$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 608
Hall symbol: -P 2yn	$D_{\rm x} = 1.245 {\rm ~Mg} {\rm ~m}^{-3}$
a = 14.9115 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 6.6899 (3) Å	Cell parameters from 3780 reflections
c = 15.6215 (7) Å	$\theta = 1.7 - 28.4^{\circ}$
$\beta = 102.956 \ (2)^{\circ}$	$\mu = 0.25 \text{ mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Bruker Kappa APEXII CCD diffractometer	12566 measured reflections 3780 independent reflections
Radiation source: fine-focus sealed tube	1953 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
ω and φ scan	$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(SADABS; Bruker, 2004)	$k = -8 \rightarrow 7$
$T_{\min} = 0.939, \ T_{\max} = 0.951$	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference F
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independe
	1

 3780 reflections

 181 parameters

 2 restraints

 Primary atom site location: structure-invariant

 direct methods

$0.25\times0.23\times0.20~mm$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0714P)^2 + 0.2535P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
O1W	0.36430 (12)	-0.0064 (2)	0.33083 (13)	0.0544 (4)	
H1WA	0.3601 (17)	-0.005 (4)	0.2772 (11)	0.062 (8)*	
H1WB	0.3987 (15)	0.082 (3)	0.3533 (15)	0.064 (8)*	
C1	0.13069 (15)	-0.6539 (4)	0.39904 (16)	0.0561 (6)	
H1A	0.1347	-0.6240	0.4605	0.067*	
H1B	0.1773	-0.7528	0.3957	0.067*	
C2	0.03637 (15)	-0.7388 (4)	0.35887 (18)	0.0671 (7)	
H2A	0.0342	-0.7795	0.2988	0.081*	
H2B	0.0257	-0.8563	0.3916	0.081*	
C3	-0.03859 (16)	-0.5866 (4)	0.35964 (18)	0.0682 (7)	
H3A	-0.0428	-0.5605	0.4197	0.082*	
H3B	-0.0973	-0.6390	0.3279	0.082*	
C4	-0.01743 (15)	-0.3941 (4)	0.31710 (18)	0.0665 (7)	

H4A	-0.0223	-0.4163	0.2549	0.080*
H4B	-0.0621	-0.2930	0.3234	0.080*
C5	0.07842 (15)	-0.3203 (4)	0.35883 (17)	0.0610 (7)
H5A	0.0910	-0.1994	0.3293	0.073*
H5B	0.0817	-0.2878	0.4200	0.073*
C6	0.24037 (14)	-0.3914 (3)	0.38842 (15)	0.0508 (6)
H6A	0.2500	-0.3780	0.4517	0.061*
H6B	0.2448	-0.2593	0.3641	0.061*
C7	0.31449 (13)	-0.5225 (3)	0.36732 (16)	0.0511 (6)
H7A	0.3226	-0.6393	0.4051	0.061*
H7B	0.2961	-0.5678	0.3069	0.061*
C8	0.48147 (13)	-0.5074 (3)	0.38619 (13)	0.0411 (5)
C9	0.56372 (13)	-0.3766 (3)	0.39205 (13)	0.0405 (5)
C10	0.63653 (15)	-0.4479 (4)	0.35953 (15)	0.0530 (6)
H10	0.6343	-0.5769	0.3370	0.064*
C11	0.71251 (15)	-0.3293 (4)	0.36017 (16)	0.0633 (7)
H11	0.7610	-0.3773	0.3377	0.076*
C12	0.71562 (14)	-0.1406 (4)	0.39423 (16)	0.0552 (6)
C13	0.64543 (15)	-0.0669 (4)	0.42879 (15)	0.0541 (6)
H13	0.6491	0.0607	0.4529	0.065*
C14	0.56919 (14)	-0.1860 (3)	0.42700 (14)	0.0479 (5)
H14	0.5209	-0.1371	0.4497	0.058*
N1	0.14836 (11)	-0.4716 (2)	0.35340 (11)	0.0435 (4)
N2	0.40087 (11)	-0.4147 (3)	0.37969 (11)	0.0480 (5)
H2	0.4002	-0.2864	0.3830	0.058*
01	0.48880 (10)	-0.6908 (2)	0.38625 (10)	0.0573 (4)
Cl1	0.81091 (5)	0.01012 (12)	0.39483 (6)	0.0952 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1W	0.0567 (10)	0.0380 (10)	0.0677 (12)	-0.0102 (8)	0.0123 (9)	0.0000 (9)
C1	0.0484 (13)	0.0450 (14)	0.0746 (15)	-0.0061 (11)	0.0129 (11)	0.0122 (12)
C2	0.0503 (14)	0.0549 (16)	0.0971 (19)	-0.0147 (12)	0.0184 (13)	0.0019 (14)
C3	0.0445 (13)	0.0754 (19)	0.0887 (18)	-0.0116 (13)	0.0234 (12)	-0.0014 (15)
C4	0.0427 (13)	0.0672 (18)	0.0939 (18)	0.0093 (12)	0.0244 (12)	0.0050 (15)
C5	0.0478 (13)	0.0479 (15)	0.0937 (18)	0.0037 (11)	0.0297 (12)	-0.0020 (13)
C6	0.0437 (12)	0.0424 (13)	0.0682 (14)	-0.0064 (10)	0.0164 (10)	-0.0050 (11)
C7	0.0364 (11)	0.0373 (13)	0.0779 (15)	-0.0021 (9)	0.0091 (10)	-0.0042 (11)
C8	0.0383 (11)	0.0353 (12)	0.0482 (12)	-0.0031 (9)	0.0067 (8)	-0.0020 (9)
C9	0.0365 (10)	0.0375 (12)	0.0456 (11)	-0.0029 (9)	0.0049 (8)	0.0003 (9)
C10	0.0440 (12)	0.0439 (13)	0.0720 (15)	-0.0020 (10)	0.0150 (11)	-0.0097 (11)
C11	0.0442 (13)	0.0648 (18)	0.0857 (18)	-0.0042 (12)	0.0247 (12)	-0.0076 (14)
C12	0.0413 (12)	0.0530 (16)	0.0710 (15)	-0.0140 (10)	0.0121 (11)	0.0048 (12)
C13	0.0495 (13)	0.0394 (13)	0.0718 (15)	-0.0083 (10)	0.0102 (11)	-0.0057 (11)
C14	0.0397 (11)	0.0420 (13)	0.0628 (14)	-0.0029 (9)	0.0129 (10)	-0.0057 (11)
N1	0.0361 (9)	0.0344 (10)	0.0610(11)	-0.0010 (7)	0.0132 (8)	0.0014 (8)
N2	0.0360 (9)	0.0314 (10)	0.0751 (12)	-0.0035 (7)	0.0094 (8)	-0.0013 (9)

supporting information

01	0.0493 (9)	0.0342 (10)	0.0869 (11)	-0.0040 (7)	0.0124 (8)	-0.0050 (8)
Cl1	0.0650 (5)	0.0851 (6)	0.1438 (8)	-0.0346 (4)	0.0410 (5)	-0.0043 (5)

Geometric parameters (Å, °)

O1W—H1WA	0.826 (16)	С6—Н6А	0.9700
O1W—H1WB	0.808 (16)	C6—H6B	0.9700
C1—N1	1.466 (3)	C7—N2	1.451 (2)
C1—C2	1.516 (3)	С7—Н7А	0.9700
C1—H1A	0.9700	С7—Н7В	0.9700
C1—H1B	0.9700	C8—O1	1.231 (2)
C2—C3	1.514 (3)	C8—N2	1.336 (2)
C2—H2A	0.9700	C8—C9	1.493 (3)
C2—H2B	0.9700	C9—C10	1.383 (3)
C3—C4	1.515 (4)	C9—C14	1.382 (3)
С3—НЗА	0.9700	C10-C11	1.381 (3)
С3—Н3В	0.9700	C10—H10	0.9300
C4—C5	1.514 (3)	C11—C12	1.366 (3)
C4—H4A	0.9700	C11—H11	0.9300
C4—H4B	0.9700	C12—C13	1.372 (3)
C5—N1	1.469 (3)	C12—Cl1	1.741 (2)
С5—Н5А	0.9700	C13—C14	1.383 (3)
С5—Н5В	0.9700	С13—Н13	0.9300
C6—N1	1.460 (3)	C14—H14	0.9300
C6—C7	1.504 (3)	N2—H2	0.8600
H1WA—O1W—H1WB	109 (2)	С7—С6—Н6В	109.2
N1—C1—C2	111.19 (19)	H6A—C6—H6B	107.9
N1—C1—H1A	109.4	N2—C7—C6	110.77 (17)
C2—C1—H1A	109.4	N2—C7—H7A	109.5
N1—C1—H1B	109.4	С6—С7—Н7А	109.5
C2—C1—H1B	109.4	N2—C7—H7B	109.5
H1A—C1—H1B	108.0	С6—С7—Н7В	109.5
C3—C2—C1	111.3 (2)	H7A—C7—H7B	108.1
С3—С2—Н2А	109.4	O1—C8—N2	122.74 (18)
C1—C2—H2A	109.4	O1—C8—C9	120.83 (18)
С3—С2—Н2В	109.4	N2—C8—C9	116.42 (18)
C1—C2—H2B	109.4	C10-C9-C14	118.80 (18)
H2A—C2—H2B	108.0	C10—C9—C8	118.50 (18)
C2—C3—C4	109.98 (18)	C14—C9—C8	122.69 (18)
С2—С3—НЗА	109.7	C11—C10—C9	120.6 (2)
С4—С3—Н3А	109.7	С11—С10—Н10	119.7
С2—С3—Н3В	109.7	С9—С10—Н10	119.7
C4—C3—H3B	109.7	C12—C11—C10	119.3 (2)
НЗА—СЗ—НЗВ	108.2	C12—C11—H11	120.3
C5—C4—C3	110.9 (2)	C10-C11-H11	120.3
C5—C4—H4A	109.4	C11—C12—C13	121.5 (2)
C3—C4—H4A	109.4	C11—C12—Cl1	119.58 (18)

C5—C4—H4B	109.4	C13—C12—Cl1	118.89 (19)
C3—C4—H4B	109.4	C12—C13—C14	118.7 (2)
H4A—C4—H4B	108.0	С12—С13—Н13	120.6
N1—C5—C4	111.4 (2)	C14—C13—H13	120.6
N1—C5—H5A	109.4	C9—C14—C13	120.98 (19)
C4—C5—H5A	109.4	C9—C14—H14	119.5
N1—C5—H5B	109.4	C13—C14—H14	119.5
С4—С5—Н5В	109.4	C6—N1—C1	112.30 (17)
H5A—C5—H5B	108.0	C6—N1—C5	110.17 (17)
N1—C6—C7	112.24 (17)	C1—N1—C5	109.74 (16)
N1—C6—H6A	109.2	C8—N2—C7	122.38 (17)
С7—С6—Н6А	109.2	C8—N2—H2	118.8
N1—C6—H6B	109.2	C7—N2—H2	118.8
N1—C1—C2—C3	-57.0 (3)	C11—C12—C13—C14	-1.4 (4)
C1—C2—C3—C4	53.1 (3)	Cl1—C12—C13—C14	179.04 (17)
C2—C3—C4—C5	-53.1 (3)	C10-C9-C14-C13	0.7 (3)
C3—C4—C5—N1	57.3 (3)	C8—C9—C14—C13	-178.0 (2)
N1—C6—C7—N2	163.46 (18)	C12—C13—C14—C9	0.7 (3)
O1—C8—C9—C10	28.2 (3)	C7—C6—N1—C1	69.4 (2)
N2-C8-C9-C10			
01 $C9$ $C0$ $C14$	-150.8 (2)	C7—C6—N1—C5	-167.94 (19)
01 - 08 - 09 - 014	-150.8 (2) -153.1 (2)	C7—C6—N1—C5 C2—C1—N1—C6	-167.94 (19) -177.55 (19)
N2-C8-C9-C14	-150.8 (2) -153.1 (2) 27.9 (3)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5	-167.94 (19) -177.55 (19) 59.6 (2)
N2-C8-C9-C14 C14-C9-C10-C11	-150.8 (2) -153.1 (2) 27.9 (3) -1.4 (3)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5 C4—C5—N1—C6	-167.94 (19) -177.55 (19) 59.6 (2) 175.98 (19)
N2-C8-C9-C14 C14-C9-C10-C11 C8-C9-C10-C11	-150.8 (2) -153.1 (2) 27.9 (3) -1.4 (3) 177.3 (2)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5 C4—C5—N1—C6 C4—C5—N1—C1	-167.94 (19) -177.55 (19) 59.6 (2) 175.98 (19) -59.9 (2)
N2-C8-C9-C14 C14-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C12	-150.8 (2) -153.1 (2) 27.9 (3) -1.4 (3) 177.3 (2) 0.7 (4)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5 C4—C5—N1—C6 C4—C5—N1—C1 O1—C8—N2—C7	-167.94 (19) -177.55 (19) 59.6 (2) 175.98 (19) -59.9 (2) -3.5 (3)
N2-C8-C9-C14 C14-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C12 C10-C11-C12-C13	-150.8 (2) -153.1 (2) 27.9 (3) -1.4 (3) 177.3 (2) 0.7 (4) 0.8 (4)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5 C4—C5—N1—C6 C4—C5—N1—C1 O1—C8—N2—C7 C9—C8—N2—C7	-167.94 (19) -177.55 (19) 59.6 (2) 175.98 (19) -59.9 (2) -3.5 (3) 175.58 (18)
N2-C8-C9-C14 C14-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C12 C10-C11-C12-C13 C10-C11-C12-C11	-150.8 (2) -153.1 (2) 27.9 (3) -1.4 (3) 177.3 (2) 0.7 (4) 0.8 (4) -179.72 (18)	C7—C6—N1—C5 C2—C1—N1—C6 C2—C1—N1—C5 C4—C5—N1—C6 C4—C5—N1—C1 O1—C8—N2—C7 C9—C8—N2—C7 C6—C7—N2—C8	-167.94 (19) -177.55 (19) 59.6 (2) 175.98 (19) -59.9 (2) -3.5 (3) 175.58 (18) 163.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A
$O1W$ — $H1WA$ ··· $N1^{i}$	0.83 (2)	2.03 (2)	2.851 (3)	174 (2)
N2—H2···O1 <i>W</i>	0.86	2.06	2.855 (2)	153
C6—H6 <i>B</i> ···O1 <i>W</i>	0.97	2.59	3.406 (3)	142

Symmetry code: (i) -x+1/2, y+1/2, -z+1/2.