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Abstract: Diet is widely recognized as a key contributor to human gut microbiome composition
and function. However, overall nutrition can be difficult to compare across a population with
varying diets. Moreover, the role of food security in the relationship with overall nutrition and the
gut microbiome is unclear. This study aims to investigate the association between personalized
nutrition scores, variation in the adult gut microbiome, and modification by food insecurity. The
data originate from the Survey of the Health of Wisconsin and the Wisconsin Microbiome Study.
Individual nutrition scores were assessed using My Nutrition Index (MNI), calculated using data
from food frequency questionnaires, and additional health history and demographic surveys. Food
security and covariate data were measured through self-reported questionnaires. The gut microbiome
was assessed using 16S amplicon sequencing of DNA extracted from stool samples. Associations,
adjusted for confounding and interaction by food security, were estimated using Weighted Quantile
Sum (WQS) regression models with Random Subset and Repeated Holdout extensions (WQSRSRH),
with bacterial taxa used as components in the weighted index. Of 643 participants, the average MNI
was 66.5 (SD = 31.9), and 22.8% of participants were food insecure. Increased MNI was significantly
associated with altered gut microbial composition (β = 2.56, 95% CI = 0.52–4.61), with Ruminococcus,
Oscillospira, and Blautia among the most heavily weighted of the 21 genera associated with the
MNI score. In the stratified interaction WQSRSRH models, the bacterial taxa most heavily weighted
in the association with MNI differed by food security, but the level of association between MNI
and the gut microbiome was not significantly different. More bacterial genera are important in
the association with higher nutrition scores for people with food insecurity versus food security,
including Streptococcus, Parabacteroides Faecalibacterium, and Desulfovibrio. Individual nutrition scores
are associated with differences in adult gut microbiome composition. The bacterial taxa most
associated with nutrition vary by level of food security. While further investigation is needed, results
showed a higher nutrition score was associated with a wider range of bacterial taxa for food insecure
vs. secure, suggesting nutritional quality in food insecure individuals is important in maintaining
health and reducing disparities.

Keywords: gut microbiome; mixture modeling; individual nutrition score; food insecurity

1. Introduction

The gut microbiome is increasingly being recognized as an important contributor to
human health. The microbiome plays an important role in maintaining homeostasis of
several key regulatory systems, including immune function and metabolism. An altered
gut microbiome has been associated with a host of chronic conditions. Diet and exposure to
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antimicrobials are some of the best known modifiable factors to influence gut microbiome
composition [1]. Opportunities for intervention via diet and microbiome have led to
numerous investigations over the last decade. However, previous studies of diet and the
gut microbiome primarily focus on specific dietary components (fiber [2], fat [3], etc.), or
interventions using specific assigned diets (Mediterranean [4], etc.). Few studies have
investigated the relationship between the overall nutrition of a person’s regular diet and
composition of the gut microbiome and how social determinants such as poverty and food
insecurity shape these relationships. Little is known about the relationship between food
insecurity and the gut microbiome. Because food insecurity can affect the quality of food
consumed [5], and influence biological processes related to stress [6,7], it is likely that food
security would modify the effect of overall nutrition on the gut microbiome.

A more holistic assessment of dietary quality and associations with the gut is needed
to reflect real-world dietary patterns and the impact of microbial composition as the gut
responds to the entire diet, not simply specific components. Furthermore, it is difficult for
people to drop all of their dietary habits and adopt a completely new diet, and maintain
those changes over time, and thus, interventional studies have limited effectiveness in
real world settings. An assessment of overall dietary quality could support more realistic
interventions that can be implemented and sustained over time with greater effectiveness
than previous interventions.

Diet and age are inter-related components shaping the gut microbiome in adult-hood.
The gut microbiome primarily takes shape in the first few years of life, and remains
relatively stable over time, but can shift dramatically with changes in dietary and other
xenobiotic exposures [8–10]. The human gut is typically colonized by four main bacterial
phyla, Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes, with Bacteroidetes and
Firmicutes typically the most dominant, and an overabundance of Proteobacteria signaling
dysbiosis and epithelial dysfunction [11–13]. The evidence around agrarian diets, high in
fiber, compared to Western diets, high in fat and low in fiber, is fairly robust [14]. Diets
that have been conserved since the onset of human agriculture have very different gut
microbiota compared to Western diets. In a landmark investigation of children from rural
Africa compared to children from European cities, the African children with higher fiber
diets had greater diversity of the gut microbiome and increased abundance of Prevotella and
other bacteria genera capable of cellulose and xylan degradation and short-chain fatty acid
production (SFCA), not abundant in the European gut microbiomes [8]. Animal and human
studies of habitual diet and dietary interventions focused on fiber and fat consumption
show a consistent increase in the ratio of Prevotalla to Bacteroides in high fiber vs. high
animal fat diets, and generally higher abundance of SCFA-producing bacteria such as
Roseburia and Ruminococcus, and lower abundance of mucus-degrading and bile-tolerant
bacteria such as Alistipes and Bilophila [3,9,14–16].

While our understanding of specific dietary components within Westernized and
agrarian diets, such as fiber and fat, and their contribution to gut microbial composition
is fair, there are different kinds of Westernized diets with different nutritional value that
may contribute differently to gut microbial composition. For instance, the composition of
the gut microbiome in Western populations following vegan, vegetarian, omnivore, and
Mediterranean diets are significantly different [4,17,18]. Nutritional guidelines set by the
U.S. Department of Health and Human Services (USDHS) and the U.S. Department of
Agriculture (USDA) vary from person to person based on age, height, sex, weight, and
medical status (pregnancy, diabetes, etc.) [19]; thus, a diet that is considered nutritious for
one person may not be for another. However, general nutrition of a diet (as determined by
USDHS and USDA guidelines), to our knowledge, has not been considered in association
with gut microbial composition.
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An additional factor contributing to differences in diet for Western populations is
food insecurity. Defined by the USDA, food insecurity occurs when “access to food is
limited by lack of money or resources.” Food insecurity was prevalent in greater than 11%
of households in the United States in 2018 [20], and has been significantly associated with
sleep disorders, depression, and anxiety, although the etiological pathway is not completely
clear [21]. Food insecurity is not always associated with a lack of energy consumption,
but the quality of food items is often lower among individuals with food insecurity. Food
insecure households often live in areas where access to high quality food is limited or more
cost prohibitive. Food insecurity among American households is often chronic, therefore
impacting long-term dietary intake, leading to both under and over nutrition [20]. Diets
characterized by high caloric, high fat, high sugar, and often low nutrient-dense foods,
including processed carbohydrates, are often less expensive and more common when food
resources are scarce [22]. Moreover, more nutritious diets, such as the Mediterranean diet,
are often not accessible for people experiencing food insecurity [23]. Food insecurity is
conversely linked with undernutrition, defined as inadequate intake of essential nutrients
and can occur minimally or have longer-term effects [22,24]. Over nutrition in the United
States has been linked with obesity and altered Firmicutes to Bacteroides ratios, leading
to obesity-related inflammation [22]. Undernutrition among children in Bangladesh has
shown limited gut microbiome diversity and overgrowth of more harmful bacteria [25].
Few studies within the United States have examined the contributions of food insecurity
on microbial diversity, particularly in adult populations.

The aim of this study was to assess the association between personalized nutrition
scores, using My Nutrition Index (MNI), and the composition of the gut microbiome in
adults, using 16 s rRNA amplicon sequencing. We further investigated whether food
security modifies the association between MNI and the gut microbiome. To address these
aims, we used data from the Survey of the Health of Wisconsin (SHOW) and the Wisconsin
Microbiome Study (WMS). We applied Weighted Quantile Sum (WQS) regression tech-
niques to the microbiome data analysis to investigate associations with the gut microbiome
as a mixture, applying a stratified interaction WQS model to microbiome data, which has
not been done previously.

2. Methods
2.1. Study Population

This analysis used existing data collected by the Survey of the Health of Wisconsin
(SHOW), and its ancillary Wisconsin Microbiome Study (WMS). Descriptions of both
studies have been previously published [26–28]. In brief, SHOW is a population-based
health examination survey and ongoing cohort study that collects a wide range of survey
data, objective measurements, and biological specimens relating to health exposures and
outcomes, from non-institutionalized residents of Wisconsin. In 2016–2017, WMS added
the collection of survey data on microbial exposures and risk factors, and bio-specimens
for microbiome analysis for all adult participants. WMS participants contributed one stool
microbiome sample each, with the survey data taken cross-sectionally. Exclusion criteria
included having incomplete data on the variables of interest found in Table 1, including
the components that comprised our primary outcome, the My Nutrition Index. For this
analysis, we used survey self-report data, and microbiome sequencing data from stool
samples, from 643 participants with complete data.

The protocol for this analysis was approved by the Icahn School of Medicine at Mount
Sinai Institutional Review Board (STUDY-20-01396, Approved 19 January 2021). SHOW
guidelines for data sharing and publication have been followed.
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Table 1. Characteristics and demographics of subjects stratified by food security status.

Characteristic N Food Secure 1, N = 489 Food Insecure 1, N = 144 p-Value 2

My Nutrition Index 633 62.5 (20.4) 47.3 (25.6) <0.001
Age 633 56.4 (16.0) 49.3 (15.6) <0.001

Alcohol consumption (g/day) 633 10.4 (28.0) 15.4 (61.2) 0.3
Body Mass Index 624 29.8 (7.0) 33.4 (9.0) <0.001

Poverty to Income Ratio 615 4.5 (2.8) 1.6 (1.0) <0.001
Gender 633 0.2

Male 213 (44%) 54 (38%)
Female 276 (56%) 90 (62%)

Race 632 <0.001
White 431 (88%) 90 (62%)

Other/Non-White 57 (12%) 54 (38%)
Antibiotic use in the Past Year 633 0.2

Did not Use 303 (62%) 80 (56%)
Did Use 161 (33%) 52 (36%)

Unknown/Missing 25 (5%) 12 (8%)
Education 633 <0.001

<High School 20 (4%) 19 (13%)
High School or Associate’s

Degree 251 (51%) 103 (72%)

Bachelor’s Degree or Higher 218 (45%) 22 (15%)
Smoking Status 619 <0.001

Never 305 (64%) 60 (42%)
Current 37 (8%) 43 (30%)
Former 134 (28%) 40 (28%)

Electrolyte Index 633 <0.001
<Median 225 (46%) 93 (65%)
≥Median 264 (54%) 51 (35%)

Vitamin Index 633 0.2
<90 438 (90%) 134 (93%)
≥90 51 (10%) 10 (7%)

Macro Nutrient Index 624 0.015
<90 313 (65%) 105 (76%)
≥90 172 (35%) 34 (24%)

Mineral Index 633 0.11
<90 224 (46%) 77 (53%)
≥90 265 (54%) 67 (47%)

Shannon Diversity Index 624 3.3 (0.5) 3.1 (0.5) <0.001
Diabetes (Type 1 or 2) 568 0.002

Yes 52 (12%) 30 (23%)
No 384 (88%) 102 (77%)

Chronic Conditions 633 <0.001
Yes 210 (43%) 91 (63%)
No 279 (57%) 53 (37%)

1 Mean (SD); n (%); 2 Welch two-sample t-test; Pearson’s Chi-squared test.

2.2. Gut Microbiome Analysis

The stool collection, DNA extraction, and sequencing data processing have been
previously described in detail [27,29]. Briefly, stool samples were collected and refrigerated
at home up to 24 h prior to a study visit. Samples were then shipped on ice from the
study clinic to the lab within 24 h, where they were aliquoted and stored at −80 ◦C until
DNA extraction. Genomic DNA was extracted using chemical, heat, and mechanical lysis.
DNA purification was performed with a phenol-chloroform-isoamyl alcohol extraction
followed by a clean-up kit. DNA was quantified before PCR amplification of the 16 s rRNA
V4 region. Custom barcoded PCR primers were used following the protocol by Kozich
et al. [30]. Amplicon sequences were purified using a low-melt agarose gel electrophoresis,
and further cleaned using a 96 well cleanup kit. Samples were quantified and pooled
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before sequencing on an Illumina MiSeq per manufacturer’s instructions. Raw sequencing
data were processed in mothur v. 1.39 [30] following the MiSeq data Standard Operating
Procedure [31]. Overlapping sequences were aligned using the SILVA v.132 16S rRNA
reference database [32]. Low-quality reads and chimeras were removed using UCHIME [33].
Operational taxonomic units (OTUs) were assigned at the species level (97% similarity)
using GreenGenes v. gg_13_8_99 [34]. OTU counts were rarified to 10,000 sequences per
sample. Relative abundance was calculated for all OTUs with greater than 10% detect, and
further ranked. We ranked the OTUs across subjects by setting zeros to a rank of 0, and
deciling non-zero values.

2.3. My Nutrition Index

The My Nutrition Index (MNI) is a validated index of the nutritional value of one’s
daily diet derived from self-reported food frequency questionnaires (FFQ) [35–37]. It
comprises 34 dietary components: total fat, saturated fat, monounsaturated and polyun-
saturated fat, energy, protein, carbohydrates, alcohol, caffeine, sugar, fiber, vitamin E as
alpha-tocopherol, vitamin C, cholesterol, potassium, sodium, calcium, magnesium, iron,
phosphorus, zinc, thiamin, riboflavin, niacin, vitamin B5, vitamin B6, vitamin B12, vitamin
A, vitamin D, vitamin K, manganese, chloride, folate, and selenium. The FFQ used to collect
dietary nutrient values was the Diet History Questionnaire II for US & Canada, produced by
the National Cancer Institute [38]. Usual diet over the previous year was queried using the
FFQ, and responses were processed into nutrient values using the Diet*Calc software [39].

MNI is a metric of how close each component is to guideline values based on the
characteristics of the subject (for example, body mass index, smoking status (yes/no),
pregnancy, sex, age, and physical activity). It assigns higher scores for nutrient values
that fall within the published dietary guidelines’ recommended concentration range, and
lower scores if intake for a given nutrient deviates from this ideal range (above or below).
MNI provides an overall index score ranging from 0 to 100, with higher scores reflecting a
more nutritious diet. Four subscales focus the assessment to nutritional categories: Vitamin
Index, Mineral Index, Electrolyte Index, and Macro Nutrient Index. Each is on the same
scale as the MNI. See the supplemental methods for further description of the subscales.
Values for the MNI and subscales above roughly 90 indicate adequate nutrition on each
scale. In preprocessing the nutrient data, extreme values (>99th percentile) of sodium and
energy were removed from the analysis. The subscales were evaluated as dichotomized
values due to skewed and uniform distributions. The Macro Index, Vitamin Index, and
Mineral Index were split at a score of 90 due to skewness; the Electrolyte index (here,
comprised of sodium and potassium) was split at the median due to a uniform distribution.

2.4. Covariates

Due to the use of sex, age, BMI, smoking, and physical activity in the calculation of
MNI, we excluded those variables as covariates or confounders in our analyses. Therefore,
our only a priori confounder included self-reported antibiotic use in the past year (yes
vs. no/missing). Additional covariates considered included education level, race, family
income, and food security. Food insecurity was considered a confounder in stratified
analyses, and as an effect modifier in interaction analyses. Food security status was
determined by pooling responses to the following three questions: (1) In the last 12 months,
did you ever get emergency food from a church, a food pantry, or a food bank, or eat in a
soup kitchen? (2) In the last 12 months, have you been concerned about having enough
food for you or your family? (3) In the last 12 months, were you authorized to receive Food
Stamps, which includes a food stamp card or voucher, or cash grants from the state for
food? If the subject responded yes to any of these questions, they were considered to be
food insecure. Additional description of other covariate measurement is included in the
Supplementary Materials.
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3. Statistical Analyses

Statistical analyses were performed in R version 4.0.4 R Core Team (2020), and SAS 9.4
(SAS Institute, Cary, NC, USA). We analyzed the microbiome as a mixture in an association
model with each nutritional index, our primary analysis being with MNI, and further
stratified the analyses by food security level. The primary mixture method employed was
weighted quantile sum regression (WQS) with random subsets (WQSRS) and repeated hold-
outs (WQSRH) extensions (WQSRSRH), with secondary analyses using stratified interaction
WQSRSRH. Additional details about the model building approach have been included in
the Supplementary Materials.

The WQSRS and WQSRH have been previously described [40,41]. Briefly, the WQSRS is
an appropriate analysis for when the number of predictors exceeds the number of subjects,
as is the case in this study. The predictor variables, in this case the OTUs, are ranked, here
as 0s and deciled non-zeros. Using these ranks, weights were calculated for each OTU in
the mixture in association with the outcome of interest and adjusted for covariates. The
calculation of the weights was estimated 1000 times, with each estimation using a random
subset of the OTUs, wherein 23 OTUs were randomly selected to estimate the weights for
each random subset analysis; the final WQS weights were calculated as a weighted average.
The resultant WQS index for each participant is the sum of the product of each subject’s
OTU rank*weight within the mixture. This index is then applied in a generalized linear
model using the WQS as input, and adjusting for covariates, in association with the outcome.
The datasets were split into 40/60 training/validation datasets to enhance generalizability,
where the weights were estimated on the training and tested on the validation dataset in
the generalized linear model. Statistical significance was determined with p < 0.05.

The repeated holdout extension (WQSRH) of this extends the number of times the
weights are estimated such that 1 WQSRS analysis is performed a determined number of
times, and the average weights across the repeated holdouts is taken as the final weights
used in the generalized linear model to test on the validation dataset. We performed
repeated holdout analyses 100 times for primary analyses.

In WQS, a stratified analysis estimates the weights within the stratified groups, such
that separate weights were estimated for each of the OTUs within the food secure and
food insecure groups. The WQS interaction analyses tests for different levels of association
between the two food security groups; however, the weights of the OTUs within the mixture
would not differ [42]. The stratified interaction analysis estimates different association
levels between the microbiome mixture, in addition to different weights in association to
the specific outcome, between the food secure and insecure groups.

These various WQS methods output weighted indices that assign a weight to each
individual OTU within the mixture. Were each distinct OTU to have an equal contribution to
the association with the outcome, each OTU would have the same weight value. Assuming
the OTUs do not have equal weight (equi-weight), we calculate a threshold of 1/c, c being
equal to the total number of components in the mixture. If the OTUs are not equi-weighted,
we are interested in the weights that are greater than the threshold because they have a
greater impact on the positive association between the mixture and the MNI. Instead of
assessing the weights at the OTU level, however, we summed the weights of the OTUs
within each genus, for a genus-level weight. The threshold, then, became 1/89, since there
were 89 genera.

4. Results
4.1. Study Sample

Table 1 provides characteristics and demographics of the analytic sample from SHOW.
The study sample (n = 643) consisted of adults (average age 57 years), who primarily
identified as white (87%). The average body mass index (BMI) was obese, at 30.6. The
majority of participants were female (57%) and had a high school degree or higher. The
majority of participants (78%) were food secure (yes/no), and reported having never
smoked (87%). In total, 60% of participants had not taken antibiotics in the year prior
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to providing their stool sample. The microbiome samples (1 per participant) had a total
of 6645 operational taxonomic units (OTUs). After filtering the analysis to OTUs that
were detected in 10% or more of the samples, there were 516 OTUs comprising 135 species,
89 genera, and 8 phyla. Covariates for the My Nutrition Index included race, food insecurity,
and education status; the binary electrolyte index was associated with food insecurity and
education. The macro index was associated with education. The mineral index was not
associated with any covariates. The vitamin index was associated with antibiotic use in the
past year. See Table S1 for further details.

4.2. Associations between My Nutrition Index and the Gut Microbiome

We found a positive association between the microbiome mixture and the MNI (Table 2,
Supplemental Results). The positive association suggested that for each non-zero decile
increase in the WQS microbiome index, the MNI increased by 2.56 units (β = 2.56, CI = 0.52,
4.61). This indicates that, when there is a 1 out of 10 increase in the WQS index, due to a
combination of (a) higher rank of one or more OTU, indicating greater exposure, and/or
(b) exposure to OTUs that are weighted more highly in a positive association to the MNI,
the MNI is increased (100 = top health, 0 is lowest health).

Table 2. Results from the repeated holdout WQSRS regression, with positively constrained betas,
for the Gaussian and logit models with non-zero OTUs deciled in generalized linear models and
adjusted for covariates. MNI n = 623, Electrolyte index n = 624.

MNI Electrolyte Index

β (95% CI) OR (95% CI)

(Intercept) 47.9 (38.4, 57.4) 0.15 (0.06, 0.37)
WQS 2.56 (0.52, 4.61) 1.58 (1.24, 2.02)

Antibiotic use in past year: Yes (vs. no) 0.58 (−2.38, 3.54) 1.19 (0.89, 1.60)
Antibiotic use in past year: Unknown (vs. no) −2.42 (−10.73, 5.89) 1.09 (0.58, 2.04)

Education: High school/associate’s degree (vs. less
than high school degree) 9.0 (0.77, 17.23) 3.13 (1.45, 6.75)

Education: Bachelor’s degree or higher (vs. less than
high school degree) 13.5 (4.88, 22.24) 3.94 (1.74, 8.94)

Race (non-white vs. white) −0.1 (−13.2, −4.4) NA
Food insecurity (insecure vs. secure) −10.02 (−13.85, −6.2) 0.61 (0.45, 0.83)

In total, 21/89 genera had sums above the genera-specific threshold from the re-
peated holdout. Moreover, 15 of the 21 genera were within the Firmicutes phylum,
with unclassified Lachnospiraceae as the genera weight with the highest summed weight,
and unclassified Ruminococcaceae as the second highest summed weight. The phyla Bac-
teroidetes, Proteobacteria, and Verrucomicrobiota also ranked highly from this analysis
(see Figure 1 and Supplementary Figure S1). To view the magnitude of the weights, see
Supplementary Figure S2.
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Figure 1. Sankey Plot illustrating the overlap of genera with weights above the threshold (summed
OTU weights within genera) from each of the six statistically significant WQSRSRH analyses testing for
association between the microbiome mixture and the nutritional indices. The genera represented show
that each genus was found to be highly weighted. Nodes, from right to left, display the WQSRSRH

analysis outcome (My Nutrition Index/Electrolyte Index), stratification of WQSRSRH weights by
food security (not stratified/food secure/food insecure), bacterial phylum, and bacterial genus. The
widths of links between nodes are proportional to the number of genera in common to each set of
nodes. Scrolling over the links between nodes displays the number of genera found to be above the
weight threshold in the WQSRSRH analyses, dependent upon the relationship between the nodes.
Click on the link to see the GIF: https://rpubs.com/bixbym/933453.

4.3. Associations between Nutritional Subscales and the Gut Microbiome

We found a positive association between the microbiome WQS mixture and the binary
electrolyte index, which suggested that for each decile increase in the WQSRS microbiome
index, there was a 58% increase in the odds of having an above median electrolyte index
score versus a below-median score (OR = 1.58, CI = 1.24, 2.02) (Table 2).

In total, 17/89 genera had sums above the genera-specific threshold from the repeated
holdout. Moreover, 14 of the 17 genera were within the Firmicutes phylum, with unclassi-
fied Lachnospiraceae as the genera weight with the highest summed weight, and unclassified
Ruminococcaceae as the second highest summed weight (similar to the MNI analysis). The
phyla Proteobacteria and unclassified Bacteria also ranked highly from this analysis (see
Figure 1 and Supplementary Figures S1 and S3).

4.4. Associations Stratified by Food Insecurity
4.4.1. My Nutrition Index

We found a significant positive association between the WQS microbiome index and
the MNI when stratified by food security status and adjusted for covariates (β = 7.7,
CI = 1.32, 14.1) (Table 3). In the stratified analysis, the difference in strata is calculated in
the estimation of the weights; therefore, the interpretation remains the same for both food
secure and insecure groups: there is a positive association between the gut microbiome and
the MNI. However, the OTUs that contribute to the positive association differ between the
food secure vs insecure groups. See Figure 1 and Supplementary Figure S4 for the stratified

https://rpubs.com/bixbym/933453
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weights above the stratum-and-genera-level threshold. Instead of reporting within strata
the OTU weights categorized by the genera, we summed the weights of OTUs within strata
and genera. We then calculated the stratum-specific threshold to compare genera that were
shown to have greater influence on the mixture than if each genera had an equal weight.
With 39 genera total and 2 strata, 1/78 was the threshold value in this analysis. We found
25 genera to be above the threshold, all of which were identified in the food insecure group
as highly weighted genera, while 12 of these 25 were also identified as highly weighted in
the food secure group (see Figure 1, Supplementary Figures S1 and S4).

Table 3. Results from the stratified repeated holdout WQSRS regression, with positively constrained
betas, for the Gaussian and logit models with non-zero OTUs deciled in generalized linear models
and adjusted for covariates, stratified by food security status (food secure versus insecure). MNI
n = 623, Electrolyte index n = 624.

MNI Electrolyte Index

β (95% CI) OR (95% CI)

(Intercept) 49.8 (41, 58.5) 0.22 (0.10, 0.46)
WQS 7.7 (1.32, 14.1) 2.86 (1.53, 5.37)

Antibiotic use in past year: Yes (vs. no) 0.32 (−2.44, 3.09) 1.21 (0.91, 1.61)
Antibiotic use in past year: Unknown (vs. no) −2.5 (−8.8, 3.85) 1.12 (0.62, 2.05)

Education: High school/associate’s degree (vs. less
than high school degree) 8.12 (0.26, 16) 2.50 (1.23, 5.10)

Education: Bachelor’s degree or higher (vs. less than
high school degree) 12.8 (4.45, 21.1) 3.10 (1.52, 6.30)

Race (non-white vs. white) −8.2 (−12.4, −4.03) NA
Food insecurity (insecure vs. secure) −15.5 (−21.9, −9.18) 0.36 (0.21, 0.61)

The highest weights within this analysis were the unclassified Lachnospiraceae and the
unclassified Ruminococcaceae, which were weighted the highest in both the food secure and
insecure groups; however, the weights were higher for each genus in the food insecure
group than in the food secure group. Genera whose summed weights were above the
genera-and-stratum-specific weights and that were exclusively above the threshold in the
food insecure group included Lactobacillus.

There was no significant association with an interaction between food security status
and the WQS index on the MNI, with or without stratification by food security status (see
Supplementary Table S2).

4.4.2. Nutritional Subscales

We found a significant positive association between the WQS microbiome index
and the electrolyte index when stratified by food security status and adjusted for covari-
ates (β = 2.86, CI = 1.53, 5.37) (Table 3). There is a positive association between the gut
microbiome and the electrolyte index; however, the OTUs that contribute to the posi-
tive association differ between the food secure vs insecure groups. See Figure 1 and
Supplementary Figures S1 and S5 for the stratified weights above the stratum-and-genera-
level threshold. We found 26 genera to be above the threshold, all of which were identified
as highly weighted in the food insecure group, while only 14 of these 26 were also identified
in the food secure group.

The highest weights within this analysis were the unclassified Lachnospiraceae and the
unclassified Ruminococcaceae, for both the food secure and insecure groups. Similar to the
MNI analysis, the weights for these taxa were higher in the food insecure group than in the
food secure group. Genera whose summed weights were above the genera-and-stratum-
specific weights and that were exclusively above the threshold in the food insecure group
included Peptoniphilus, Coprabacillus, Actinomyces, Lactobacillus, Anaerostipes, Ruminococcus,
Faecalibacterium, Desulfovibrio, Akkermansia, and Streptococcus. No significant interactions
with food security were seen in any of the subscale analyses (see Supplementary Table S3).
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5. Discussion and Conclusions

This analysis is among the first to consider total dietary quality measured by personal-
ized nutrition scores (MNI) and specific indices on gut microbial composition, and uses a
novel approach to microbiome analysis with stratified weighted quantile sum regression.
The application of this WQS approach to account for the mixtures of both dietary compo-
nents and gut microbial composition acknowledges the complexity of both dietary as well
as gut microbial composition and overcomes limitations of previous analyses of diet and
gut microbiome. This analysis also extended the application of WQS to microbiome data, as
it is the first analysis to apply the stratified interaction WQS extension to microbiome data.

Using this novel approach, we found a significant association between the adult gut
microbiota and personalized nutrition scores (MNI) and the electrolyte index. There were
significantly different gut microbes associated with improved nutrition scores for people
with food security vs. food insecurity, but no evidence for significant change in level of
overall association (i.e., different slope). More bacterial genera were identified as important
in the association with higher nutrition scores for people reporting food insecurity. This may
suggest nutrition is more important in shaping the gut microbiome for people who are food
insecure, but this requires additional exploration. Food insecurity has been associated with
numerous adverse metabolic and immune dysregulation and is often an overshadowed
social determinant of health. Findings point to a potential mechanism by which the gut
microbiome may play a role in exacerbating persistent disparities in numerous health
outcomes, including cardiometabolic health. Findings from this analysis suggest nutrition
is more important in shaping the gut microbiome for people who are food insecure, but
this requires additional exploration.

A greater number of Firmicutes than any other phylum was associated with improved
MNI and electrolyte scores, including most heavily weighted Oscillospira and Ruminococcus,
as well as unclassified Ruminococcaceae and Lachnospiraceae. In an analysis of the Mediter-
ranean diet and body weight in a small sample of Spanish adults, Oscillospira, Desulfovibrio
and Christensenellaceae, which were all heavily weighted in our indices, were all enriched in
the normal weight group compared to the overweight group [43]. Christensenellaceae was
also associated with better compliance to the Mediterranean diet [43,44], and Oscillospira
were enriched in those who ate less protein and cholesterol [43]. Oscillospira may be
involved in the digestion and absorption of carbohydrates that are not digestible by hu-
mans [45–47], and have been shown to be inversely associated with inflammatory condi-
tions such as inflammatory bowel and Crohn’s disease [48], and positively associated with
leanness in several different populations [45,47,49–51]. Christensenellaceae have also been
associated with leanness [51] and inversely associated with inflammation, atherosclerotic
plaque formation [52], and Parkinson’s disease [53]. Streptococcus, which is weighted above
the threshold in the MNI and electrolyte indices, has been associated with high BMI, high
fat intake, and low adherence to the Mediterranean diet [43,54], and has been linked to
colorectal cancer, inflammation, and atherosclerotic disease [54–56]. This may seem con-
tradictory to the other findings; however, it is important to note that a high proportion of
our study population is overweight or obese, and thus, it follows that Streptococcus would
be enriched even with a high nutrition score. Moreover, while high meat consumption is
not always considered nutritious, meat, particularly processed meat, is high in electrolytes
(sodium and potassium), which may be helping participants reach the dietary guidelines
for those nutrients, increasing their MNI and electrolyte scores. Considered together, our
findings are consistent with these other studies of nutrition and health.

Several genera were significantly associated with both the MNI index and the elec-
trolyte index, suggesting that dietary electrolytes may be driving the association we see
with MNI overall. Oscillospira, Ruminococcaceae, and Christensenellaceae have all been associ-
ated with high salt diets in studies of mice and rats [57–59]. It has been hypothesized that
changes in gut microbial composition help absorption of salt into the body and contribute
to the etiological pathway between salt consumption and hypertension for people with salt
sensitivity [60]. In a multipart study of salt consumption, microbiome composition, and
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hypertension in both mice and human participants, Wilck et al. found that Lactobacillus
species were depleted, blood pressure increased, and T helper 17 (TH17) cells, which are
thought to contribute to hypertension, increased with higher salt consumption. In mice
fed a high salt diet, supplementation of Lactobacillus species with a high salt diet reduced
TH17 abundance and ameliorated salt-sensitive hypertension [61]. An observational study
in a large Chinese cohort found dietary potassium density to be associated with many
gut microbial taxa, including Dorea, Oscillospira, Lachnospiraceae, and Ruminococcus [62],
which were also heavily weighted in association with both the MNI and electrolyte indices.
These findings along with the findings of heavily weighted Oscillospira, Ruminococcaceae,
and Christensenellaceae, as well as Lactobacillus not being heavily weighted in the positive
WQSRSRH index with either the electrolyte or MNI index, are consistent with previous
studies. However, it is important to note that salt consumption that is too low and too high
both contribute to lower MNI and electrolyte index scores. Considering our findings in this
context, it is clear that electrolyte consumption, salt in particular, is associated with distinct
shifts in gut microbial composition.

In the analyses stratified by food insecurity, we found that all the genera that were
heavily weighted for the food secure group were more heavily weighted for the food
insecure group than for the food secure group. The food insecure group was also associated
with 13 genera that were not associated with the food secure group across both the MNI
and electrolyte indices, with 9 identified in both indices. Although the weighted indices
were different for the food secure and insecure groups, the slope of association between
the groups was not statistically different from each other; however, the beta estimates for
the WQS indices in the stratified analyses were approximately twice the estimates in the
unstratified analyses. We suspect that these increased estimates are likely due to a reduction
of noise, and thus, a reduction in bias towards the null, once the indices were specified to
the two food security groups.

Differences in WQS weights for people who are food secure and food insecure may be
driven by differences in dietary components making up the MNI score. Because the MNI
uses dietary nutrient data extracted from the FFQ and is calculated specifically to each
individual’s recommended nutrition guidelines, individuals with very different dietary
components can have the same MNI score. For instance, salt and fat are both higher in
lower cost diets [63], and people who are food insecure consume fewer fruits, vegetables,
and dairy products than people who are food secure [64]; thus, it is likely that dietary
components leading to the same MNI score are different for people who are food secure
than people who are food insecure.

Chronic stress related to lack of food and other factors associated with food insecu-
rity may also contribute to differences in gut microbiome composition for food insecure
people. Stress and gut health are linked through the gut–brain axis, and people experi-
encing chronic stress are more susceptible to gut diseases [65]. Stress has been shown to
increase the abundance of Clostridium, Oscillibacter, Anaerotruncus, and Peptococcus, and
decrease the abundance of Lactobacillus, Bacteroides, and Porphyromonadaceae in mammalian
gut microbiomes [66–70]. In our stratified analysis, Clostridium and Bacteroides were more
heavily weighted for the food insecure group in the association with MNI and the elec-
trolyte indices. Moreover, Lactobacillus, which was not associated with either index in the
unstratified analysis, was associated with both indices for the food insecure group only in
stratified analysis. In the case of Lactobacillus, and to some extent Bacteroides, high stress and
potentially high salt intake in the food insecure group may result in low average abundance
of these bacteria; however, better nutrition may ameliorate the lack of abundance, resulting
in heavy weights in the WQS indices.

Alternative explanations for differences in the gut microbiome with nutrition and food
insecurity may include differences in chemical contamination, and in the microbial response
to nutrients. Because people experiencing food insecurity eat more highly processed foods,
those processing steps may introduce chemical additives as well as chemical contamination
from equipment and packaging. While these chemical exposures are likely at low levels,
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they may be enough to suppress the growth of some bacteria [71]. Moreover, introducing
more nutritious and less processed foods to the diet may induce a rapid amount of growth,
both by diluting the concentration of chemical contaminants and by adding previously
unavailable nutrients. While our findings contribute additional information on food
security and the gut microbiome in an adult population, further investigation is needed to
understand the biological mechanisms.

We have previously demonstrated the use of WQS methods with microbiome data [72];
however, this is the first analysis to apply the extended WQS stratification and interaction
models to microbiome data. This analysis also adjusted the preprocessing steps to include
deciles above 0 in the ranking of the WQS indices, instead of tertiles above 0 as previously
demonstrated. The ability of the models to identify an overall association and specific taxa
consistent with previously published analysis can be considered further validation of the
use of WQS with microbiome data.

The MNI is a relatively new tool for dietary evaluation. We chose to use MNI in this
analysis instead of other more widely used and validated measures, such as the Healthy
Eating Index (HEI) [73,74], because the MNI has a few key advantages. Unlike the HEI,
MNI can adjust for characteristics that may alter an individual’s recommended nutritional
guidelines. The MNI also accounts for excess micronutrient intake that may lead to adverse
health effects. In a previous comparison of MNI to HEI using data from the National
Health and Nutrition Examination Survey (NHANES), the HEI and MNI showed similar
associations with several health outcomes [37]. The two measures were mildly correlated;
however, MNI had more variation. The HEI and MNI showed a curvilinear relationship,
in that values were more similar above the halfway point of each scale, suggesting that
MNI is more sensitive to poor nutrition. Measurement of poor nutrition was particularly
important in this analysis, as it is associated with food insecurity.

While this study contributes new information to the field, it also includes some
limitations. While we think of gut microbiome composition as being a result of diet, the
WQS equation is built to have the mixture index on the predictor side of the equation.
However, because data are cross-sectional, we are restricted to examining associations and
not causality, and thus, the directionality of the equation is negligible in this analysis. We
also assume that the single timepoint of gut microbiome analysis is representative of the
usual composition of the gut microbiome. This analysis is also limited by the accuracy
of dietary recall for nutritional information; however, the FFQ is a validated instrument
frequently used in similar studies of dietary habits. It is worth noting, however, that the
accuracy of dietary recall may be different for people with and without food insecurity.
Food frequency questionnaires have been shown to be less accurate for people with low
SES, and low education level, which are both correlated with food insecurity [75–77].

The use of covariates in our analysis were limited due to the inclusion of many demo-
graphic characteristics in the calculation of the nutritional indices. However, we chose to
include covariates, including self-reported race, when statistically significant in order to
reduce residual confounding. The inclusion of race in our models does not suggest that
there are biological differences by race in the pathways between nutrition, food security,
and gut microbiome composition. More likely, there are social and structural mechanisms,
including racism, associated with race that influence food security level, nutritional expo-
sures, and other potential exposures that may influence gut microbial composition [78].
While the use of race as a covariate in this study is not ideal, the measurement of all
potentially confounding covariates associated with race was not feasible for this analysis.
Furthermore, by demonstrating the importance of food security in the pathway between
nutrition and the gut microbiome, we hope to encourage other microbiome researchers
to include variables such as food security in their analysis rather than relying on race in
their analyses as a ghost variable, encompassing all social and structural drivers of racial
differences in the microbiome [79].

Future directions from this analysis include longitudinal studies with repeated gut
microbiome sample collection and 24 h dietary recall corresponding to each sample. This
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longitudinal data structure would allow for investigation of the relationship between MNI,
food security, and the gut microbiome over time, with more precisely timed measurement
of nutrition and the gut microbiome, as well extending the use of lagged WQS models to
longitudinal microbiome data.

In conclusion, individual nutrition scores are associated with the adult gut microbiome,
and the bacterial taxa most associated with nutrition vary by level of food security. Results
may suggest that better nutrition is more important in shaping the gut microbiome for
people who are food insecure, because nutrition was associated with a wider range of
bacterial taxa for food insecure vs. secure individuals. However, additional research
is needed.
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