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Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal

calcium absorption, but there are few studies on the osteogenic activity

of CPPs. In this study, the preparation of casein phosphopeptide calcium

chelate (CPP-Ca) was optimized on the basis of previous studies, and

its peptide-calcium chelating activity was characterized. Subsequently, the

e�ects of CPP-Ca on the proliferation, di�erentiation, and mineralization

of MC3T3-E1 cells were studied, and the di�erentiation mechanism of

CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing

(RNA-seq). The results showed that the calcium chelation rate of CPPs was

23.37%, and the calcium content of CPP-Ca reached 2.64×105 mg/kg. The

test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier

transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and

amino nitrogen atoms of CPPs might be chelated with calcium during the

chelation. Compared with the control group, the proliferation of MC3T3-E1

cells treated with 250µg/mL of CPP-Ca increased by 21.65%, 26.43%, and

28.43% at 24, 48, and 72h, respectively, and the alkaline phosphatase

(ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were

notably increased by 55% and 72%. RNA-seq results showed that 321

di�erentially expressed genes (DEGs) were found in MC3T3-E1 cells treated

with CPP-Ca, including 121 upregulated and 200 downregulated genes.

Gene ontology (GO) revealed that the DEGs mainly played important roles

in the regulation of cellular components. The enrichment of the Kyoto

Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated

that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in

the di�erentiation of MC3T3-E1 cells. The results of a quantitative real-time

PCR (qRT-PCR) showed that compared with the blank control group, the

mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and

Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0

and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and

LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were
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consistent both in GO functional and KEGG enrichment pathway analysis. This

study provided a theoretical basis for CPP-Ca as a nutritional additive in the

treatment and prevention of osteoporosis.

KEYWORDS

CPP-Ca, preparation, characterization, osteogenic activity, RNA-seq, active

mechanism

Introduction

Osteoporosis is a disease characterized by the loss of

bone mass and the increase of bone fragility (1). In a

normal state, bone tissues are in a dynamic equilibrium

maintained by a combination of bone formation and bone

resorption (2), during which osteoclasts absorb old bone to

form lacunae and osteoblasts form new bone in lacunae to fill

the lacunae (3–6). The dynamic imbalance between osteoblasts

and osteoclasts is one of the main causes of osteoporosis.

Therefore, promoting the proliferation and differentiation of

osteoblasts is conducive to the prevention and treatment of

osteoporosis (7). At present, the treatments of osteoporosis

are mainly drug therapy, such as bisphosphonates, estrogen,

calcitonin, and fluoride (8). However, long-term use of these

drugs might bring side effects, such as sciatica, increased risk of

breast cancer, intestinal diseases, and so on (9, 10). Therefore,

it is of great practical significance to find appropriate methods

to prevent or treat osteoporosis. Studies have shown that

the natural active peptide calcium chelate has the advantages

of improving the bioavailability of calcium, promoting the

proliferation and differentiation of osteoblasts, and having a

preventive and therapeutic effect on osteoporosis. For example,

egg white peptide-calcium chelate can promote the ALP activity

in HFOB cells (11), and porcine bone collagen peptide calcium

chelate promotes osteoblast proliferation and differentiation by

activating the PI3K/Akt signaling pathway (12).

Casein, the main protein in milk, can be hydrolyzed by

proteases to produce bioactive peptides, of which CPPs have

been extensively studied due to their good solubility, digestive

stability, and strong ability to promote calcium absorption (13).

For example, Liu et al. found that CPPs can promote the

transport of calcium in Caco-2 monolayers (14). Liao et al.

purified and identified a novel calcium-binding peptide with

good calcium transport capacity from casein hydrolysate (15).

Studies have shown that CPPs have good osteogenic activity.

Liu et al. found that femoral bone index, serum calcium,

serum osteocalcin levels, and femoral calcium content were

significantly increased in rats after 7 weeks of high-dose CPPs

feeding (16). Pan et al. found a significant proliferative effect of

casein hydrolysate on osteoblasts (HFOB1.19) (17). It was also

found that because these phosphorylated peptides are negatively

charged, they can chelate with some minerals, such as iron and

calcium, and have a strong binding capacity, greatly increasing

the solubility and bioavailability of minerals (13). However,

current studies on CPP-Ca mainly focus on the ability to

promote calcium absorption. Li et al. used the Caco-2monolayer

cell model to find that CPP-Ca was superior to calcium chloride,

L-aspartate calcium, and CPPs mixed with calcium chloride

in promoting calcium absorption (18). CPP-Ca has been less

studied on osteoblasts (MC3T3-E1), while the mechanism of

osteogenic activity of CPP-Ca has not been clarified.

RNA-seq is a deep sequencing mode that can be used

to evaluate a complete set of organisms’ transcriptional genes

or transcriptome and non-coding RNA. With high sensitivity,

high repeatability, high throughput, and affordability, RNA-seq

has become a standard technology for genomics transcriptome

analysis (19–21). Bone formation is a dynamic and complex

process, and RNA-seq can help us to deepen our understanding

of the mechanism of CPP-Ca-induced osteogenic activity of

MC3T3-E1 cells.

Wu et al. found that phosphorylation of peptides

significantly improved their calcium-peptide binding capacity

and osteogenic activity (22). The CPPs are an excellent choice for

the preparation of calcium peptide chelate due to their natural

property of the phosphate group. In addition, our team has

been researching the activity of CPPs, and we are committed to

developing a product related to casein phosphopeptide-calcium

chelate with osteogenic activity. In this study, the preparation

of CPP-Ca was optimized, and the chelating properties of

CPP-Ca were characterized. Moreover, the effects of CPP-Ca on

proliferation, differentiation, and mineralization of MC3T3-E1

cells were detected, and RNA-seq technology was used to

reveal the differentiation mechanism of CPP-Ca on MC3T3-E1

cells. This study provided a theoretical basis for CPP-Ca as a

functional food in treating and preventing osteoporosis.

Materials and methods

Materials and reagents

Casein and trypsin (10,000 U/g) were provided by Green

Extraction Biotechnology Co., Ltd. Alpha modification of
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Eagle’s minimum essential medium (α-MEM) and fetal

bovine serum (FBS) were purchased from GIBCO (Grand

Island, USA). β-glycerophosphate, L-ascorbic acid, and

methylthiazolyldiphenyl-tetrazolium bromide (MTT) were

purchased from Macklin (Shanghai, China). Paraformaldehyde

and alizarin red (0.1%, pH 4.2) were purchased from Yuanye

(Shanghai, China). All other chemicals were of the highest grade

available commercially.

Preparation of casein phosphopeptides
(CPPs)

The casein was mixed with the trypsin (1.0%) and digested

under certain conditions (substrate concentration 10%, pH 8.0,

temperature 50◦C) for 3 h. Following hydrolysis, the mixture

was heated at 90◦C for 10min to inactivate the enzyme and

cooled to room temperature. After adjusting pH to 4.6, the

hydrolysate was centrifuged at 4,000 r/min for 10min, and the

supernatant was lyophilized to obtain CPPs.

Preparation of CPP-Ca

Single-factor and orthogonal experiment

Lyophilized CPPs were dissolved in deionized water,

then calcium chloride was added, and the mass ratio of

peptide:calcium was 2:1. The solution was adjusted to different

pH values (4–8), and stirred at different temperatures (35–

55◦C) for different times (50–130min). Subsequently, absolute

ethanol (5 times the volume of the solution) was added to

separate the peptide calcium chelate from free calcium ions.

Then, the mixture was centrifuged at 4,000 r/min for 20min,

the supernatant was discarded, and the dried precipitation

was CPP-Ca.

Combined with the results of the single-factor experiments,

the optimal conditions for the preparation of CPP-Ca were

determined by an orthogonal experiment (3-factor 3-level). In

this design, pH (A), chelation temperature (B), and time (C)

were chosen as independent variables, and chelation rate was

chosen as the evaluation index.

Determination of calcium chelation activity

Calcium chelating activity was determined by the o-cresol

phthalein colorimetry method (15). Five milligrams of CPPs

freeze-dried powder were mixed with 1mL of 5mM CaCl2
solution and 2mL of phosphate buffer. The mixture was shaken

at 37◦C for 60min. The solution was then centrifuged at 4,000

r/min for 20min; the supernatant was diluted and mixed with

the working solution. After reaction for 2min, the absorbance

value was measured at 570 nm using a microplate reader

(Beaconsfield, U.K.).

Calcium chelation rate (%) =
M1

M2
× 100%

M1: calcium content in the sample, µg.

M2: calcium content added to the system, µg.

Determination of calcium content

Calcium content was determined by the flame atomic

absorption spectrometry (23). The lyophilized CPP-Ca was

dissolved in deionized water, and the content of calcium

was assayed using the atomic absorption spectrophotometer

AA- 6300C (Shimadzu, Japan) after mixed-acid digestion

(HNO3:HCl, 1:3, v/v).

Characterization of CPP-Ca

Ultraviolet absorption spectrum analysis

UV absorption spectra of CPPs and CPP-Ca were

determined by UV spectrophotometer UV1750 (Shimadzu,

Japan). 1 mg/mL CPPs and CPP-Ca solutions were prepared,

and scanning was performed in the spectral region of

200–400 nm.

Fourier transform infrared spectroscopy
analysis

Two milligrams of lyophilized CPPs and CPP-Ca were,

respectively, mixed with 100mg of dried KBr. All FTIR spectra

were measured by an FTIR spectrometer Vertex 70 (Brook,

Germany) within a scope of 4,000 cm−1 to 400 cm−1.

Cells culture and MTT assay

The mouse pre-osteoblast cell line MC3T3-E1 subclone in

14 cells (Cell Bank, Shanghai Institutes for Biological Sciences,

Shanghai, China) were cultured in α-MEM supplemented

with 1% antibiotic–antimycotic solution and 10% FBS in an

atmosphere of 5% CO2 at 37◦C. When cells reached 80–90%

confluence, they were sub-cultured by treatment with 0.25%

trypsin-EDTA and grown in sterile tissue culture plates.

The MTT assay was according to a previous study by Liao

et al. (24). Specifically, MC3T3-E1 cells were seeded in a 96-well

plate at a density of 5×103 cells/well. After 24 h of incubation,

the culture medium was discarded and replaced by the medium

containing different concentrations of CPP-Ca (0, 50, 100, 150,

200, and 250µg/mL) to incubate for 24, 48, and 72 h. After

incubation, 100µLMTT (0.5mg/mL) was added for 4 h at 37◦C.

The supernatant was removed, 150µL of dimethyl sulfoxide was

added to each well and shaken on an oscillator for 10min. The
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TABLE 1 Primers used for qRT-PCR for DEGs.

Target gene Sequences Product

length (bp)

APOD GACAACAACAGATCAAGCGA 92

GGGAACGCAAAGCAAAGA

IGF1 AGTCCATTAAGACGCACTTAC 93

AAGAAACCAGGACTCCCAA

OGN AAAGTCTACGTGTAATTCACCT 82

CGAGTGTCATTAGCCTTGC

LRP4 CGCTGCTACTGAACAACC 81

TGACATCCGACCAGAAGAC

NOTUM GGTGGAATGCCAATATGGT 83

TTCATTCTTGTCAGACTTGGGT

WIF1 GCAGGCAGAATACTTCTACGA 83

AAGGGACATTGACAGTTGG

β-actin GGCTCCTAGCACCATGAAGA 187

AGCTCAGTAACAGTCCGCC

optical density was recorded at the wavelength of 570 nm by a

microplate reader (Beaconsfield, U.K.). Six parallel experiments

were tested for each cultivating period.

Determination of ALP activity

The ALP activity assay was performed according to a

previous study (25). MC3T3-E1 cells were seeded in a 6-

well plate at a density of 1×106 cells/well to cultivate for

24 h. After incubation, the culture medium was discarded and

replaced by the differentiation medium (α-MEM containing

10% FBS, 1% antibiotic-antimycotic solution, 10mM sodium β-

glycerol phosphate, and 50µg/mL L-ascorbic acid) containing

different concentrations of CPP-Ca (0, 50, 100, 150, 200,

and 250µg/mL). The medium was replaced every other day

for 7 days. After 7 days, protein concentrations and ALP

activity were determined using the BCA Protein Assay Kit

and the Alkaline Phosphatase Assay Kit (Jiancheng Biological

Technology, Nanjing, China), respectively.

Alizarin red staining and quantification

The mineralization studies were performed according to

a previous study (25). MC3T3-E1 cells were seeded in 6-

well plate at a density of 1×106 cells/well. After 24 h of

incubation, the culture medium was discarded and replaced by

the differentiation medium containing different concentrations

of CPP-Ca (0, 100, and 250µg/mL). The medium was replaced

every other day for 21 days. After 21 days, the cells were washed

twice with phosphate-buffered saline (PBS), fixed with 4%

paraformaldehyde for 30min at 37◦C, and rinsed with deionized

water twice. One milliliter of alizarin red was added to each

well, the cells were left to stain for 5min, and then washed twice

with deionized water. A phase-contrast microscope with a digital

camera (Canon DS126201, Japan) was used to locate the calcium

nodules, which were magnified (4X) and photographed. To

quantify the alizarin red staining area, the calcium nodules were

dissolved with 10% (w/v) cetylpyridinium chloride for 30min,

and the absorbance at 562 nm of the solubilized alizarin red was

measured using a microplate reader (Beaconsfield, U.K.).

RNA-seq and data analysis

MC3T3-E1 cells were seeded in 6-well plate at a density of

1×106 cells/well. After 24 h of incubation, the culture medium

was discarded, and replaced by the differentiation medium

containing 250µg/mL CPP-Ca. After 7 days, total RNA was

extracted. RNA purity and quantification were evaluated using

the NanoDrop 2000 spectrophotometer (Thermo Scientific,

USA). RNA integrity was assessed using the Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Then, the libraries were constructed using the TruSeq Stranded

mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA)

according to the manufacturer’s instructions. The transcriptome

sequencing and analysis were conducted by the OE Biotech Co.,

Ltd. (Shanghai, China).

The libraries were sequenced on an Illumina HiSeq X Ten

platform and 150 bp paired-end reads were generated. About

50 million reads, raw reads for each sample were generated.

Raw data (raw reads) of fast q format were first processed

using Trimmomatic (a flexible trimmer for Illumina sequence

data), and the low-quality reads were removed to obtain the

clean reads. Then, about 49 million clean reads for each sample

were retained for subsequent analyses. The clean reads were

mapped to the human genome (GRCh38) using HISAT2 (26).

FPKM (27) of each gene was calculated using Cufflinks (28),

and the read counts of each gene were obtained by HTSeqcount

(29). Differential expression analysis was performed using the

DESeq (2012) R package (30). P < 0.05 and fold change

> 2 were set as the threshold for significantly differential

expression. Hierarchical cluster analysis of DEGs was performed

to demonstrate the expression pattern of genes in different

groups and samples. GO enrichment and KEGG (31) pathway

enrichment analysis of DEGs were performed, respectively,

using R based on the hypergeometric distribution.

Quantitative real-time polymerase chain
reaction (qRT-PCR)

Briefly, total RNA was extracted according to the

manufacturer’s protocol. And then, mRNA was reverse-

transcribed into cDNA by Reverse Transcription Kit

(TransGen Biotech, China) according to the instructions
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FIGURE 1

E�ects of pH (A), temperature (B), and time (C) on chelation rate.

TABLE 2 The analysis of orthogonal experiment results.

No. Influence factors Calcium

chelation

rate/%Temperature

(A)

pH

(B)

Time

(C)

1 1 1 1 11.33

2 1 2 2 15.84

3 1 3 3 19.32

4 2 1 2 14.46

5 2 2 3 14.57

6 2 3 1 23.83

7 3 1 3 5.89

8 3 2 1 13.99

9 3 3 2 14.57

K1 46.49 31.68 49.15

K2 52.86 44.40 44.87

K3 34.45 57.72 39.78

R 18.41 26.04 9.37

Primary and secondary order B>A>C

Theoretical optimal combination A2B3C1

R refers to the result of extreme analysis.

of the manufacturer. The primer sequence of the APOD, OGN,

IGF1, LRP4, NOTUM, WIF1, and housekeeping gene β-actin

are shown in Table 1. PCR reaction was carried out according

to the method provided by Real-Time PCR Kit (TransGen

Biotech, China). The normalized expression of validated genes

was calculated based on the 2−11CT method.

Statistical analysis

All experiments were conducted with three replicates (n =

3). The results were subjected to a one-way analysis of variance

(ANOVA). A significant value of p < 0.05 was set for all

statistical analysis.

Results and discussion

Optimization of CPP-Ca preparation
process

Single-factor experimental analysis

Figure 1 shows the effects of different chelating pH,

temperature, and time on the calcium chelating rate of CPPs.

The chelation rate increased as the pH raised, and the maximum

value was obtained at pH 6 with a chelation rate of 11.52%.

Then, it showed a downward trend (Figure 1A). In an acidic

solution, there is a large amount of H+, which will compete

with Ca2+, leading to a lower carboxyl coordination capacity

of CPPs; therefore, the chelating capacity of CPPs in an acidic

environment is weak. As the acidity diminished, the interaction

between negatively charged COOH− and Ca2+ was enhanced,

so the highest chelation rate occurred at pH 6.0. In an alkaline

environment, due to the presence of a large amount of OH−,

they can react with Ca2+ to produce Ca(OH)2 precipitation,

resulting in a gradual decline of the chelation rate (11). As can

be seen from Figure 1B, the calcium chelation rate of CPPs

increased as the temperature increased and reached a maximum

value at 50◦C and then decreased. These findings indicated that

an appropriate temperature can promote molecular movement,

which is conducive to the formation of chelate, but a high

temperature will destroy the structure of the peptide and is not

conducive to the chelation reaction (11). As shown in Figure 1C,

when the reaction time was 70min, the calcium chelation rate

reached a maximum value, and excessive or too short a reaction

time is not conducive to the generation of chelate. Excessive

reaction time will destroy the stability of the reaction system,

enhance the side reaction to a certain extent, and lead to the

reduction of products (32).
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FIGURE 2

UV–Vis spectra of CPPs and CPP-Ca.

FIGURE 3

Infrared absorption spectra of CPPs and CPP-Ca ((A) CPPs; (B) CPP-Ca).

Orthogonal experimental analysis

On the basis of single-factor experiments, orthogonal

experiments were carried out at different temperature levels

(47, 50, and 53◦C), pH levels (5.5, 6.0, and 6.5), and

chelating time levels (60, 70, and 80min). The results of

the orthogonal experiment are listed in Table 2. It can

be seen that the influence of each factor on calcium

chelation rate was in the following order: B > A > C

according to the R-value, and the optimal level combination

is A2B3C1. Under these conditions, the calcium chelation rate

reached a maximum of 23.37%, and the calcium content was

2.64×105 mg/kg.
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FIGURE 4

Cells proliferation of MC3T3-E1 cells treated with CPP-Ca (50, 100, 150, 200, and 250µg/mL) at 24, 48, and 72h. * p < 0.05; ** p < 0.01,

compared with the control group.

Characterization of CPP-Ca

UV absorption spectrum analysis

In ultraviolet spectrum analysis, the formation of the

complex between organic ligand and metal ions will result in

the transfer or disappearance of the original absorption peak or

the emergence of a new absorption peak, which is often used in

the identification and structural analysis of substances (33). As

shown in Figure 2, the maximum absorption peaks of CPPs and

CPP-Ca in the UV spectrum are at 220 nm, which corresponded

to the characteristic peak of the peptide chain resulting from the

n→ π∗ transition of C=O in the amide bonds (23). Compared

with CPP-Ca, CPPs have a stronger absorption peak at about

280 nm, which is considered to be the characteristic peak of

aromatic amino acids. The intensity of the absorption peak

decreased significantly after chelation with calcium. A possible

explanation was calcium ions combined with some aromatic

amino acids on CPPs to form new chemicals, which affected

the π → π∗ electron transition of the conjugated double

bond (34). Meanwhile, the spatial structure of CPPs changed

with the chirality of Chromophores (C = O and -COOH)

and Autochromes (-OH and -NH2) (35). In general, Ca2+

interacted with some aromatic amino acids on CPPs to form new

chemicals, which involved C=O in amide bonds and led to the

changes in the spatial structure of CPPs.

Fourier transform spectral analysis

The position of wavenumber and the number and

intensity of wave peak of infrared absorption band reflect

the characteristics of molecular structure, so they are often

used to identify the structural composition of substances or

determine chemical groups. The differences in FTIR spectra

between CPPs and CPP-Ca are displayed in Figure 3. CPPs

have a significantly high-frequency absorption peak at 3,297.70

cm−1, which may be caused by the stretching vibration of N-

H in CPPs. After chelating with calcium, the peak shifted to

3,353.11 cm−1, indicating that calcium ions reacted with N-H
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FIGURE 5

ALP activity of MC3T3-E1 cells treated with CPP-Ca (50, 100, 150, 200, and 250µg/mL). * p < 0.05; ** p < 0.01, compared with the control group.

in CPPs, which is consistent with the phenomenon observed

in pig collagen peptide calcium chelate (36). It has been

reported that the formation of amide I bands is mainly due

to stretching vibration of C=O, and includes the following

secondary structures: β-turn, 1,700–1,660 cm−1; α-helix, 1,659–

1,645 cm−1; irregular structure 1,644−1,640 cm−1; and β-

sheet or extended structure 1,639−1,620 cm−1(37, 38). The

amide I band of CPPs was detected around wave number

1,654.84 cm−1, while the amide I band of CPP-Ca appeared

at 1,655.86 cm−1, suggesting the formation of peptide–calcium

chelate was associated with C = O, and the complex have an

α-helix structure. The vibration spectral region at 1,430–1,370

cm−1 is mainly caused by the stretching vibration of -COO-

(39). After the interaction with calcium ions, the FTIR spectra

shifted from 1,399.64 cm−1 to 1,413.93 cm−1, which may be

due to the interaction between the positive divalent calcium

ions and -COO- to form -COO- Ca. It has been reported that

1,060–1,100 cm−1 belongs to the O = P-O stretching region,

which is associated with phosphate groups covalently bound

to casein (40). The absorption peaks at 1,075.87 cm−1 and

1,100.00 cm−1 for CPPs and CPP-Ca, respectively, indicated

that the amino acid residues in both CPPs and CPP-Ca are

covalently bound to the phosphate group, and CPP-Ca retained

the functional activity associated with the phosphate group.

Previous research suggested the Ca–O vibrational band was

between 500 and 800 cm−1. Meanwhile, the binding of the

peptides with calcium ions may broaden and weaken of the

peak, even the disappearance of some absorption peak (41).

Through the difference analysis of the infrared spectrum, we

found that the absorption peak of CPPs disappeared at 933.63

cm−1, and the original absorption peak (630.22 cm−1) shifted

to 582.86 cm−1. Considering the reaction of the amide I band,

it is speculated that this is due to the interaction between

calcium ions and oxygen atoms in the carbonyl group. In

general, the production of peptide calcium chelate involves

the N-H, C=O, and -COO- groups, and the calcium ions

interact with carboxyl oxygen and amino nitrogen atoms

of CPPs.
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FIGURE 6

E�ect of CPP-Ca on the mineralization of MC3T3-E1 cells. Alizarin red staining of mineralization nodules (A) and the quantification of the

mineralization nodules (B). * p < 0.05; ** p < 0.01, compared with the control group.

E�ects of CPP-Ca on the proliferation of
MC3T3-E1 cells

The effects of CPP-Ca on the proliferation of MC3T3-E1

cells are shown in Figure 4. Compared with the blank control

group, the proliferation of MC3T3-E1 cells increased with

the increase of the treated concentrations of CPP-Ca and the

treated time. The proliferation of MC3T3-E1 cells treated with

250µg/mL CPP-Ca increased by 21.65, 26.43, and 28.43% at 24,

48, and 72 h, respectively. On the whole, CPP-Ca had positive

effects on the proliferation of MC3T3-E1 cells. Wu et al. also

found that porcine bone collagen peptide calcium chelate had

a similar trend in promoting osteoblast proliferation, and the

optimal concentration was 0.5 mg/mL, when the proliferation

rate was around 140%. However, CPP-Ca achieved a similar

effect at lower concentrations (22). Calcium phosphates have

high solubility in water, such as a-tricalcium phosphate and

tetracalcium phosphate. However, Atsushi et al. found that there

was no significant difference in the cell number of MC3T3-

E1 after 12 h, 1, 3, or 7 days treatment (42). When Liu et al.

treatedMC3T3-E1 cells with different concentrations of calcium

chloride (1, 2, 4, and 8mM), they found that the proliferation

rate of MC3T3-E1 cells treated with 2mM CaCl2 for 48 h and

72 h increased significantly reaching 113.1% and 124.4% (43).

But the proliferation rate of MC3T3-E1 cells treated with 200

µg/ mL CPP-Ca for 48 h and 72 h reached more than 120%.

Comparatively, CPP-Ca showed a strong ability to promote the

proliferation of MC3T3-E1 cells.

E�ects of CPP-Ca on di�erentiation of
MC3T3-E1 cells

ALP is a marker of early differentiation of osteoblasts (44).

In addition, the higher the ALP activity was conducive to bone

formation and repair (45). The effects of different concentrations
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of CPP-Ca on ALP activity of MC3T3-E1 cells are shown in

Figure 5. It was noteworthy that CPP-Ca significantly improved

the ALP activity of MC3T3-E1 cells via a dose-dependent

manner. The ALP activity of MC3T3-E1 cells in the CPP-

Ca treatment group achieved 74, 77, 91, 93, and 106 King

unite/gprot at 50,100, 150, 200, and 250µg/mL, respectively,

which were increased by 7.4%, 12%, 32%, 36%, and 55% of the

blank control group, respectively. In general, CPP-Ca played an

important role in promoting the ALP activity of MC3T3-E1 cells

and was beneficial to the differentiation of MC3T3-E1 cells.

E�ects of CPP-Ca on mineralization of
MC3T3-E1 cells

Alizarin red can chelate with calcium nodules produced

by the mineralization of osteoblasts to produce deep red or

purple red complex, and the complex can be dissolved by

cetylpyridinium chloride. Because of this, it is usually used

to observe and quantitatively analyze the mineralized calcium

nodules of osteoblasts (46). Therefore, we further determined

the effects of CPP-Ca on the mineralization of MC3T3-

E1 cells by alizarin red staining and quantitative analysis

of calcium nodules with cetylpyridinium chloride (47). As

shown in Figure 6, compared with the blank control group,

the stained calcium nodules of the cells treated with CPP-

Ca were darker and more numerous. Moreover, the calcium

nodules quantitative analysis can be intuitively known that

CPP-Ca significantly improved the mineralization of MC3T3-

E1 cells via a dose-dependent manner. Compared with the

blank control group, the calcium nodules were increased by 11%

and 72% at 100 and 250µg/mL, respectively. From the results

of mineralization, it can be concluded that the CPP-Ca had

significant effects on the mineralization of MC3T3-E1 cells.

RNA-sequencing analysis

How to regulate osteoblast differentiation is important

for the prevention and treatment of osteoporosis (48). Based

on the study of osteogenic activity, RNA-seq technology

was used to further reveal the mechanism of CPP-Ca

promoting differentiation.

Analysis of DEGs

In this study, 321 DEGs in MC3T3-E1 cells treated with

CPP-Ca were screened out (p < 0.05 and |log2(Fold Change)|

≥1), including 121 upregulated genes, and 200 downregulated

genes (The top 15 upregulated and downregulated DEGs are

shown in Tables 3, 4, respectively). Moreover, the volcano plot

was used to presented the expression patterns (Figure 7), in

TABLE 3 List of the top 15 upregulated DEGs.

Gene

name

Fold

change

log2 fold

change

p value

Retnla 20.324 4.345 1.55E-05

Adamts16 19.818 4.308 0.003

Mmp24 18.729 4.227 0.005

Nat8f3 18.229 4.188 0.007

Ric3 13.198 3.722 0.038

Art3 13.184 3.720 0.038

Ctsc 10.911 3.447 0.005

Dner 8.424 3.074 0.028

Chl1 8.420 3.073 0.025

Myl1 8.406 3.071 0.010

Mobp 8.198 3.035 0.005

Nnat 7.915 2.984 8.24E-07

Myh4 7.890 2.980 0.004

Kcnj15 6.574 2.716 4.20E-09

Ephb1 6.189 2.629 0.003

TABLE 4 List of the top 15 downregulated DEGs.

Gene

name

Fold

change

log2 fold

change

p value

Vipr1 0.024 −5.379 2.04E-06

Mfsd7c 0.036 −4.775 0.0002

Smim6 0.045 −4.469 0.0017

Smagp 0.050 −4.310 1.83E-05

B4galnt3 0.051 −4.292 9.33E-36

Col13α1 0.052 −4.258 0.005

Nrros 0.057 −4.115 0.009

Adamts18 0.060 −4.054 6.78E-37

Smim5 0.064 −3.963 1.20E-15

Ptprr 0.067 −3.893 8.62E-06

Psd4 0.069 −3.843 0.025

Ptpro 0.070 −3.826 0.025

Clic3 0.072 −3.785 0.0007

Col22α1 0.075 −3.728 2.51E-56

Ncf1 0.079 −3.658 4.61E-156

which the red dots represented upregulated genes, and the green

dots represented downregulated genes.

GO enrichment analysis of DEGs

GO enrichment analysis is a comprehensive description

of the gene and gene product properties in the organism.

It contains three aspects: molecular function, cellular
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FIGURE 7

Volcano plot of DEGs (Green dots represent downregulated genes, red dots represent upregulated genes, and gray dots represent no significant

di�erence in genes).

component, and biological process (49). According to the

functional enrichment analysis of DEGs, the top 10 terms

of GO categories and the number of genes are shown

in Figure 8. The DEGs mainly participated in biological

processes and were assigned to multicellular organism

development (38 genes), signal transduction (34 genes),

cell differentiation (28 genes), and cell adhesion (28 genes).

Cellular component classification showed that most of

the DEGs were located in the regions of the membrane

(139 genes), cytoplasm (111 genes), integral component of

membrane (105 genes), and plasma membrane (105 genes).

Molecular function classification showed that the dominant

functions of these DEGs were involved in protein binding

(90 genes), metal ion binding (54 genes), hydrolase activity

(25 genes), and nucleotide binding (23 genes). Through

the comparison of biological process, cellular component,
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FIGURE 8

GO enrichment analysis of DEGs. The top 10 enriched in cellular component, molecular function, and biological process, respectively.

and molecular function, the DEGs accounted for a large

proportion of cellular component, thus it can be inferred that

DEGs mainly played an important role in the regulation of

cellular components.

KEGG pathway analysis of DEGs

With the advantage of the powerful graphical function,

the KEGG pathway analysis can provide more intuitive and

comprehensive information (19). To discern the functions of

the DEGs, they were mapped using the KEGG database. The

top 20 significantly enriched pathways in upregulated and

downregulated DEGs are shown in Figures 9A,B, respectively.

Among the significantly upregulated pathways, the significant

enrichment pathways included: glycine, serine, and threonine

metabolism (4 genes), MAPK signaling pathway (4 genes),

complement and coagulation cascades (4 genes), PI3K-Akt

signaling pathway (6 genes), AMPK signaling pathway (3

genes), and so on. While pathways that were significantly

downregulated and enriched included protein digestion and

absorption (7 genes), Wnt signaling pathway (8 genes), Basal

cell carcinoma (5 genes), ECM-receptor interaction (5 genes),

Fructose and mannose metabolism (3 genes), and so on.

PI3K-Akt signaling pathway affects bone formation and

bone cells survival, thereby controlling the balance of bone

density (50). Wnt signaling is a common signal transduction

pathway involved in the control of a variety of biological

phenomena, and osteoblast differentiation has been confirmed

to be regulated by the Wnt pathway (51, 52). MAPK pathway

is related to osteogenic activity, including the ERK pathway,

P38 pathway, and JNK pathway (53). Specifically, the ERK

pathway affects osteoblast proliferation and ALP activity, and

promotes the expression of ERα, P-ERK, and Osterix. The

P38 pathway can promote osteoblast mineralization and the

expression of ALP and BMP. The JNK pathway is related to

promote the expression of osteocalcin (OCN) and osteopontin

(OPN) (54, 55). AMPK pathway regulates the cell ability and

metabolic balance by sensing energy changes, thus affecting

cell biological functions such as cell proliferation, apoptosis,

and differentiation (56). Activation of the AMPK pathway can

increase the proliferation and promote the differentiation and

mineralization of MC3T3-E1 cells (57, 58). In general, CPP-Ca

promoted the differentiation ofMC3T3-E1 cells may be via these

signal pathways.

It was found that IGF1 appeared in the AMPK, PI3K-

Akt, and MAPK signaling pathways and may play a key

role in osteoblasts differentiation. In general, CPP-Ca

regulates MC3T3-E1 cell differentiation through these

signaling pathways.

Analysis of validation of DEGs using
qRT-PCR

According to GO enrichment and KEGG pathway analysis,

as well as considering the gene expression, six DEGs were
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FIGURE 9

KEGG pathway enrichment analysis of DEGs. (A) Top 20 of enriched pathways for 121 upregulated DEGs; (B) Top 20 of enriched pathways for

200 downregulated DEGs.

FIGURE 10

Verification of the expression profiling of DEGs by qRT-PCR. * p < 0.05; ** p < 0.01, compared with the control group.

selected for further verification by qRT-PCR, including three

downregulated genes (NOTUM, WIF1, and LRP4) and three

upregulated genes (APOD, OGN, and IGF1).

NOTUM is a lipase, an inhibitor of the Wnt/β-catenin

signaling pathway, that inactivates Wnt by cleaving to the

palmitoleate moiety phosphoric acid required for binding
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to the Frizzled receptor (59, 60). Brommage et al. found

that the ALP activity and mineralization of osteoblasts were

greatly enhanced in the absence of NOTUM, so it was

concluded that the removal of NOTUM was conducive to

the differentiation of osteoblasts (59). LRP4 is a member of

the low-density lipoprotein family receptor (61), and it has

a negative regulatory effect on the Wnt/β-catenin signaling

pathway by competitively binding LRP5/LRP6 with the Wnt/FZ

complex (62, 63). Loss of LRP4 may weaken the inhibition

of sclerosis protein on the Wnt/β-catenin signaling pathway,

which is beneficial to the differentiation of osteoblasts (64). The

expression ofWIF1 is closely related to osteoblast differentiation

(65). WIF1 directly binds to Wnt ligands and prevents Wnt

from binding to frizzled and LRP5/LRP6, thereby inhibiting the

Wnt/β-catenin signaling pathway (66). Liang et al. found that

Gossypol inhibited WIF1 expression and promoted osteoblast

differentiation in the Wnt/β-catenin signaling pathway (67).

IGF1 is a key protein in bone formation and plays an important

role in the regulation of bone conversion and osteogenic

growth (68–70). Yuan et al. found that IGF1 promoted the

differentiation of osteoblasts (71). Furthermore, Xue et al. found

that IGF1 promoted osteogenic differentiation of rat bone

marrow mesenchymal stem cells by increasing TAZ expression

(72). OGN, also known as an osteoinductive factor, is a member

of the small leucine-rich proteoglycans family (73), secreted by

myoblasts and stimulates osteoblast differentiation, and plays

an important role in muscle and bone interaction (74). Chen

et al. found that the overexpression of OGN was beneficial to

the differentiation of osteoblasts, and thus it is beneficial to the

treatment of osteoporosis (75). APOD, a 29-kDa glycoprotein

(76), plays a key role in promoting osteoblast differentiation

and preventing osteoporosis. Yu et al. found that APOD

alleviates glucocorticoid-induced osteogenesis suppression in

bone marrow mesenchymal stem cells via the PI3K/Akt

pathway (77). Martineau et al. reported that APOD deficiency

is associated with high-bone turnover, low bone mass, and

impaired osteoblastic function in aged female mice (78). Ishii et

al. found that APOD gene expression was inducive to osteogenic

differentiation (79).

The mRNA expression levels of six DEGs are shown

in Figure 10. The results of mRNA expression levels were

consistent with RNA-seq analysis. Specifically, compared with

the blank control, the mRNA expression levels of APOD,

OGN, and IGF1in MC3T3-E1 cells treated with CPP-Ca were

significantly increased 2.6, 2.0, and 3.0 times, respectively, while

the mRNA expression levels of NOTUM, WIF1, and LRP4

notably decreased to 2.3, 2.1, and 4.2 times, respectively. Thus,

the results of validation of DEGs suggested that CPP-Ca can

promote differentiation through upregulating the expression of

APOD, OGN, and IGF1 and downregulating the expression

of NOTUM, WIF1, and LRP4. Therefore, NOTUM, WIF1,

LRP4, APOD, OGN, and IGF1 played important roles in the

differentiation of MC3T3-E1 cells treated with CPP-Ca.

Conclusion

In this study, the preparation of CPP-Ca was optimized

and proved that CPP-Ca has significant activity on the

proliferation, differentiation, and mineralization of MC3T3-E1

cells. There were 321 DEGs in MC3T3-E1 cells treated with

CPP-Ca, which mainly played an important role in regulating

cellular component. The differentiation mechanism of CPP-

Ca on MC3T3-E1 cells may be related to the regulation of

the AMPK signaling pathway, PI3K-Akt signaling pathway,

MAPK signaling pathway, and Wnt signaling pathway, and the

expression of NOTUM, WIF1, LRP4, APOD, OGN, and IGF1.

This study provides a theoretical basis for the application of

CPP-Ca as a food additive in the prevention and treatment

of osteoporosis.
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