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Abstract

The roles of γδ T cells in liver cancer, especially in the poten-
tial function of immunotherapy due to their direct cytotoxic 
effects on tumor cells and secretion of important cytokines 
and chemokines, have aroused research interest. This re-
view briefly describes the basic characteristics of γδ T cells, 
focusing on their diverse effects on liver cancer. In particular, 
different subtypes of γδ T cells have diverse or even opposite 
effects on liver cancer. We provide a detailed description of 
the immune regulatory network of γδ T cells in liver can-
cer from two aspects: immune components and nonimmune 
components. The interactions between various components 
in this immune regulatory network are dynamic and pluralis-
tic, ultimately determining the biological effects of γδ T cells 
in liver cancer. We also integrate the current knowledge of γδ 
T-cell immunotherapy for liver cancer treatment, emphasiz-
ing the potential of these cells in liver cancer immunotherapy.
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Introduction
Liver cancer, as a globally notorious malignant tumor, causes 
hundreds of thousands of deaths and poses a serious so-
cioeconomic burden.1,2 The pathogenesis of liver cancer is 
unclear and is inseparable from its complex tumor microen-

vironment (TME).3 The protumor/antitumor factors or cel-
lular/noncellular components form a multicellular network 
in the TME, collectively determining the malignant biological 
behaviors of liver cancer cells.4–7 Since patients with liver 
cancer are often diagnosed in the middle to late stages, most 
patients lose the opportunity for surgical radical resection 
and face a poor prognosis.8 Notably, immunotherapy has 
significantly improved the treatment of liver cancer.9–11 Cel-
lular immunotherapy, involving natural killer cells (NKs),12,13 
chimeric antigen receptor T cells (CAR-T cells),14,15 and γδ 
T cells, is emerging as a star in the field of immunotherapy, 
with its efficacy confirmed by various of mechanistic studies 
and clinical research.

γδ T cells belong to the innate but nonconventional lym-
phocyte family, constituting approximately 5% (on average) 
of total T cells in peripheral blood.16–18 γδ T cells, comprising 
15–25% of the total liver T cells, are 5–10 times more abun-
dant in the liver than in other tissues and organs.19 Moreover, 
hepatic γδ T cells are highly localized in the liver, exhibit-
ing a more active and mature phenotype with high CD44 
and low CD62 markers.20 In the thymus, “double negative” 
(DN) thymocytes, the primary immature precursors of γδ T 
cells, undergo rearrangement after α-selection, β-selection, 
γ-selection and δ-selection. Following TCR γδ signal stimula-
tion,21 TCR γδ+ DN progenitors are directed into the γδ T-cell 
lineage and subsequently differentiate and mature into γδ 
T cells.22,23 Additionally, the gene expression profile reveals 
that the gene signatures of γδ T cells are equivalent to those 
of a mixture of αβ T cells and NK cells, endowing γδ T cells 
with the characteristics of both cell types.24 Compared with 
αβ T cells, γδ T cells typically exhibit different immune phe-
notypes. Besides the common expression of CD2, CD3, CD5, 
and CD7, γδ T cells are usually negative for CD4 and CD8, 
with occasional CD8 positivity.25 Although they both express 
CD3, the expression level is higher in γδ T cells than in αβ T 
cells.26 The most notable distinction from αβ T cells is that 
γδ T cells are not restricted by major histocompatibility com-
plex (MHC) molecules,27 enabling them to be activated within 
minutes to detect molecular signals stimulated by infection 
or cancer and subsequently produce a large number of pro-
inflammatory cytokines and chemokines.21,28

Much research attention is promptly focused on under-
standing the relationship between γδ T cells and tumors, as 
well as the therapeutic prospects of γδ T cells in antitumor 
activities. Here, we summarize the functional plasticity of γδ 
T cells and their dual role in liver cancer. We also discuss the 
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immune regulatory networks of γδ T cells involved in the 
microenvironment of liver cancer, γδ T-cell-based immuno-
therapy in liver cancer and perspectives on its development 
and use in the future.

Subtypes of γδ T cells and pathophysiological roles

Classification of γδ T Cells
Human γδ T cells are usually divided into Vδ1+, Vδ2+, and 
Vδ3+γδ T cells according to the difference in the arrange-
ment of the γ chain and δ chain.29 Vδ1+γδ T cells are mainly 
distributed in the epithelium and mucosa, accounting for 
approximately 5–10% of γδ T cells.30,31 Vδ2+γδ T cells are 
mainly present in peripheral blood, constituting the major-
ity of the total number of γδ T cells. In particular, γδ T cells 
expressing the Vγ9Vδ2 TCR account for 50–95% of total γδ T 
cells and are also the main cells responsible for the antitumor 
effects.32 Vδ3+ γδ T cells are mainly present in the liver and 
small intestine epithelium. There is relatively little research 
on the role of Vδ3+ γδ T cells in tumors, but there is still re-
search potential.33,34 Furthermore, Vδ1+ γδ T cells and Vδ2+ 
γδ T cells can be further classified by the expression of differ-
ent CD molecules and the skewed expression patterns of the 
memory markers CD45RA and CD27. Vδ1+ γδ T cells from 
healthy individuals mainly represent a CD45RA+CD27+ phe-
notype,35 with high expression of CD56.36 However, Vδ1+γδ 
T cells in tumor tissue tend to exhibit a CD45RA-CD27- phe-
notype.37,38 Vδ2+ γδ T cells mainly exhibit a CD45RA- CD27+ 
phenotype, with CCR5 and CD161 generally overexpressed, 
allowing them to quickly migrate to inflammatory tissue.36 
Accordingly, γδ T cells display subset-specific features that 
need to be emphasized, as these features increase the un-
derstanding of the true role of γδ T cells in different diseases, 
especially their role in cancer.

Pathophysiological roles of γδ T cells
γδ T cells exert an extensive array of biological effects. Their 
main characteristics include cytotoxic activity against target 
cells and the secretion of different types of cytokines and 
chemokines. γδ T cells can also interact with other cells, such 
as αβ T cells, dendritic cells (DCs), B cells, NKs and mac-
rophages. Through these functional activities, γδ T cells ex-
hibit anti-infection and antitumor effects and play a role in 
immune regulation and damage repair.

Numerous studies have revealed that γδ T cells exert 
their antitumor effect mainly through the production of cy-
tokines (such as interferon γ (IFN γ) and TNF-α), triggering 
γδ TCR recognition molecules, NK cell receptors (NKRs), and 
antibody-dependent cell-mediated cytotoxicity (ADCC). The 
recognition of γδ TCR depends on interactions with specific 
phosphoantigens,39–41 such as butyrophilin 3 A1 (BTN3A1),42 
and subsequently activating Vγ9Vδ2 T cells. BTN2A1 is essen-
tial for BTN3A1-dependent Vg9Vd2 T-cell activation against 
cancer cells, regulating Vγ9Vδ2 T-cell binding to the TCR.43 
Representative molecules of the NK recognition mechanism 
include NKG2D,44 NKp30,45 and NKp44.45 Various cytokines 
and chemokines assist γδ T cells in achieving cytotoxic func-
tions while acting as regulators in the immune microenviron-
ment. Some scientific evidence indicates that γδ T cells ex-
hibit cytotoxic activity in liver cancer46–48 and are under the 
regulation of cytokines such as IL-2 and IL-21.49 Additionally, 
IL-17 and IL-2, the most common cytokines secreted by γδ 
T cells, have been identified as biomarkers of poor prognosis 
in malignant tumors, related to the maintenance and promo-
tion of the inflammatory environment.50,51 γδ T cells are the 
main providers of IFN γ in tumor immunity, and IFN γ plays 

an crucial role in controlling tumor development.52,53 Cur-
rently, it is acknowledged that the chemokines produced by 
γδ T cells include C-C chemokine receptor (CCR)2,54 CCR5,55 
CCR6,56 CCR7,57 and CCR9,55 which play an auxiliary role in 
γδ T cell anti-infection and antitumor functions. The recruit-
ment and activation of γδ T cells depend on the reactivity of 
different chemokine signals. Chemokines induce γδ T cells 
to accurately migrate to the desired site, and γδ T cells and 
other cells produce chemokines, achieving this goal together.

Elucidating the interactions between γδ T cells and other 
immune cells will increase the understanding of γδ T cells. γδ 
T cells have been confirmed to function as antigen-presenting 
cells (APCs), similar to DCs, effectively processing and pre-
senting antigens to CD4+ T cells and CD8+ T cells to initiate 
immune responses.58 Furthermore, γδ T cells provide strong 
stimulation signals for the differentiation and maturation of 
DCs through the Fas-Fas L pathway.59,60 Another study found 
that γδ T cells and DCs mutually promote maturation, and 
the increase in DC-induced apoptosis induces the expression 
of γδ T-cell ligands, thereby activating γδ T cells.59 The pro-
liferation and differentiation of αβ T cells are still induced by 
γδ T cells,61 but in the tumor microenvironment, γδ T cells 
show an inhibitory effect on the activation of αβ T cells and 
support the occurrence of pancreatic tumors.62 It has been 
proven that Vδ2+ and Vδ3+γδ T cells affect the differentia-
tion, antibody secretion, and cytokine production of B cells, 
starting from the moment that B cells are released from the 
bone marrow.63,64 γδ T cells are associated with changes in 
the number of macrophages, and they also promote M2 mac-
rophage polarization by secreting IL-17A, thus contributing 
to the clearance of infected cells.65 Additionally, the number 
of peripheral γδ T cells is negatively correlated with the ac-
cumulation of neutrophils and M1 macrophages. Peripheral 
γδ T cells limit the expansion and recruitment of neutrophils 
to alleviate inflammation.66,67 In a liver ischemia–reperfu-
sion injury model, γδ TCR and IL-17a contribute to the in-
crease in neutrophil numbers and exacerbate liver injury.68 
It is thus clear that the relationships between γδ T cells and 
other immune cells are extensive and far-reaching, shaping 
the body’s vast immune regulatory network. The subtypes 
of γδ T cells and the pathophysiological roles of γδ T cells in 
tumors are summarized in Figure 1.

A dual role of γδ T cells in liver cancer
In the TME of liver cancer, the diversity of γδ T cell subpopu-
lations in anti-tumor immune functions, such as the dynamic 
interactions between tumor promotion and inhibition, has re-
ceived widespread attention, with special emphasis on the 
differences between Vδ 1+and Vδ2+ γδ T cells. The functional 
paradigm of γδ T cells and their secreted factors was defined 
in tumor immunity through an in-depth understanding of γδ 
T cell subpopulations, enabling these subpopulations to exert 
anti-tumor effects in the tumor microenvironment. However, 
the γδ T cell subpopulations and their corresponding tumor 
effects are still being refined. With the development of more 
experimental methods, the dual role and mechanism of γδ 
T cells in liver cancer will be elucidated in greater detail and 
accuracy, becoming the key to explaining immune tolerance 
in liver cancer. A dual role of γδ T cells in liver cancer is sum-
marized in Figure 2.

Antitumor immunosurveillance in liver cancer
Studies using γδ T cells, particularly Vγ9Vδ2 T cells, to treat 
liver cancer have shown positive results. A high proportion of 
Vγ9Vδ2 T cells is associated with longer HCC patient survival 
times.69,70 NKRs expressed by γδT cells, especially the NK-
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G2D receptor, are the main cell type that combats cancer.71 
High expression of the NKG2D receptor is beneficial for en-
hancing the cytotoxicity of γδ T cells against HCC cell lines.72 
The ULBP family, which binds to NKRs and is expressed by 
tumors, is involved in the recognition of tumor antigens by 
Vγ9Vδ2 T cells, and its expression level determines the sus-
ceptibility of Vγ9Vδ2 T-cell lysis.73,74 High ULBP1 expression 
is positively correlated with the degree of severity of HCC.75 
In patients with HCC, ULBP1 deficiency is an independent 
risk factor for early recurrence and poor prognosis.72 After 
binding to NKG2D, the release of IFN-γ and TNF-α is induced 
to promote γδ T-cell cytolytic activity.76 γδ T cells are impor-
tant sources of IFN-γ and TNF-α, which are known to inhibit 
tumor growth by specifically inducing apoptosis and inhib-
iting angiogenesis.77,78 γδ T cells expressing DNAX acces-
sory molecule-1 (DNAM-1) and CD96 can more efficiently 
recognize Nectin-like-5 expressed on HCC cells and enhance 
the lysis of HCC cells, with a concomitant increase in IFN-γ 
production.79 In addition, research has found that CD96+ 
γδ T cells are released from the liver and circulate in the 
bloodstream, having an inhibitory effect on the progression 
of other tumors.80 Several reports have shown that the killing 
ability of γδ T cells against cancer cells is related to external 

factors. A co-culture system of zoledronate (ZOL),81 alendro-
nate (ALD),82 or artesunate83 with γδ T cells can effectively 
activate γδ T cells and increase tumor susceptibility. The an-
titumor properties of γδ T cells have great clinical application 
value. Further in-depth research is still needed to determine 
how γδ T cells can increase their own efficacy and enhance 
their recognition of HCC cells.

Tumor-promoting tolerance in liver cancer

Some studies have revealed the protumor effects of γδ T 
cells. HCC-infiltrating γδ T cells are mainly composed of IL-
17-producing Vδ1 γδ T cells,84 which play a role in promot-
ing tumor proliferation,85 angiogenesis,86 metastasis87 and 
immunotherapy resistance.88 Vδ1 γδ T cells are considered 
tissue-resident cells that are significantly enriched in the liv-
er.69 Tissue residence produces a local immune tolerance ef-
fect that can be maintained for a long time, which is becom-
ing a key feature of antitumor protection.89 Further research 
has found that the Vδ1+ T-cell population, which highly ex-
presses LAG3, negatively regulates the antitumor function 
of T cells through immune suppression.90 In the HCC mouse 
model, IL-17A was secreted mainly by Vγ4 γδ T cells, so re-

Fig. 1.  The subtypes of γδ T cells and the pathophysiological roles of γδ T cells in tumors. Human γδ T cells are usually divided into Vδ1+, Vδ2+, and Vδ3+γδ 
T cells according to the arrangement of the γ chain and δ chain. Vδ1+ γδ T cells and Vδ2+ γδ T cells can be further classified by the expression of the memory mark-
ers CD45RA and CD27. The pathophysiological roles of γδ T cells include their cytotoxic activity against target cells, the secretion of different types of cytokines and 
chemokines and their interaction with other cells, such as αβ T cells, dendritic cells (DCs), B cells, natural killer cells (NKs), and macrophages. DCs, dendritic cells; NKs, 
natural killer cells. IFN-γ, interferon γ; CCR, C-C chemokine receptor;  TNF-α, tumor necrosis factor-α; IL, interleukin; TCR, T cell receptor.
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plenishing Vγ4 γδ T cells promoted tumor growth by recruit-
ing myeloid-derived suppressor cells (MDSCs) in a CXCL5/
CXCR2-dependent manner and further inhibiting CD8+ 
T cells to enhance immune suppression.91 More recently, 
among HCC patients, the cytotoxicity of γδ T cells was sig-
nificantly reduced, which is related to the expression of PD-1 
in γδ T cells being significantly upregulated. Coincubation of 
γδ T cells leads to an increased proportion of PD-L1+ HCC 
cells, which is highly likely to enhance the immune escape of 
tumor cells.49 Interestingly, Vγ9Vδ2 T cells, also represent-
ing immunosuppressive properties, deviate into Th1-, Th17-, 
or Treg-like phenotypes depending on the environment and 
secrete immunosuppressive factors (IL-4, IL-17 or IL-10 and 
TGF-β) to inhibit T-cell proliferation and indirectly suppress 
tumor immunity.92,93 Thus, the tumor-promoting effect of γδ 
T cells on liver cancer is comprehensive. Weakening or inhib-
iting the antitumor effect of γδ T cells is both a challenge and 
an opportunity for liver cancer research.

Immune regulatory networks of γδ T cells involved 
in the microenvironment of liver cancer

Nonimmune component regulatory networks

The immune regulatory network of γδ T cells in liver cancer 
is extremely sophisticated and multivariant, of which non-

immune components are an important factor. Environmental 
factors, such as reactive oxygen species production,94 oxy-
gen tension,95 and lipoprotein levels,95 have been proven to 
impact the expression of IFN γ and/or NKR in γδ T cells. He 
et al. used single-cell sequencing to explain the metabolic 
changes of HCC-infiltrating γδ T cells which are significantly 
inhibited in oxygen metabolism, lipid metabolism, and amino 
acid synthesis, and tilt towards glutamine-rich metabolism, 
providing nutrients for tumor cell metabolism.90 Combined 
with a genome-wide CRISPR screening of target cancer cells, 
another study found that the triggering of γδ T cells by BT-
N3A and BTN2A1 depended on AMP-activated protein kinase 
(AMPK), and demonstrated that γδ T cells are regulated by 
multiple layers of BTN3A, such as transcription, post-transla-
tional modifications, and membrane transport, further deep-
ening our understanding of γδ T cell stress monitoring.96 The 
homeostasis of IL-17A-producing γδ T cells retained in the 
liver is regulated by palmitic acid and CD1d, a necessary lipid 
antigen.97 Moreover, apoptosis, ferroptosis, and pyroptosis 
significantly induce an immunosuppressive microenviron-
ment in HCC, in which an imbalance in γδ T cells and an 
increase in the Vd1+/Vd2+ ratio are markers of poor prog-
nosis in HCC patients.98 Several reports have shown that the 
tumor-killing ability of γδ T cells is related to external factors. 
Artesunate enhances the antitumor function of γδ T cells by 
upregulating the expression of Fas on HepG2 cells while re-

Fig. 2.  A dual role of γδ T cells in liver cancer. Different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. IFN-γ, interferon γ; TGF-β,  
tumor growth factor-β; TNF-α, tumor necrosis factor-α; IL, interleukin; LAG3, lymphocyte activation gene-3; PD-1, programmed death -1; CD96, cluster of differentia-
tion-96; ULBP1, ul16-binding protein; NKGD2, natural killer group member D.
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ducing the secretion of TGF-β by HepG2 cells, thus reversing 
the immune escape of HepG2 cells.83 The co-cultivation of 
zoledronate and HCC cell lines also resulted in an increase in 
the number and killing ability of γδ T cells.99 Overexpression 
of miR-382 in normal liver cells increases the sensitivity of 
γδ T cells to HCC, thereby promoting HCC cell lysis.100 Mac-
rophage-stimulating protein (MSP) and peptide HP1 stimu-
late Vγ9Vδ2 T cells, which have high expression levels of 
IFN-γ and TNF-α, to exert a Th1-biased immune response for 
inhibiting HCC.46 Other cellular components in the liver, such 
as hepatic stellate cells, activate TLR3 under the mediation of 
exosomes, thereby increasing γδ T cell-mediated production 
of IL-17A, which exacerbates liver fibrosis.101 Evidently, the 
importance of γδT cell and cellular component interactions in 
elucidating the mechanism of liver cancer has begun to be 
recognized.102

Immune cellular regulatory networks
Crosstalk between γδ T cells and other immune cells, such as 
neutrophils, macrophages, T cells, and B cells, is widespread 
and has been identified in many malignant tumors. The im-
mune balance in liver cancer is the result of γδ T cell self-
regulation and their interactions with other immune cells. 
Tumor-infiltrating γδ T cells respond to signals from micro-
organisms and tumors, activate CD4+ and CD8+ T cells,103 
and regulate the number and function of CD4, CD8, and NK 
cells.90 The activation of CD8+ T cells by γδ T cells may be 
achieved through the scavenger receptor CD36, resulting in 
tumor antigen-specific CD8+ T-cell responses.104 The regu-
lation between different immunocytes is often bidirectional, 
but the effect of CD4+, CD8+, and NK cells on γδ T cells has 
not yet been revealed. The elucidation of these effects will 
help clarify the mechanism of γδ T cells in liver cancer and 
even other diseases. IL-17A produced by HCC-infiltrating Vγ4 
γδ T cells enhances the infiltration of MDSCs, leading to the 
inhibition of the CD8+ T-cell response and the promotion of 
tumor growth.91 Additionally, MDSCs also harbor the capac-
ity to modulate the generation of IFN-γ and the antitumor 
effect of Vδ2 γδ T cells in the tumor microenvironment.105 
Moreover, TEM results have shown that there is a negative 
correlation between the number of γδ T cells and the number 
of Treg cells in HCC, possibly because CD4+CD25+ regula-
tory T cells directly suppress the cytotoxic function and IFN-γ 
secretion of γδ T cells in a TGF-β- and IL-10-dependent man-
ner.106 On the other hand, γδ T cells can differentiate into γδ 
Treg cells and play an immunosuppressive role in cancer, as 
tumor-derived γδ Treg cells promote T cell and DC senes-
cence through TLR8 signaling. This results in the inhibition 
of innate and adaptive immunity to maintain tumor suppres-
sion.107,108 To date, there is limited research evidence for the 
interaction between γδ T cells and other immune cells in liver 
cancer, which can help elucidate the occurrence and develop-
ment of the liver. The relationships between γδ T cells and 
other immune or nonimmune cells in liver cancer are worth 
further exploration.

Immune molecular regulatory networks
Immune molecules are both executors and regulators of γδ 
T cell function. Relying on various immune molecules, γδ 
T cells successfully interact with other cells to construct a 
meticulous and efficient regulatory network in the liver can-
cer microenvironment. The high expression of CCR1/CCR5 
makes γδ T cells recruited by C-C motif chemokine ligand 4 
(CCL4)/CCL5 into HCC tissue, exerting protective effects on 
CD8+ T cells and strengthening the body’s antitumor abil-
ity.109 Another study pointed out that the high expression 

of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells, which 
is consistent with the shift in antitumor ability.110 Block-
ade of the CCL2/CCR2 axis has been considered a novel 
protective factor during the recruitment of Vδ1 T cells to 
HCC lesions.54,111 Furthermore, mutual crosstalk between 
chemokines and cytokines should be emphasized, which 
serves as a feedback mechanism that determines the final 
performance of γδ T cells in liver cancer.112,113 The bind-
ing of CCR6 and CCL20 significantly aggregates IL-17- and 
IL-22-expressing γδ T cells in damaged liver cells, which 
promotes the apoptosis of hepatic stellate cells (HSCs) in-
volving Fas ligands, preventing the liver from entering an 
inflammatory and fibrotic state.114

For the interleukin family, TNF-α and INF-γ are both pro-
duced by and act upon γδ T cells. For example, the decrease 
in the cytotoxicity of γδ T cells in the blood circulation of HCC 
patients may be explained by the fact that the levels of some 
pro-inflammatory cytokines (IL-2 and IL-21) are reduced and 
PD-1 is upregulated.49 Moreover, tumor-infiltrating Vγ1 γδ T 
cells produce IL-4, which significantly reduces the expression 
levels of NKG2D, perforin-1, and IFN-γ in Vγ4 γδ T cells, 
diminishing cytotoxicity and reducing antitumor function.115 
IL-35, an immunosuppressive cytokine, is produced by Treg 
cells in the hepatic microenvironment, and its overexpres-
sion promotes the depletion of γδ T cells and impairs their 
antitumor function in HCC.116 However, the influence of PD-1 
expression on γδ T cells is not well defined. In hematologi-
cal tumors, the blockade of PD-1 does not directly affect the 
cell-dependent lysis ability of γδ T cells, but PD-1+ γδ T cells 
produce more IFN-γ to enhance their own lethality.117 Simi-
larly, IL-17A production from γδ T cells can be inhibited by 
high expression of PD-1 while reducing organ inflammation 
damage and immune resistance.88,118 Other studies contra-
dict the above viewpoints, suggesting that high numbers of 
PD-1+ γδ T cells are correlated with a poor prognosis for pa-
tients with acute leukemia.119 In HCC cell lines, the cytotox-
icity of PD-1+ γδ T cells is weakened.49 Deeper exploration 
of the relationship between γδ T cells and PD-1 expression 
will lead to a more comprehensive understanding of immu-
notherapy. Thus, the immunoregulatory balance of γδ T cells 
involved in liver cancer is not yet completely understood, but 
the joint forces of multiple cytokines, chemokines, and im-
munocytes determine the overall performance of γδ T cells in 
liver cancer. Brief summary of immune regulatory networks 
of γδ T cells involved in the microenvironment of liver cancer 
is summarized in Figure 3.

γδ T-cell-based immunotherapy in liver cancer
γδ T-cell-based immunotherapy in liver cancer is being 
vigorously developed and has achieved surprising results. 
According to current research results, there are three 
mainstream directions for γδ T-cell-based immunotherapy, 
namely, synergistic effects of other antibodies, chimeric 
antigen receptor-based γδ T cells, and γδ T-cell transplan-
tation. The practical application of γδ T cell-centered immu-
notherapy in liver cancer is both promising and challenging 
with tremendous room for exploration. Studies of potential 
γδ T-cell-based immunotherapy in liver cancer is summa-
rized in Table 1.70,120–127

Synergistic effects of other antibodies
The cytotoxicity of γδ T cells in human liver sinuses de-
pends on the signaling of phosphoantigens, NK receptors, 
and immune checkpoint molecules. Nitrogen-containing 
bisphosphonates have been widely used in tumor treat-
ment, with outstanding therapeutic achievements.128–132 



Journal of Clinical and Translational Hepatology 2024 vol. 12(3)  |  287–297292

Yin K.L. et al: The niche of γδ T cells in the liver cancer

Similarly, in HCC, the addition of zoledronate markedly 
optimizes γδ T-cell-mediated immunotherapy and directly 
inhibits tumor proliferation.120,133 Moreover, the addition 
of EpCAM-specific monoclonal antibodies can prominently 
enhance the lysis effect of γδ T cells on hepatoblastoma.121 
Another study also revealed a thought-provoking phenom-
enon in which chemotherapy accelerates the immune se-
nescence and dysfunction of Vδ2 γδ T cells in patients with 
metastatic liver cancer.122 Therefore, the combination of 
γδ T cells and other drugs or antibodies is a double-edged 
sword that requires more clinical practice to provide more 
favorable evidence.

Chimeric antigen receptor (CAR) T-cell immuno-
therapy
CAR-T-cell immunotherapy is a precise and efficient tumor 
treatment method, while CAR-γδ T cells possess the advan-
tages of both treatments, pushing tumor immunotherapy to 
a new level. This strategy has been applied in clinical prac-
tice in hematological tumors and has great potential in solid 
tumors.123,134–137 Vδ1 γδ T cells engineered with glypican-
3-specific CAR and soluble IL-15 efficiently and robustly con-
trol tumor growth in HCC and exhibit strong tumor tissue ag-
gregation.124 Although promising, some technical problems 
related to CAR-γδ T cells still need to be addressed, such 

as antigen recognition and design, gene delivery technology, 
and cell proliferation.

γδ T-cell transplantation.
As HCC progresses, the function of γδ T cells is lost, and the 
Vδ2 γδ T-cell population is heavily consumed.90 At the same 
time, the expression of immunosuppressive receptors in the 
Vδ1 γδ T-cell population is upregulated, and the antitumor 
ability of Vδ2 γδ T cells is enhanced.138 Therefore, allogeneic 
Vδ2 γδ T cells serve as a promising supplement in the treat-
ment of liver cancer. In a study of Vγ9Vδ2 T-cell adoptive 
therapy, expanded cells also displayed robust antitumor ef-
ficacy against HCC and improved immune efficacy functions, 
including antitumor ability, proliferation, and differentiation.70 
In corresponding clinical trials, the prolonged survival time of 
patients confirmed the safety and effectiveness of allogeneic 
Vγ9Vδ2 T-cell immunotherapy.70,125,128 Four clinical trials re-
lated to liver cancer have been registered so far (https://
www.clinicaltrials.gov/ ID: NCT02425735, NCT03183219, 
NCT04518774, NCT05628545). In this clinical trial of ad-
vanced liver cancer (NCT03183219), of the 8 liver cancer 
patients, 7 survived for more than 10 months, and 3 survived 
for more than 30 months.70 Moreover, local regional therapy 
combined with allogeneic γδ T-cell adoptive transplantation 
is also very safe and effective in the treatment of advanced 

Fig. 3.  Brief summary of immune regulatory networks of γδ T cells involved in the microenvironment of liver cancer. The immune regulatory network of 
γδ T cells in liver cancer is extremely sophisticated and multivariant. Immune regulatory networks of γδ T cells are involved in the immune microenvironment of liver 
cancer through immune molecules, immune cells and nonimmune components. CD, cluster of differentiation; NK cell, natural-killer cell; MDSC, Myeloid-derived sup-
pressor cell; Treg cell, T regulatory cell; CCR, C-C chemokine receptor; IL, interleukin; IFN-γ, interferon γ; TNF-α, tumor necrosis factor-α.

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
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HCC and intrahepatic cholangiocarcinoma.126

For liver cancer patients, the optimization of γδ T-cell im-
munotherapy emphasizes individualization. The quality of 
γδ T-cell amplification is related to clinical and pathological 
characteristics such as tumor size, quantity, and serum AFP 
levels.127 During γδ T cell immunotherapy, the physiological 
and biochemical indicators of patients should be dynamically 
monitored to maximize the advantages of γδ T cell immuno-
therapy.127

Conclusions and future perspectives
An increasing number of studies have confirmed the unique 
properties of γδ T cells and their plasticity in the field of 
cancer research. Different subtypes of γδ T cells and their 
secreted cytokines have different protumor or antitumor 
effects. The enormous immune regulatory network formed 
around γδ T cells, including immune and nonimmune compo-
nents in the microenvironment of liver cancer, regulates the 

differentiation and performance of γδ T cells and determines 
the ultimate occurrence and development of liver cancer. γδ 
T-cell-based immunotherapy has gradually become a highly 
promising treatment protocol for liver cancer, accompanied by 
opportunities and challenges. However, the exploration of γδ 
T cells in liver cancer is still incomplete, and more systematic 
and accurate explorations are still needed in many aspects. 
First, the heterogeneity of γδ T cells needs to be emphasized 
during research, as the functions of different subpopulations 
are completely different. Second, breakthroughs and innova-
tions in technology and methods, such as the application of 
high-throughput technologies and the development of stable 
transfer models of γδ T cells, can broaden the horizons of γδ 
T cell research. Third, research on how to thoroughly induce 
the activation of γδ T cells in clinical applications and develop 
specific engineered γδ T cells targeting tumor antigens still 
requires in-depth explorations of tumor-related mechanisms. 
Fourth, combination strategies with other forms of treat-
ment, such as surgery and targeted therapy, should also be 

Table 1.  Studies of potential γδ T-cell-based immunotherapy in liver cancer

Treatment Tumor type Effector 
cells Mechanism Outcomes Refer-

ence

Zoledronic acid SK-HEP-1 and 
H22 cells

– ZOL optimizes γδ T-cell-
mediated immunotherapy and 
inhibits growth of HCC cells

Inhibited 
tumor 
proliferation

120

Zoledronate Hepatocellular 
carcinoma 
and colorectal 
carcinoma with 
hepatic metastases

Vγ9Vδ2 
T cells

The cytotoxic level of Vγ9Vδ2 T cells 
against freshly autologous tumor 
cells isolated from patients could be 
significantly increased by pretreating 
the tumor cells with zoledronate

Improved 
cytotoxicity

123

Zoledronate 
and IL-2

Hepatocellular 
carcinoma

γδ T cells Zoledronate with IL-2 may efficiently 
expand γδ T cells sourced from the 
peripheral blood of patients with HCC

Increased 
the quantity 
of the γδ 
T cells

127

EpCAM-specific 
monoclonal 
antibodies

Hepatoblastoma γδ T cells Tumor cell lysis by γδ T cells can 
be dramatically augmented

Improved 
cytotoxicity

121

Chemotherapy Metastatic 
liver cancer

Vδ2+ T 
cells

Vδ2+ T cells are coupled with 
impairments in quantity, cytotoxicity 
and production of TNF-α and IFN-γ

Decreased 
cytotoxicity

122

Glypican-3 
(GPC-3)-specific 
chimeric antigen 
receptor (CAR) 
and soluble IL-15

Hepatocellular 
carcinoma

CAR Vδ1 
T cells

GPC-3.CAR/sIL-15 Vδ1 T cells 
displayed robust in vitro and 
vivo proliferation, cytokine 
production, cytotoxic activity and 
suppression of tumor growth

Delayed 
tumour 
growth

124

The expanded 
γδ T cells from 
healthy donors

Late-stage 
liver cancer

Vγ9Vδ2 
T cells

The expanded γδ T cells possessed 
significantly improved immune effector 
functions, including proliferation, 
differentiation, and cancer cell 
killing, both in vitro and in the 
humanized mouse model, with the 
safety and efficacy in clinical trial

Improved 
antitumor 
efficacy and 
prolonged 
survival 
time of 
patients

70

The expanded 
γδ T cells from 
healthy donors

Cholangiocarcinoma Vγ9Vδ2 
T cell

Allogenic γδ T cell treatments 
positively regulated peripheral immune 
functions of the patient, depleted 
tumor activity, improved quality of 
life, and prolonged his life span

Improved 
antitumor 
efficacy

125

Locoregional 
Therapy Combined 
with Adoptive 
Transfer of 
Allogeneic γδ T Cells

Hepatocellular 
Carcinoma and 
Intrahepatic 
Cholangiocarcinoma

γδ T cells The novel combination of locoregional 
ablation with adoptive transfer of 
allogeneic γδ T cells was safe, and 
patients with HCC in the combined 
treatment group had a longer OS.

Prolonged 
survival 
time of 
patients

126
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the focus of future clinical investigation. Although research 
on γδ T cells is still in its infancy due to some technological 
limitations, γδ T cells, as attractive antitumor candidates, un-
doubtedly increase the understanding of liver cancer, and the 
application of γδ T cells in the field of liver cancer has great 
potential and a promising future.
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