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Abstract

Background: Identifying dietary factors that determine insulin sensitivity and secretion in children entering puberty may

provide valuable information for the early prevention of type 2 diabetes.

Objectives:We assessed whether macronutrients and food groups are longitudinally associated with insulin sensitivity

and secretion over a 2-y period in children with a family history of obesity, and whether associations differ by level of

adiposity.

Methods:Data were derived from the Quebec Adipose and Lifestyle Investigation in Youth (QUALITY) Study, an ongoing

prospective cohort including 630 children recruited at ages 8–10 y, with ≥1 obese parent, and followed 2 y later (n= 564).

The intake of macronutrients and foods was assessed at baseline using three 24-h dietary recalls. At age 10–12 y, insulin

sensitivity was assessed by the Matsuda Insulin Sensitivity Index (ISI) and the homeostatic model assessment of insulin

resistance. Insulin secretion was assessed by the ratio of the area under the curve of insulin to the area under the curve

of glucose at 30 min and at 120 min of an oral-glucose-tolerance test. Multivariable linear regression models were

fitted for each dietary factor while adjusting for age, sex, puberty, physical activity, screen time, total energy intake, and

percentage of body fat; and interaction terms between dietary factors and percentage of body fat were tested.

Results: Saturated fat intake was associated with a 1.95% lower (95% CI: −3.74%, −0.16%) Matsuda ISI, whereas

vegetable and fruit intake was associated with a 2.35% higher (95% CI: 0.18%, 4.52%) Matsuda ISI 2 y later. The

association of saturated fat intake with insulin sensitivity was most deleterious among children with a higher percentage

of body fat (P-interaction= 0.023). Other than fiber intake, no longitudinal associations between dietary intake and insulin

secretion were found.

Conclusions: Lowering saturated fat and increasing vegetable and fruit intakes during childhood may improve insulin

sensitivity as children enter puberty. This study was registered at www.clinicaltrials.gov as NCT03356262. J Nutr

2018;148:1838–1844.

Keywords: adiposity, adolescent/children, diet, fat intake, insulin sensitivity, insulin secretion, nutrients, obesity

Introduction

The substantial increases in body weight in North American
children and youth have been associated with increases in the
prevalence of prediabetic conditions and type 2 diabetes (1–4).
Clinical and public health prevention strategies for prediabetes
and type 2 diabetes in children and youth are urgently needed.
One avenue for prevention may focus on specific dietary factors
early on in childhood (5). Dietary factors may increase the risk

of type 2 diabetes directly through their impact on glucose-
insulin responses and indirectly by promoting excessive weight
gain (5).

Studies on the link between dietary intake and glucose-
insulin responses in children have focused on dietary factors,
such as fat (6, 7), carbohydrate (6, 8), fiber (8–10), or glycemic
index (11–13), or specific types of foods characterized as healthy
(14). However, few prospective studies have been conducted. In
one longitudinal study in 774 adolescent females aged 16–17 y
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and followed 2 y later,White et al. (8) reported improved insulin
sensitivity with higher baseline intake of PUFAs and no effect
of MUFA and SFA intake, suggesting that types of fat may
be differently associated with insulin dynamics. Similarly, these
authors found fiber intake to be prospectively associated with
improved insulin sensitivity (8). Other studies have examined
relatively short-term effects of dietary interventions on insulin
dynamics. For example, a cluster-randomized controlled trial
showed that providing Danish children aged 8–11 y with
healthy school meals rich in fiber, vegetables, and fish resulted
in a small decrease in insulin resistance 3 mo later (14).

In this study, we address limitations of existing studies,
namely the need for longitudinal studies that use validated
methods to measure dietary intake and insulin dynamics in
children and that consider other lifestyle habits that may
confound associations. Specifically, we aimed to assess whether
habitual dietary intakes of both specific macronutrients and
food groups are associated with insulin sensitivity and insulin
secretion over a 2-y period in children with a family history
of obesity. A secondary objective was to assess whether
associations differed by baseline adiposity.

Methods
Participants were drawn from the Quebec Adipose and Lifestyle
Investigation in Youth (QUALITY) Study, an ongoing longitudinal
investigation of the natural history of obesity and cardiovascular disease
risk factors in white youth. Children were recruited through elementary
schools located within 3 major urban centers in Quebec, Canada.
Eligibility criteria required participants to be white (Caucasian), aged
8–10 y at recruitment, with both biological parents available to
participate in baseline data collection and ≥1 parent being obese on the
basis of BMI or abdominal obesity.At baseline, 630 families participated
in a clinic visit (2005–2008). A similar follow-up assessment was
conducted 2 y later (2007– 2011), when children were aged 10–12
y (n = 564) (Supplemental Figure 1). Overall, participants lost to
follow-up had a higher percentage of body fat mass, lower insulin
sensitivity, and higher insulin secretion, and had lower intakes of fiber,
grain products, and milk and alternatives compared with those who
remained in the study (Supplemental Table 1).Written informed consent
was obtained from parents, and assent was provided by children.
All of the procedures undertaken in this study are in accordance
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with the standards of the Ethics Review Boards of the CHU Sainte-
Justine and the Quebec Heart and Lung Institute, which approved the
study. A detailed description of the study design and data collection
methods is available (15). The QUALITY Study is registered at
www.clinicaltrials.gov (NCT03356262).

Dietary assessment. Children’s dietary intake was measured at
baseline with the use of mean values of three 24-h diet recalls conducted
by trained dietitians on nonconsecutive days, including 1 weekend
day (16). Except in unusual circumstances, the recalls were collected
within a 4-wk period after the baseline clinic visit. Diet recall interviews
were conducted by telephone with the child and then confirmed with
the parent who prepared the meals. During the clinical visit, each
participant was given a small disposable kit containing food-portion
models (e.g., graduated cup and bowl) as well as training on the use of
the kit during the telephone interview.

Foods reported on the recalls were entered into CANDAT software
(Godin and Assoc, London, ON) and converted to nutrients using the
2007 Canadian Nutrient File. Outliers in the analysis of the distribution
of each nutrient were examined. Total fiber intake was measured in
grams, and total energy intake in kilocalories. Average daily percentages
of total energy from dietary fat, SFAs, PUFAs, MUFAs, protein, and
carbohydrate were calculated. Daily servings of vegetables and fruit,
grain products, milk and alternatives, and meat and alternatives were
based on portion sizes from Canada’s Food Guide (17).

Insulin dynamics. All of the participants underwent a 2-h oral-
glucose-tolerance test (OGTT) after a 12-h overnight fast. Blood
samples were collected at 30-, 60-, 90-, and 120-min intervals after an
oral-glucose dose of 1.75 g/kg body weight (maximum: 75 g). Plasma
insulin was measured by using the ultrasensitive Access immunoassay
system (Beckman Coulter, Inc.), which has no cross-reactivity with
proinsulin or C-peptide (18). Plasma glucose concentrations were
computed on the Beckman Coulter Synchron LX20 automat with
the use of the glucose oxidase method. Analyses were performed in
batches at the Centre Hospitalier Universitaire Sainte-Justine Clinical
Biochemistry Laboratory twice monthly. The HOMA-IR, calculated
as the product of fasting glucose (millimoles per liter) and fasting
insulin (milli-units per liter) divided by 22.5, was used as a measure of
fasting insulin sensitivity (19). In addition, the OGTT-derived Matsuda
insulin sensitivity index (Matsuda ISI) was computed as 10,000/[(fasting
glucose × fasting insulin) × (mean OGTT glucose × mean OGTT
insulin)] (20). Both the HOMA-IR and the Matsuda ISI have previously
been validated in children aged 6–18 y (21). Insulin secretion was
measured by using OGTT-derived measures, namely the ratio of the
AUC of insulin to the AUC of glucose during the first 30 min (AUC
I/Gt30min) of the OGTT (first-phase insulin secretion) and during the
full 2 h (AUC I/Gt120min) of the OGTT (second-phase insulin secretion).
The AUC I/Gt30min has previously been found to be an accurate estimate
of first-phase insulin secretion in healthy children (22).

Other measurements. Physical activity was assessed with the use
of 7-d accelerometry (Actigraph LS 7164 activity monitor; Actigraph
LLC). Valid wear time consisted of a minimum of 10 h/d for a
minimum of 4 d. Nonwear time was defined as any period of
≥60 min of 0 counts, accepting 1 min or 2 consecutive minutes where
count values were >0 and ≤100 (23). Moderate-to-vigorous physical
activity was computed by adding the total minutes spent daily on
moderate and vigorous physical activities and averaging over the total
number of valid days of wear (24, 25). Screen time was assessed
by using an interviewer-administered questionnaire to document self-
reported habitual daily hours spent on leisure television viewing and
computer/video game use on weekdays and weekends. The average
daily hours of leisure screen time was calculated. Body composition was
measured by DXA. Percentage body fat mass was calculated as total fat
mass/total body mass × 100. Pubertal development stage was assessed
by a trained nurse with the use of the 5-stage Tanner scale (26, 27),
and was dichotomized as prepubertal (Tanner 1) or puberty initiated
(Tanner >1).
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TABLE 1 Characteristics of participants who completed the baseline and follow-up visit of the
QUALITY study1

Baseline (time 1) Follow-up (time 2)

Correlation
between time
1 to time 2 (rs)

Age, y 9.6 ± 0.9 11.7 (0.9)
Male sex 55.5 —
BMI category

Normal weight 58.9 60.3
Overweight 19.5 17.4
Obese 21.6 22.3

Pubertal (Tanner stage >1) 20.6 67.0
Percentage body fat, % 26.1 ± 10.8 28.4 ± 10.9 0.9
MVPA, min/d 47.7 (31.1–64.7) 43.1 (26.6–55.9) 0.6
Screen time, h/d 2.2 (1.3–3.6) 2.9 (1.9–4.4) 0.5
HOMA-IR 0.8 (0.6–1.2) 1.2 (0.8–1.9) 0.6
Matsuda ISI 9.4 (6.3–12.9) 6.6 (4.4–9.6) 0.7
AUC I/G

30 min 25.9 (17.6–39.8) 35.7 (24.2–53.5) 0.6
120 min 26.9 (19.7–39.8) 36.3 (24.8–55.4) 0.6

Total energy intake, kcal/d 1702 ± 392 —
Carbohydrate, % 53.0 ± 6.2 —
Total fat, % 32.3 ± 4.9 —
SFAs, % 11.5 ± 2.6 —
PUFAs, % 5.5 ± 1.8 —
MUFAs, % 11.3 ± 2.4 —
Protein, % 16.0 ± 3.2 —
Fiber, g/d 13.4 ± 4.2 —
Vegetables and fruit, servings/d 4.4 ± 2.1 —
Grain products, servings/d 4.7 ± 1.7 —
Meat and alternatives, servings/d 1.9 ± 0.8 —
Milk and alternatives, servings/d 1.9 ± 1.0 —

1Values are percentages, medians (IQRs), or means ± SDs; n = 564. Spearman’s ρ between selected variables measured
at time 1 and time 2 are shown. AUC I/G, area under the curve of insulin to the area under the curve of glucose; ISI, insulin
sensitivity index; MVPA, moderate-to-vigorous physical activity; QUALITY, Quebec Adipose and Lifestyle Investigation in Youth.

Statistical analysis. Descriptive statistics were used to characterize
participants at baseline and follow-up. Spearman’s rank-order correla-
tion coefficients were computed for nonnormally distributed continuous
variables measured at both time points. Multivariable linear regression
analyses were used to examine the association of each dietary factor
with Matsuda ISI, HOMA-IR, and insulin secretion (AUC I/Gt30min
and AUC I/Gt120min) in distinct models while adjusting for sex, age,
and pubertal development at follow-up; mean minutes of moderate-to-
vigorous physical activity; hours of screen time per day; and total energy
intake as well as percentage body fat mass at baseline. Insulin sensitivity
and secretion variables were transformed (100 × ln of variable) to
normalize their distribution. The interpretation of β coefficients is
therefore as follows: for a 1-unit increase in the independent variable,
β represents the percentage increase (for positive β) or decrease (for
negative β) in the outcome (28). Models for insulin secretion were also
adjusted for insulin sensitivity using fractional polynomials to account
for their established nonlinear association (29). All associations were
tested for nonlinearity with the use of nonparametric smoothing splines.
These findings are not presented given that no nonlinear associations
were found between dietary factors and insulin outcomes. Interactions
between each macronutrient or food group and percentage body fat
mass were tested by including interaction terms to covariable-adjusted
models.

Sensitivity analyses were conducted. First, we repeated regression
analyses on 20 imputed data sets created by using multiple imputations
with the fully conditional specification. Second, to examine associations
between diet and 2-y changes in insulin sensitivity (Matsuda ISI and
HOMA-IR), the model for Matsuda ISI at follow-up was adjusted for
baseline Matsuda ISI, and the model for HOMA-IR at follow-up was

adjusted for baseline HOMA-IR. Third, we tested associations for the
intake of saturated fat from specific sources of foods, namely from
dairy sources only and from meat sources only, given recent findings
suggesting that these may be differently associated with the risk of
type 2 diabetes in adult populations (30, 31). All of the analyses were
conducted with SAS version 9.4 (SAS Institute).

Results

Characteristics of the 564 QUALITY participants who com-
pleted both baseline and follow-up visits are presented in
Table 1. At follow-up, 17% were overweight, 22% were
obese, and the majority had initiated puberty (67%). Over
the 2-y follow-up period, percentage body fat mass increased
by 2.3%. As expected given the pubertal stages of partici-
pants, insulin sensitivity decreased and first- and second-phase
insulin secretion increased between baseline and follow-up
assessments.

Main effect associations between baseline dietary intake and
the Matsuda ISI and HOMA-IR are presented in Table 2. Every
incremental increase in SFAs as a percentage of total energy
intake at baseline was associated with a Matsuda ISI that was
lower by 1.95% (95% CI: −3.74%, −0.16%) 2 y later. In
contrast, PUFAs and MUFAs were not associated with insulin
sensitivity. In sensitivity analyses, when examining dietary
sources of saturated fat, we observed that this association held
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TABLE 2 Associations between dietary factors at age 8–10 y and insulin sensitivity (Matsuda ISI) and insulin resistance (HOMA-IR)
2 y later: QUALITY cohort1

Matsuda ISI HOMA-IR

Case complete (n= 443) Imputed (n= 534) Case complete (n= 454) Imputed (n= 548)

Carbohydrates, % 0.56 (−0.15, 1.27) 0.52 (−0.13, 1.17) −0.65 (−1.38, 0.07) −0.61 (−1.27, 0.05)
Total fat, % −0.77 (−1.70, 0.15) −0.65 (−1.48, 0.17) 0.75 (−0.20, 1.71) 0.70 (−0.15, 1.55)
SFAs, % −1.95 (−3.74, −0.16)* −1.31 (−2.88, 0.25) 1.40 (−0.45, 3.26) 0.84 (−0.75, 2.42)
PUFAs, % −0.86 (−3.34, 1.62) −0.98 (−3.22, 1.26) 1.03 (−1.51, 3.57) 1.60 (−0.66, 3.86)
MUFAs, % −0.24 (−2.15, 1.68) −0.52 (−2.23, 1.19) 0.82 (−1.15, 2.79) 0.92 (−0.81, 2.66)
Protein, % −0.007 (−1.38, 1.37) −0.05 (−1.31, 1.22) 0.27 (−1.15, 1.70) 0.15 (−1.14, 1.45)
Fiber, g/d 1.02 (−0.27, 2.32) 1.33 (0.18, 2.47)* −0.98 (−2.32, 0.37) −1.10 (−2.27, 0.07)
Vegetables and fruit, servings/d 2.35 (0.18, 4.52)* 2.24 (0.25, 4.24)* −2.18 (−4.43, 0.06) −2.06 (−4.10, −0.03)*
Grain products, servings/d −0.06 (−3.40, 3.28) 0.66 (−2.28, 3.61) 0.72 (−2.69, 4.13) −0.02 (−2.99, 2.94)
Meat and alternatives, servings/d −1.42 (−7.30, 4.46) −1.64 (−6.99, 3.71) 2.79 (−3.33, 8.91) 2.61 (−2.90, 8.12)
Milk and alternatives, servings/d −0.62 (−5.74, 4.50) 0.29 (−4.24, 4.83) −0.64 (−5.91, 4.64) −1.88 (−6.51, 2.76)

1Values are β coefficients (95% CIs). For every incremental increase in saturated fat as a percentage of total energy intake at age 8–10 y, the Matsuda ISI is lower by 1.95% at
age 10–12 y. Models were adjusted for exact age at follow-up, sex, Tanner stage at follow-up, MVPA, screen time, total energy intake, and adiposity at baseline. *P < 0.05. ISI,
insulin sensitivity index; MVPA, moderate-to-vigorous physical activity; QUALITY, Quebec Adipose and Lifestyle Investigation in Youth.

for SFAs from dairy sources, but not for SFAs from meat
sources (Supplemental Table 2). Every additional serving of
vegetables and fruit at baseline was associated with a 2.35%
(95% CI: 0.18%, 4.52%) higher Matsuda ISI 2 y later. In
sensitivity analyses, SFAs (P = 0.06) and vegetable and fruit
intake (P = 0.07) remained marginally associated with 2-y
changes in the Matsuda ISI (Supplemental Table 3). However,
when considering both SFAs and vegetable and fruit intake in a
single model, associations with theMatsuda ISI were attenuated
toward the null (data not shown). When using HOMA-IR as
a measure of fasting insulin sensitivity, associations with SFAs
and vegetables and fruit servings were generally similar in effect
size, albeit without reaching significance. Results were similar
between case-complete and imputed data analysis, although
with a loss of significance (Table 2). Moreover, fiber intake
was associated with improved Matsuda ISI (1.33%; 95% CI:
0.18%, 2,47%) and was borderline associated with improved
HOMA-IR (−1.10%; 95% CI: −2.27%, 0.07%) in imputed
analyses only.

First-phase insulin secretion was not associated with any
of the dietary factors examined nor was second-phase insulin
secretion, except for fiber intake (Table 3). Every additional
daily gram of fiber intake at baseline was associated with a
0.83% (95% CI: 0.01%, 1.65%) higher second-phase insulin
secretion 2 y later, but only the in case-complete analyses.

Interactions were found between baseline saturated fat
intake and percentage body fat mass (P-interaction = 0.023),
and between baseline portions of grain products and percentage
body fat mass (P-interaction= 0.006) in relation to theMatsuda
ISI. When stratifying associations by tertiles of percentage body
fat mass, we found a negative association between SFAs intake
and Matsuda ISI only among children within the highest tertile
of percentage body fat mass (β = −4.29%; 95% CI: −7.98%,
−0.61%), and no associations for those in other tertiles of
adiposity (Table 4). Similarly, among children within the lowest
tertile of percentage body fat mass, the number of daily servings
of grain products was positively associated with the Matsuda
ISI (β = 5.10%, 95% CI: −0.16%, 10.35%), whereas it was

TABLE 3 Associations between dietary factors at age 8–10 y and first-phase (AUC I/G 30 min) and second-phase insulin secretion
(AUC I/G 120 min) 2 y later: QUALITY cohort1

AUC I/G

30 min 120 min

Case complete (n= 443) Imputed (n= 534) Case complete (n= 443) Imputed (n= 534)

Carbohydrates, % 0.03 (−0.52, 0.58) 0.07 (−0.44, 0.57) 0.19 (−0.26, 0.64) 0.14 (−0.28, 0.55)
Total fat, % 0.20 (−0.51, 0.92) 0.09 (−0.55, 0.72) −0.30 (−0.88, 0.29) −0.22 (−0.75, 0.31)
SFAs, % −0.04 (−1.43, 1.36) −0.05 (−1.25, 1.15) −0.21 (−1.35, 0.92) −0.09 (−1.09, 0.90)
PUFAs, % 1.35 (−0.56, 3.26) 0.97 (−0.75, 2.69) −0.35 (−1.91, 1.21) −0.65 (−2.08, 0.79)
MUFAs, % 0.84 (−0.64, 2.31) 0.70 (−0.61, 2.02) −0.92 (−2.13, 0.28) −0.67 (−1.76, 0.42)
Protein, % −0.46 (−1.52, 0.60) −0.40 (−1.37, 0.58) 0.14 (−0.72, 1.01) 0.17 (−0.63, 0.96)
Fiber, g/d 0.06 (−0.95, 1.06) −0.10 (−0.99, 0.79) 0.83 (0.01, 1.65)* 0.57 (−0.16, 1.30)
Vegetables and fruit, servings/d −0.21 (−1.90 1.48) −0.29 (−1.84, 1.26) 0.65 (−0.73, 2.03) 0.49 (−0.78, 1.77)
Grain products, servings/d 1.31 (−1.26, 3.89) 0.95 (−1.31, 3.20) −0.49 (−2.60, 1.61) −0.75 (−2.63, 1.12)
Meat and alternatives, servings/d −1.30 (−5.84, 3.24) −0.70 (−4.87, 3.47) −1.10 (−4.81, 2.61) −0.11 (−3.52, 3.31)
Milk and alternatives, servings/d −2.68 (−6.62, 1.27) −2.59 (−6.09, 0.90) 1.54 (−1.68, 4.77) 1.09 (−1.82, 3.99)

1Values are β coefficients (95% CIs). For every incremental increase in the intake of grams of fiber per day at age 8–10 y, second-phase insulin secretion (AUC I/G120min) is higher
by 0.83% at age 10–12 y. Models were adjusted for exact age at follow-up, sex, Tanner stage at follow-up, MVPA, screen time, total energy intake, adiposity at baseline, and
insulin sensitivity. *P < 0.05. AUC I/G, AUC of insulin to the AUC of glucose; MVPA, moderate-to-vigorous physical activity; QUALITY, Quebec Adipose and Lifestyle Investigation
in Youth.

Diet and insulin dynamics 1841



TABLE 4 Associations between selected dietary factors at age 8–10 y and insulin sensitivity (Matsuda ISI) 2 y later by baseline level
of adiposity (QUALITY cohort)1

β (95% CI)

Lowest tertile of Middle tertile of Highest tertile of
% body fat (n= 148) % body fat (n= 151) % body fat (n= 144)

SFAs, % −0.78 (−3.86, 2.29) −0.001 (−3.04, 3.03) −4.29 (−7.98, −0.61)
Grain products, servings/d 5.10 (−0.16, 10.35) −0.68 (−6.80, 5.45) −4.07 (−10.85, 2.71)

1Models are adjusted for age, sex, and Tanner stage at follow-up, and for total energy intake, physical activity, and screen time at baseline. ISI, insulin sensitivity index; QUALITY,
Quebec Adipose and Lifestyle Investigation in Youth.

negatively associated in the highest tertile of percentage body fat
mass (β = −4.07%, 95% CI: −10.85%, 2.71%). Comparable
interactions were found for HOMA-IR.

Discussion

Children whose usual diet contains a higher percentage of
energy from SFAs and fewer servings of vegetables and fruit
had lower insulin sensitivity 2 y later; these associations were
independent of other lifestyle habits and of adiposity, and even
of baseline insulin sensitivity. The deleterious effect of SFAs
intake increased with higher baseline adiposity. Similarly, the
number of servings of grain products was associated with lower
insulin sensitivity among those with higher baseline adiposity;
this association was, however, inverse among children who
were lean at baseline. We found little evidence for associations
between dietary factors and insulin secretory demands. Findings
from this study should be interpreted with caution given the
number of associations tested and the increased risk of type 1
error. Results should thus be seen as exploratory and need to be
confirmed in future studies.

The potential contribution of dietary fat on type 2 diabetes
has been the subject of many studies in adult populations.
In their systematic review and meta-analysis of 102 trials,
Imamura et al. (32) found that replacing dietary saturated fat
with mono- or polyunsaturated fat improved glucose-insulin
homeostasis. The literature in pediatric populations is much
scarcer, particularly with respect to prospective studies. As in
the adult literature, it has been shown that different types of
dietary fat may have distinct effects on later insulin sensitivity in
children and adolescents (8, 14, 33). We observed a deleterious
effect of baseline SFAs intake but no associations for PUFA or
MUFA intake, unlike White et al. (8), who reported improved
insulin sensitivity with higher PUFA intake. A recent prospective
study in Canadian children similar in age to those in the
QUALITY study reported no association between baseline
total fat intake and insulin sensitivity after adjustment for
confounders; however, associations for specific types of fat were
not reported (34).

Underlying mechanisms for associations between fat intake
and insulin resistance have been proposed (35, 36). In adults and
in animal studies, diet-induced inflammation, via various dietary
FAs such as n–6 FAs and SFAs, has been associated with the
development of insulin resistance (35). More recently, studies
have pointed to the potential contribution of fat, specifically
from dairy sources, to reduce insulin resistance and type 2
diabetes in adults (37–39), with limited evidence to date in
children (40, 41). In sensitivity analyses, we observed the
opposite: SFAs from dairy sources, particularly when including
dairy foods with added sugar,were associated with lower insulin
sensitivity. In contrast, no association was observed for SFAs

from meat sources. Further studies in pediatric populations
are needed to better understand the potential impact of SFAs
from different dietary sources on type 2 diabetes risk factors in
children.

The deleterious effect of SFAs intake on insulin sensitivity
increased among participants with higher baseline adiposity.
This accords with the inflammation pathway proposed previ-
ously: both adiposity and chronic intake of SFAs are associated
with inflammatory states, which may, in turn, lead to insulin
resistance (35, 42). The stronger association between SFAs and
insulin sensitivity in children with higher adiposity may reflect
already present cellular inflammation among obese subjects and
suggests an additive effect of saturated fat intake and adiposity
on insulin sensitivity starting in childhood. With regard to
grain products, their intake was associated with higher insulin
sensitivity in leaner children and with lower insulin sensitivity in
children with more fat mass. One explanation for this finding is
that the quality of grain products consumed by lean and obese
children may differ, notably in terms of glycemic index and total
and type of fiber. A positive association between water-soluble
fiber intake and insulin sensitivity has been previously reported
(8). We found an association between total fiber intake and
insulin sensitivity, but only in imputed data analysis; however,
we did not break down grain products on the basis of their
glycemic index or type of fiber content.

Vegetable and fruit intake has been inconsistently associated
with insulin sensitivity in children (34, 43). Discordant findings
between studies may relate to differences in age groups studied,
in methods used to measure vegetable and fruit intake and
insulin sensitivity, or in residual confounding. In our study, every
additional serving of vegetables and fruit increased theMatsuda
ISI and decreased HOMA-IR by∼2% after 2 y. Strategies aimed
at increasing access to and intake of vegetables and fruits may
lead to improved insulin sensitivity over time and contribute to
the prevention of type 2 diabetes.

Overall, associations with HOMA-IR were attenuated
compared with those with the Matsuda ISI. The latter relates to
total body (i.e.,muscle and adipose tissue) insulin sensitivity in a
dynamic way after an oral-glucose load, whereas HOMA-IR is
a fasting measure related to hepatic insulin sensitivity. Our find-
ings suggest that insulin dynamics in the postprandial state may
be more strongly influenced by usual dietary intake compared
with hepatic insulin sensitivity measured in the fasting state.

Other than for fiber intake, no longitudinal associations
between dietary intake and insulin secretion were found. Our
finding of increased second-phase insulin secretory require-
ments with fiber intake was unexpected. Indeed, although fiber
slows the absorption of glucose within a given meal, it is unclear
why a higher intake of fiber would alter second-phase insulin
secretion in response to an acute glucose load. The absence
of any other association between baseline dietary factors and
insulin secretion may reflect metabolic plasticity in children (7,
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44). It may be that children at a young age compensate for
dietary intake by upregulating appropriate metabolic pathways;
however, the cumulative effect of dietary intake on glucose-
insulin responses from childhood to adolescence to adulthood
may result in an adverse impact on insulin secretion over time.
Longer follow-up studies are needed to better understand which
dietary factors to target for the maintenance of optimal insulin
secretory function.

Overall, our findings were similar in terms of magnitude
when using either case-complete or imputed data, although with
associations attenuated to the null, except in the case of fiber
intake, which became associated with the Matsuda ISI. This
may relate to the fact that dietary intake is difficult to measure
accurately and that multiple imputations on data that are
measured with some degree of nondifferential misclassification
error could lead to further imprecision in measurements and
bias associations toward the null (45).

This study has several strengths, namely its prospective
design, the large sample size, and the use of validated methods
to measure habitual diet (16) and insulin dynamics (21, 22).
We took into consideration several potential confounders,
namely physical activity, sedentary behavior, and adiposity.
Nevertheless, residual confounding cannot be entirely ruled out
in this observational study. Another limitation is the possibility
of selection bias given that children lost to follow-up were
more likely to be obese, to have lower insulin sensitivity, and
to have diets lower in fiber content, grain products, and milk
and alternatives. However, this likely would have resulted in an
underestimation of associations. Dietary intake was measured
at baseline only. Although there is some evidence suggesting
that dietary patterns are stable over time during childhood
(46), observed associations may be the result of changes in diet
over the course of follow-up. Last, findings from our study
are generalizable to white children with a parental history
of obesity; this group comprises a significant segment of the
Canadian population. Overall, the dietary intake of QUALITY
participants is comparable to population estimates for children
of similar ages, except for servings of grain products, of which
they consumed less (47).

In conclusion, this study suggests that, among children with
a parental history of obesity, lower SFAs and higher vegetable
and fruit intakes are associated with better insulin sensitivity
as these children enter puberty. A diet low in SFAs appears to
be particularly important for children who already have higher
adiposity. Further studies are needed to better understand what
underlies differences in the association between the intake of
grain products and insulin sensitivity according to adiposity,
as well as the impact of SFAs from different dietary sources.
Promoting healthy dietary choices, namely increasing intakes
of vegetables and fruit and decreasing intakes of SFAs early
on in at-risk children, may contribute to preventing the later
development of type 2 diabetes.
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