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Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in
the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial
function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute
renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have
therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity,
and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of
diabetes and inflammation-induced nephropathy. Implication of new and more potent PPAR-α activators could provide important
insights into the overall benefits of activating PPAR-α clinically for the treatment of dyslipidemia and the prevention of diabetic or
inflammation-induced nephropathy in the future.

1. Peroxisome Proliferator-Activated Receptors

Peroxisome proliferator-activated receptors (PPARs) are
nuclear hormone receptors, that is, ligand-dependent intra-
cellular proteins that stimulate transcription of specific genes
by binding to specific DNA sequences. When activated
by appropriate ligand binding, their transcription factors
affect development and metabolism. There are three PPAR
subtypes, products of the distinct genes commonly desig-
nated as PPARα, PPARγ, and PPARβ/δ, or merely δ [1].
The PPARs usually heterodimerize with another nuclear
receptor, the 9-cis-retinoic acid receptor (RXR), forming a
complex that interacts with specific DNA-response elements
within the promoter regions of the target genes. Ligand
binding can activate this heterodimer complex which recruits
transcription coactivators and regulates the transcription of
genes involved in the regulation of lipid and carbohydrate
metabolism [1]. Like several other nuclear hormone recep-
tors, it heterodimerizes with RXR to form a transcriptionally
competent complex [2].

2. Tissue Expression of PPARs and Their Role in
Renal Injury

PPARα, PPARβ/δ, and PPARγ are differentially expressed in
various tissues [3–5]. In general, PPARα is highly expressed
in tissues that possess high mitochondrial and β-oxidation
activity, including the liver, renal cortex, intestinal mucosa,
and heart, with lower expression in several other tissues.
PPARγ is highly enriched in adipose tissue, while lower
expression levels are reported in the urinary bladder, intes-
tine, kidney, spleen, adrenal, heart, liver, lung, brain, and
vasculature. Unlike PPARα and PPARγ, low-level expressions
of PPARβ/δ is ubiquitously found in almost every tissue
examined. In the kidney, PPARα is abundantly expressed
in the proximal tubules and the medullary thick ascend-
ing limbs with much lower expression in the glomerular
mesangial cells [5, 6]. PPARγ is primarily expressed in the
distal medullary collecting ducts, with lesser expression in
the glomeruli and renal microvasculature [7]. In the kidney,
PPARβ/δ is diffusely expressed in the renal cortex and
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medulla, including medullary interstitial and stromal cells
[5]. This differential tissue distribution of the three PPAR
isoforms may be related to their distinct roles in these tissues,
including the kidney. Because the target genes of PPARα, -
β/δ, and -γ in these tissues are mainly involved in adipogene-
sis, lipid metabolism, insulin sensitivity, glucose homeostasis,
and cell growth and differentiation, PPARs could be the
target candidates that modulate body metabolisms.

Prior studies in animal models had described the benefi-
cial roles for PPARs in reducing renal injury and dysfunction.
For instances, PPARβ/δ pretreatment could protect wild-
type mice from renal I/R injury, with a reduction in
medullary necrosis and inflammation [8]. PPARγ agonists
rosiglitazone and pioglitazone had shown protective effects
against renal ischemia/reperfusion (I/R), diabetic nephropa-
thy, and various kidney injury [9, 10]. Although a role for
PPARα in reducing renal injury and PPARα ligands could
attenuate cisplatin-induced acute renal failure (ARF) was
reported in animal models [11, 12], its exact mechanisms are
still inconclusive. Therefore, this paper will focus on the role
of PPARα and its agonist in renal diseases.

3. PPARα Ligands and Their
Clinical Implications

Fibric acid derivatives or fibrates are PPARα ligands. Fibrates
have been used in clinical practice for more than four
decades to decrease triglyceride levels. Fibrates can also
increase HDL cholesterol levels, with a limited but signifi-
cant additional effect on decreasing low-density lipoprotein
(LDL) cholesterol levels. In addition to its major effects
on lipid profiles, mounting evidence shows that beneficial
effects of fibrates may be due to their anti-inflammatory and
antiatherosclerotic properties [13, 14]. The PPAR agonists
can be synthetic molecules, such as fibrates used to treat
hypertriglyceridemia or thiazolidinediones to treat insulin
resistance, or natural ligands, such as fatty acids (FAs)
and their derivatives (eicosanoids). Although fibrates are
most efficient in patients with high TG and low HDL,
marginal effects in the treatment of dyslipidemia were found
in the recent ACCORD (Action to Control Cardiovascular
Risk in Diabetes) trials to patients with type-2 diabetes
[15]. Nevertheless, recent ACCORD studies demonstrated
that fibrate therapy with intensive glycemia control could
reduce renal microalbuminuria significantly [16]. Although
microalbuminuria may rather be a marker for cardiovascular
disease [17], its applications as a reversible marker of kidney
and vascular damage were recently reported [18, 19].

4. PPARα and Diabetic Nephropathy

Although the abundance of PPARα in the kidney is
well established, its role in renal physiology and diabetic
nephropathy is just emerging. PPARα was implicated in the
regulation of kidney metabolism and to maintain a sustained
balance between energy production and expenditure [20],
given its high level expression in the renal proximal tubules

[5, 21, 22]. Clofibrate activates PPARα and induces expres-
sion of β-oxidation enzymes, long-chain and medium-chain
acyl-CoA dehydrogenase, and acyl-CoA oxidase in the renal
cortex [23]. It is suggested that renal PPARα might play a
major role in triggering fatty acid utilization and adaptive
response to dietary lipids. This idea is further supported
by a recent study in which the beneficial effects of fasting-
induced upregulation of pyruvate dehydrogenase kinases
were blunted in PPARα-deficient mice, indicating that loss
of PPARα can lead to abnormal renal regulation during
starvation [24]. Although PPARα induction is beneficial in
fasting and hyperlipidemia, effects of PPARα in diabetic
nephropathy remain unclear. However, clinical evidence
suggests a beneficial effect of fibrate treatment in patients
with type-2 diabetes [25, 26], and data from the recent
FIELD (Fenofibrate Intervention for Event Lowering in Dia-
betes) study also indicate promising effects with fenofibrate
in preventing progression of diabetes-related microvascular
complications [27]. In db/db type-2 diabetic mice, treatment
with fenofibrate markedly lowers urinary albumin excretion
and improves glomerular mesangial expansion [28, 29].
Therefore, both clinical observations and rodent experi-
ments suggest that PPARα activation may play a beneficial
role in diabetes induced nephropathy.

5. PPARα and Kidney Mesangial Cells

Clofibrate has been shown to inhibit oxidative stress-
induced TGF-β expression in glomerular mesangial cells
[30]. Expression of PPARα in glomerular mesangial cells has
also been reported [31]; thus it is likely that PPARα activation
in mesangial cells could block TGF-β signaling pathway
and thereby attenuating glomerular matrix proliferation.
Consistent with this suggestion, a recent study demonstrated
that fenofibrate downregulates TGF-β1 and TGF-β signaling
receptor II expression and decreases collagen IV deposition
in the diabetic glomeruli [32]. Conversely, starved PPARα
null mice would show increased albuminuria with albumin
accumulation in the proximal tubules further confirming the
beneficial role of PPAR-α [33]. Therefore, it is likely that
PPARα activation may facilitate albumin reabsorption and
degradation in the nephron segment [34, 35]. Taken together,
fenofibrate treatment activated PPARα may reduce TGF-
β-induced proliferation in mesangial cells, thus ameliorate
kidney injury.

6. Involvement of PPARα in Inflammation

PPARα plays a critical role as a primary sensor and regulator
of lipid metabolism, and this role has increasingly been rec-
ognized to be important in inflammation-induced disorders
including hypertension, metabolic disorders, cardiovascular
disease, atherosclerosis, and inflammation-induced acute
renal failure [36]. Fenofibrates, ligands for PPARα, are used
clinically to treat patients with type-2 diabetes or coronary
disease [37]. Fibrates can exert anti-inflammatory effects,
by decreasing plasma levels of cytokines IL-6, TNFα, and
IFNγ in patients with atherosclerosis [38] or level of CRP
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Figure 1: Schematic diagram presenting the signaling pathways of PPARα involved in the mechanisms of ischemic/reperfusion-, drugs-,
or diabetic-induced renal damage. PPARα forms heterodimer with RXR. In the absence of ligands, the dimer may recruit a corepressor,
inhibiting PPARα-mediated transcription of target genes. The presence of an agonist, or an activator such as PGI2, triggers the recruitment
of a coactivator complex which induces transcriptional activity of PPARα onto its target genes. This leads to an increase in fatty acid
catabolism and adenosine triphosphate (ATP) production, also to decrease the levels of cytotoxic fatty acid peroxidation (POx) products,
and, consequently, to promote cell viability and inhibit renal epithelium cell death. In addition, PPARα complex can attenuate NFκB-
induced inflammatory factors (IL-6, INFγ, or TNFα) induced by ischemic/reperfusion injury (I/R) or drugs. Furthermore, PPARα complex
can inhibit masengial matrix proliferation induced by TGFβ or reactive oxidative stress (ROS) which then resulted in albuminuria. After
SUMOylation of PPARα, SUMOylated PPARα resulted in downregulation of its transcriptional activity by promoting its interaction with the
corepressor NCoR, which will compromise cell viability and activate cell death processes. CoAct, coactivator; DM, diabetes mellitus; FAO,
fatty acid oxidation; FFA, free fatty acid; IFNγ, interferon γ; IL-6, interleukine-6; I/R, ischemia/reperfusion; NCoR, nuclear corepressor;
NF-κB, nuclear factor-κB; PGI2, prostacyclin; POx, peroxidation; PPARα, peroxisome proliferator-activated receptor-α; RXR, retinoid X
receptor; TGFβ, tumor growth factor β; TNFα, tumor necrosis factor α.

in patients with cardiovascular diseases [39]. In human
endothelial cells, PPARα activators interfere with processes
involved in leukocyte recruitment and cell adhesion by
inhibiting the expression of VCAM-1. Since PPARα agonists
(fenofibric acid and eicosapentaenoic acid) enhance e-
NOS expression and NO release, this suggests a vaso-
protective effect. In other studies, synthetic PPARα activators
(fenofibric acid and WY14643) diminish thrombin-induced
and oxidized LDL-induced expression of endothelin-1 [38].
PPARα activators can also modify inflammatory vascu-
lar smooth muscle cells (VSMC) activation by inhibiting
IL-1-induced production of IL-6 and prostaglandins and
by reducing the expression of cyclooxygenase-2 (COX-
2). In addition, PPARα agonists reduce tissue factor and
MMP expression in monocytes and macrophages. Moreover,
PPARα activation, in the presence of TNFα and IFNγ, may
promote macrophage apoptosis. Finally, activators of PPARα
limit the production of proatherogenic Th1 cytokines such
as IFNγ, TNFα, and IL-2 [38]. PPARα activators also inhibit

the inflammatory response in hepatocytes by decreasing
IL-1-induced CRP and IL-6-induced fibrinogen α, -β, and
serum amyloid A expression [39]. PPARα thus acts as an
antiatherogenic factor by modulating local and systemic
inflammatory responses.

7. Involvement of PPARα in
Ischemia-Reperfusion-Induced
Kidney Injury

Although the causes of ARF are often multifactorial, they
can be generally classified into three categories depending
on the causes: (1) prerenal ARF, in which the kidney
fails to receive an adequate blood supply, for example,
due to a fall in systemic blood pressure subsequent to
hemorrhage [40]; (2) intrinsic ARF, in which the fail-
ure originates within the kidney, for example, due to
drug-induced nephrotoxicity like traditional cisplatin or
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gentamicin-induced nephrotoxicity; and (3) postrenal ARF,
caused by impairment of urine flow from the kidney, for
example, due to ureteral obstruction or bladder/prostate
cancer. Increasing evidence supports a role for PPARα in
the development of ARF. Several studies have demonstrated
a reduction in PPARα expression, transcriptional activity,
and inhibition of peroxisomal and mitochondrial fatty acid
oxidation (FAO) enzymes in rodent renal tissue undergoing
cisplatin- and I/R-induced ARF [41]. Activation of PPARα
with ligands such as fibrate or WY14643 reduces cisplatin
and I/R-induced acute kidney injury [42]. Importantly, these
effects of fibrate and WY14643 are not observed in PPARα-
null mice. These mice subjected to I/R injury by arterial
ligation show enhanced cortical necrosis and impaired renal
function [22]. However, such renal I/R injury could be
rescued via induction of PPARα with recovery of normal
kidney structure and function [22]. Recent investigations
using kidney androgen-induced protein 2 (KAP2) promoter
with tissue-restricted expression model further corroborate
the essential role of PPARα in renal protection [43]. As
KAP2 is exclusively expressed in the proximal tubules under
the control of androgens, their studies delineated that
the androgen-induced proximal tubules PPARα transgenic
mice could afford protection against cisplatin- and I/R-
induced inhibition of FAO and protected kidney function
and morphology from these insults, in comparison with
their effects on wild-type mice. In addition, the organ
and tissue (proximal tubule-) restricted expression model
in their studies further ruling out the potential PPARα-
independent, renoprotective actions as well as excluding
the potential PPARα-mediated, extrarenal effects in renal
protection afforded by PPARα activators in the PPARα-null
mouse [43]. We also demonstrated that prostacyclin may
act as an inducer, which can enhance PPARα translocation
into the nucleus and bind to inflammatory transcriptional
factor NFκB thus inhibiting TNFα-induced apoptosis in
renal epithelial cells. In addition, wild-type mice pretreated
with a PPARα activator, docosahexaenoic acid (DHA), could
significantly reduce I/R-induced renal dysfunction (low-
ered serum creatinine and urea nitrogen levels), apoptotic
responses (decreased apoptotic cell number and caspase-3
and -8 activation), and NF-κB activation [33]. Altogether,
these studies strongly endorse a critical role of PPARα in
the preservation of renal morphology and function during
cisplatin- or I/R-induced acute renal damage.

8. Regulation of PPARα

Ligands binding to PPARα unmask an interaction area (of
PPARα) for coactivators such as cAMP response element-
binding protein (CREB-) binding protein (CBP)/p300. The
latter possesses histone acetyl transferase (HAT) activity
resulting in chromatin decondensation and PPARα het-
erodimerization with RXR. The binding of this heterodimer
to PPRE on PPARα promoter then regulates target genes
expression. In addition, PPARα(s) are substrates for several
kinases activated by a variety of endogenous or exoge-
nous signals. These kinase include: extracellular receptor

kinase-mitogen-activated protein kinase (ERK-MAPK), JNK
and p38 MAPK, Protein kinase A, Protein kinase C (PKC),
5′-AMP-activated protein kinase (AMPK), and glycogen syn-
thase kinase 3 (GSK3). Recently, SUMOylation of PPARα has
reported that SUMOylated hPPARα on lysine 185 resulted in
down-regulation of its transcriptional activity by promoting
its interaction with the corepressor NCoR [44]. Therefore,
it is interesting to investigate whether PPARα modification,
including phosporylation, SUMOylation, and ubiquitina-
tion, is involved in inflammation-induced renal failure.
Recently, we also demonstrated that adiponectin exerts
protective effect against renal ischemic-reperfusion injury via
prostacyclin- PPARα-heme oxygenase-1 signaling pathway
(unpublished data). A schematic diagram presenting the
regulation of PPARα in renal disease is depicted in Figure 1.

9. Conclusion and Perspectives

PPARα, in the last few years, has emerged as the key
regulator of lipid homeostasis in in vitro experiments and
clinical medicine. In addition, PPARα negatively regulates
inflammation-mediated phenomenon like atherosclerosis
and ARF. PPARα ligand and fibrates are pharmacologic
agents with pleiotropic effects. Fibrates have beneficial effects
in alleviating cardiovascular abnormalities, ARF-, diabetic-
or drug-induced nephropathy, in both animal models and
clinical trials [45, 46]. Although the effects of PPARα have
not been fully investigated, they are shown to be protective
in chronic kidney diseases.
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