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THE BIGGER PICTURE The placenta plays a vital role in the health of both mother and baby during preg-
nancy, but it is often not thoroughly examined at birth, especially in resource-limited settings. This gap
can lead to missed opportunities to detect critical conditions. Neonatal sepsis—a life-threatening infec-
tion—affects millions of newborns globally, particularly where early detection is challenging because of
limited medical resources. This research introduces a powerful tool that enables quick and accessible
placental assessment using just a photograph, potentially reducing the risk of undetected issues such as
infection or placental abnormalities.
Adaptable into mobile applications, this innovation promises greater accessibility in both high- and low-
resource settings. With further refinement, it has the potential to transform neonatal and maternal care by
enabling early, personalized interventions that prevent severe health outcomes and improve the lives of
mothers and infants worldwide.
SUMMARY
The placenta is vital to maternal and child health but often overlooked in pregnancy studies. Addressing the
need for amore accessible and cost-effectivemethod of placental assessment, our study introduces a compu-
tational tool designed for the analysis of placental photographs. Leveraging images and pathology reports
collected from sites in the United States and Uganda over a 12-year period, we developed a cross-modal
contrastive learning algorithm consisting of pre-alignment, distillation, and retrieval modules. Moreover, the
proposed robustness evaluation protocol enables statistical assessment of performance improvements, pro-
vides deeper insight into the impact of different features on predictions, and offers practical guidance for its
application in a variety of settings. Through extensive experimentation, our tool demonstrates an average
area under the receiver operating characteristic curve score of over 82% in both internal and external valida-
tions, which underscores the potential of our tool to enhance clinical care across diverse environments.
INTRODUCTION approximately 20% of placentas undergo pathology examina
The placenta serves as a significant indicator of both pregnancy

events and the health of the mother and baby.1–13 However,

even in a high-resource country like the United States, only
Patterns 5, 101097, Decem
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tions,14,15 and placental data are often overlooked in pregnancy

research.16 The underutilization of placental pathology is primarily

due to time, cost, expertise, and facility requirements, even in

resource-abundant areas.17 In low- and middle-income countries
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(LMICs), the incidence of adverse maternal and newborn out-

comes is higher, but resources are typically lacking to conduct

placental pathology.18,19 Therefore, enhancing the accessibility

of placental assessment to pathologists, clinicians, and re-

searchers is crucial.20,21 Immediate placental assessment at birth

is expected to significantly aid clinical decisions.

Existing automatic approaches in research often require

expensive equipment and time (e.g., MRI,22,23 computed to-

mography,24,25 or histological images21) and are not suitable

for immediate assessment after birth. Assessing abnormalities

in the delivered placenta has substantial value by revealing

events in pregnancy and labor that could impact clinical care

for the postpartum mother and newborn. As an example, cho-

rioamnionitis due to infection in the placenta may indicate a

subclinical infection in the newborn. Histologic diagnosis of

chorioamnionitis currently takes days17 and therefore is not

used to guide the immediate clinical care of the newborn.

Due to the increased risk of early-onset neonatal sepsis,26 anti-

microbial agents are used even if the neonate appears well27

before obtaining a diagnosis from placental pathology. A tool

that could accurately estimate a diagnosis of chorioamnionitis

(before a full pathology exam) and perhaps, more importantly,

the absence of chorioamnionitis for the well-appearing

newborn would help to initiate treatment for newborns most

at risk of infection and appropriately limit antimicrobial use for

those at low risk.

Recent efforts in placenta analysis have primarily focused on

segmentation28–30 and classification31–37 using histopathological,

ultrasound, or MRI images. Previous studies that utilized photo-

graphic images—a low-cost and immediate tool—to evaluate

placental characteristics38–41 and to perform placental diagno-

ses42,43 required a separate model for each of these tasks due

to the lack of a unified method. Moreover, the clinical outcomes

that can be inferred from these placental diagnoses are often

overlooked. A better utilization of the available data should explore

the connection between the visual placental feature and the tex-

tual description from the pathology report independent of the

downstream task. Additionally, using onemodel for multiple tasks

would greatly save computational resources and improve the de-

ployability of the resulting model. To fully leverage the information

available in pathology reports and to train a unified placental

feature encoder, our preceding work44,45 introduced a vision-

and-language contrastive learning (VLC) approach for placenta

analysis. Similarly, in this work, we aim to further enhance the

VLCapproach in placental analysis toward robust deployment un-

der various settings. VLC approaches46,47 have garnered signifi-

cant interest, particularly following the success of contrastive lan-

guage and image pre-training (CLIP).47 Research in this area has

focused on improving VLC methodologies through innovations in

model architectures,48,49 visual representations,50–52 textual rep-

resentations,45,53 and loss functions54,55 as well as sampling stra-

tegies,56,57 training strategies,58 and classifier performance.59

Another significant line of research60–62 aims to improve the

efficiency of VLC techniques. In the context of medical applica-

tions, a recent survey63 provides a comprehensive overview

of popular methods. Representative strategies have been

proposed to enhance local feature alignment,64–67 introduce auxil-

iary reconstruction tasks,68,69 and incorporate external prior

knowledge.70–72
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Building upon our unified pre-training methods,44,45 this

research seeks to harness the simplicity and affordability of

digital photography combined with the proposed cross-modal

pre-training techniques to develop a unified model capable of

comprehensive and immediate placental assessment using

photographic images. Our contributions are as follows. (1) Intro-

duction of a cross-modal contrastive learning technique de-

signed to enhance both the performance and robustness of

the placenta analysis model. (2) Development of three key

modules: a cross-modal pre-alignment module for improved

alignment between images and pathology reports using external

image data, a cross-modal distillation module that leverages

external textual information to capture nuanced relationships be-

tween placental features, and a cross-modal retrieval module for

matching textual and visual features, fostering robust represen-

tation learning. (3) Creation of a robustness evaluation protocol

tailored for placenta photographs to assess model robustness,

facilitate explainability, and generate application guidelines. (4)

Expansion of the training dataset 3-fold and broadening of the

evaluation dataset to include a diverse, multinational collection,

enhancing the model’s applicability and performance in LMICs.

RESULTS

Dataset
The characteristics of the collected dataset are categorized in

Figure 1. The ‘‘not applicable’’ (NA) category was excluded

from the results. The primary dataset was collected in the pathol-

ogy department at Northwestern Memorial Hospital (NMH)

(Chicago, IL, USA) between January 1, 2010 and December

31, 2022, following the placenta imaging protocol.73 Photo-

graphs were taken using a dedicated pathology specimen

photography system (Macropath, Milestone Medical, Kalama-

zoo, MI, USA) with an integrated, fixed camera and built-in light-

ing to reduce technical variability. Pathologists generated the

pathology reports based on histological findings and widely

adopted definitions.74 The refined dataset from NMH comprises

31,763 fetal-side placenta images, each accompanied by a pa-

thology report. We selected 2,811 image-report pairs from the

year 2017 for internal validation and the rest for pre-training.

Additionally, we identified 166 cases where the neonate was

diagnosed with sepsis and 1,837 potential negative cases from

the internal validation set. Furthermore, the external validation

set was collected at the Mbarara Regional Referral Hospital

(MRRH) (Mbarara, Uganda) between December 1, 2019 and

November 30, 2023, under the Placentas, Antibodies, and Child

Outcomes study using a Fujifilm FinePix XP130 digital camera.

The imagingprotocol is included inDataS1. Thepathology reports

were generated using the same method as described for the pri-

mary dataset. We obtained 353 placenta and pathology report

pairs fromMRRH for external validation. Following our preliminary

research,44,45 the AI-based placental assessment and examina-

tion (AI-PLAX) algorithm42 was used to mask the background of

each image in the NMH dataset. Additionally, the automatic and

interactive segment anything model (AI-SAM) algorithm75 was

used tomask the backgroundof each image in theMRRHdataset.

For the internal validation set, wemanually checked the images

to ensure that the placenta was complete and that its visibility

was unobscured. We first labeled each image according to the
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Figure 1. The characteristics of the primary

dataset and the external validation dataset

(A) Distribution of self-reported race.

(B) Distribution of infant sex.

(C) Distribution of gestational age and maternal

age.

(D) Distribution of the neonatal sepsis label from the

tuning and validation set.

(E) Distribution of placental feature labels.

Each placenta from the primary dataset has one

image and one pathology report, while placentas

from the external validation dataset have a median

(25%–75% percentile) of 4 (3–5) images and one

pathology report. The NA category represents in-

stances where information could not be derived due

to missing data. AI/AN, American Indian or Alaska

Native; Black/AA, Black or African American; H/L,

HispanicorLatino;NH/OPI,NativeHawaiianorother

Pacific Islander; NMH, Northwestern Memorial

Hospital; MRRH, Mbarara Regional Referral Hospi-

tal; FIR, fetal inflammatory response; MIR, maternal

inflammatory response; NA, not applicable.
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pathology report on four placental feature identification tasks out-

lined in previous work42,43; namely, meconium-laden macro-

phages in the amnion or chorion (hereafter referred to as meco-

nium), fetal inflammatory response (FIR), maternal inflammatory

response (MIR), and chorioamnionitis. Different levels or stages

exist for some lesions. We labeled images as positive for meco-

nium and chorioamnionitis regardless of the reported severity.

For FIR and MIR, an image was labeled as negative if the

report either lacked relevant information or explicitly indicated

a negative diagnosis. Conversely, an image was labeled as

positive if the report identified the placenta as stage 2 or higher.
Pa
To enhance the model’s ability to differ-

entiate significant cases, images were

excluded if their associated stage was 1.

A clinical outcome, neonatal sepsis, re-

lates to placental features from the pathol-

ogy report and is the most immediate

cause of neonatal deaths in LMICs.19,76

We retrieved imagesofcaseswithneonatal

sepsis based on diagnoses made by treat-

ingphysiciansusing clinical criteria from in-

fant charts. We selected negative samples

from the fine-tuning dataset that were free

from FIR, MIR, and chorioamnionitis—the

placental features related to sepsis and

placental cause of death77—to minimize

thepossibility of having false negativesam-

ples. Evaluating the model’s performance

onsucha task can infer its predictioncapa-

bility on clinical outcomes that are related

to placental features but not in the pathol-

ogy report.

We used all positive examples for each

task and uniformly sampled a comparable

number of negative samples from the in-

ternal validation set to perform linear eval-

uation. The error range computation was
based on random divisions of these data, with a 50:50 split for

tuning and evaluating the linear classifier.

For the external validation set, we identified three placental

feature identification tasks (namely, meconium, FIR, and MIR)

and produced the classification labels using the same method.

We excluded samples lacking corresponding pathology reports.

Model design
In general, we address two primary tasks: pre-training and

downstream classification. Formally, in the pre-training phase,

our objective is to learn a function fv using another function fu
tterns 5, 101097, December 13, 2024 3
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Figure 2. An overview of the pre-training and fine-tuning paradigm and the cross-modal contrastive learning algorithm PlacentaCLIP

(A) The pre-training stage, where a frozen pre-trained BERT encoder and a trainable transformer text encoder were used to encode the text from pathology

reports, while a trainable ResNet50 was used to encode image features. The proposed cross-modal contrastive learning algorithm guides this training stage.

BERT, bidirectional encoder representations from transformers.

(B) The fine-tuning stage, where the frozen ResNet50, trained in the pre-training stage, was used to extract image features, and logistic regression was applied to

these features to predict the placental features or clinical outcomes. The 2,811-image fine-tuning dataset was randomly split into training and validation sets.
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so that, for any given pair of inputs ðxi; tiÞ and a similarity function

C$; $D, we have vi = gvðfvðxiÞÞÞ and ui = guðfuðtiÞÞÞ. The objective
function is defined as

lðv/uÞ
i = � log

exp ðCvi;uiD=tÞ
PN

k = 1 exp ðCvi;ukD=tÞ
; (Equation 1)

where t is the temperature in the contrastive loss function, used

to control the strength of contrastive learning.

In the downstream classification task, our goal is to learn a

function fct using the learned function fv for each task t˛
f1;2;.; Tg so that, for a pair of input ðxi; ltiÞ,

fctðfvðxiÞÞ = lti; (Equation 2)

which can be achieved by using a linear classifier.
4 Patterns 5, 101097, December 13, 2024
Given that one of the objectives of placenta pathology report-

ing is to identify clinically significant findings and make diagno-

ses, an effective placenta photo analysis model needs to achieve

comparable performance on both placental features identified in

pathology reports and related clinical findings. To achieve these

goals, we adopt the well-established pre-training and fine-tuning

paradigm using contrastive learning techniques and propose the

placenta feature encoder through CLIP (PlacentaCLIP).
During the pre-training stage (Figure 2A), we train a generaliz-

able fetal-side placenta image encoder that is task agnostic. In

the fine-tuning stage (Figure 2B), we train a simple classifier

(logistic regression) using the encoded image features for each

task. PlacentaCLIP builds on our preliminary work44,45 by intro-

ducing cross-modal pre-alignment, distillation, and retrieval

strategies. The cross-modal pre-alignment technique is de-

signed to improve performance by pre-aligning the encoders, a
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ResNet-based78 image encoder, and a transformer-based79 text

encoder, with a large collection of natural image-text pairs.47

This reduces the model’s dependency on extensive placenta-

specific data. The cross-modal distillation module distills intra-

placental feature reasoning capabilities from a languagemodel80

trained on a large medical text corpus into the image encoder to

enhance performance. Moreover, the cross-modal retrieval

module improves robustness by retrieving the image regions

relevant to the textual features for more effective image-text

alignment. More details are provided in the methods section.

Robustness evaluation design
Placenta photographs are often subject to various non-ideal con-

ditions that can affect their quality,81 making it challenging for a

modern analysismodels to interpret themaccurately.While a pre-

vious study43 has tackled similar problems, our research offers a

more comprehensive analysis. To evaluate the robustness of

placenta analysis models in practical environments, it was neces-

sary to account for these common variations and understand their

impact on model performance. We developed a robustness eval-

uation dataset that includes commonartifacts specific to placenta

photographs, includingmotion blur, blood stains, and lighting var-

iations. This evaluationprovided valuable insights into themodel’s

strengths and weaknesses, identifying areas for further enhance-

ment. The evaluation protocol focused on three key objectives:

first, to assess the robustnessof the proposedmodules (i.e.,mod-

ule evaluation); second, to identify potential correlations between

tasks and image features (i.e., model explainability); and third, to

offer guidance on optimizing photo-taking procedures in real-

world applications (i.e., application guideline). The first two objec-

tives contribute to model design and evaluation, while the third

directly informs clinical practice. More details are provided under

Robustness evaluation dataset generation.

To evaluate the model’s performance under different artifacts,

we intentionally introduced these variations or artifacts into the

internal validation set. Unlike previous work,82 we focused on

creating a list of placenta-specific common corruptions based

on our experiences and understanding of placenta photo-taking

procedures, aiming to more accurately simulate real-world set-

tings.Wedivided the corruptions into three groups: imageartifacts

(blood, glare, JPEG compression, and shadow), image blur (defo-

cus, motion, and zoom), and exposure artifacts (brightness,

contrast, andsaturation).Eachcorruptionwasassignedfive levels,

with each level representing a different degree of severity. It was

important to set realistic corruption strengths to ensure that our

evaluation of the model’s robustness was relevant to practical

placental analysis. First, we chose levels thatmaintainedplacental

visibility across all corrupted images. Then, through consultation

with a pathologist, we determined the highest corruption level at

which placental features remained discernible. These levels were

standardized to level 3 (of 5), and the other levels were adjusted

accordingly. Additionally, we included common white balance in-

accuracies (e.g., tungsten, fluorescent, daylight, cloudy, and

shade), simulated using white balance augmentation.83 Further

details and examples are provided in the methods section.

Model performance and robustness evaluation
The performance of the linear classifiers was compared and

quantified using the area under the receiver operating charac-
teristic curve (AUC), mean average precision (mAP), and

1 � Brier score84 to ensure that the threshold for positive pre-

dictions did not affect the scores. We measured robustness

by observing the performance drop when introducing image

artifacts.

Overall performance

PlacentaCLIP was trained using 10,193 image-text pairs

from 2014 to 2018, in alignment with previous work.44,45

PlacentaCLIP+ was trained on 28,952 image-text pairs from

2010 to 2022 to demonstrate its full capability and scalability.

The results in Figure 3A indicate that PlacentaCLIP achieves

state-of-the-art AUC. Additionally, the AUC improvements

from incorporating additional data (PlacentaCLIP+) highlight

the scalability of our proposed method. Figure 3B illustrates

how the cross-modal retrieval module aids the pre-training pro-

cess. We visualize the attention weights from each text query to

the image features to demonstrate the changes in the feature

space. Including stage 1 for FIR andMIR increased the variance

of the model performance, but the performance was similar.

This result is provided in Table S1.

Application guideline from robustness evaluation

As shown in Figure 4, the introduction of any form of corruption

adversely affected the model’s performance. Despite significant

corruption, factors such as shadows, zoom blur, contrast, and

saturation changes exerted a relatively minor impact on perfor-

mance. These results offered new insights into the photo-taking

process, challenging general assumptions. Notably, commonly

used lossy image compression techniques (e.g., JPEG) signifi-

cantly degraded the model’s performance, even though the input

size (5123 384) of the model was smaller than images produced

by most smartphones. Consequently, users are advised to avoid

lossy compression and instead opt for smaller image sizes if stor-

age space is a concern. Additionally, glare had amore detrimental

effect on themodel’s performance than shadows, suggesting that

shielding light sources to reduce glare could improve perfor-

mance. The model also showed greater sensitivity to brightness

changes compared to contrast and saturation, implying that ad-

justing contrast and saturation could be a viable method to

compensate for brightness issues. Each aspect of robustness

was assessed in isolation to avoid complex factorial comparisons

and to facilitate the generation of application guidelines. Initial

analysis on the combined aspects are included in Tables S2–

S6, and original statistical results are shown in Table S8; however,

no additional insights were gained due to the complexity of

analyzing the large number of comparisons.

As shown in Figure 4D, the model’s performance degradation

under white balance inaccuracies was moderate and consistent,

except when the white balance preset used was extremely inac-

curate (e.g., tungsten 2850K). Moreover, when the white balance

preset aligned closely with the actual lighting conditions (e.g.,

between fluorescent and daylight), the model demonstrated its

best performance. This indicated that the model possesses a

degree of adaptability to various white balance inaccuracies.

Nevertheless, users are advised to verify the white balance

setting for optimal performance or use the camera’s automatic

setting to secure reasonable performance.

Model explainability from robustness evaluation

Figure 4 illustrates that each task exhibits distinct levels of robust-

ness against various artifact. Sepsis prediction demonstrated the
Patterns 5, 101097, December 13, 2024 5
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Figure 3. Average AUC for four placental feature identification tasks and one clinical outcome prediction task on the primary dataset and

visualization of the cross-modal retrieval module

(A) The AUC and the corresponding standard deviation from five random splits. Results of ResNet50, ConVIRT,46 and NegLogCosh are taken from Pan et al.44

Results of recomposition are taken from Pan et al.45 The result for EVA-CLIP58 is from the ‘‘EVA02_CLIP_B_psz16_s8B00 model, tuned on our pre-training data.

The error bars represent the standard deviations computed from five random splits.

(B) The attention weights from the cross-modal retrieval module during the pre-training stage. Different features are retrieved to assist the image encoder pre-

training based on query text for better image-text alignment. In the illustration, the full name of each task is used as the text query to retrieve the visual features,

except for sepsis, where the concatenation of FIR, MIR, and chorioamnionitis is used as the query. The actual process uses part of the report as the text query.

The ground-truth labels for the images from top to bottom are as follows: row 1: �, �, �, �, �; row 2: +, �, �, �, �; row 3: �, �, 1, 1, �; row 4: +, �, 1, 1, �. �:

negative; +: positive; 1: stage 1. FIR, fetal inflammatory response; MIR, maternal inflammatory response; PlacentaCLIP+, PlacentaCLIP trained with addi-

tional data.
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highest overall robustness, likely because the model depends on

multiple placental features to predict sepsis risk, which weakens

the effect of individual artifacts. Meconiumwas particularly sensi-

tive to color alterations (e.g., saturation changes in Figure 4C and

extreme white balance inaccuracies in Figure 4D), whereas MIR

was more susceptible to the loss of textural details due to JPEG
6 Patterns 5, 101097, December 13, 2024
compression, as shown in Figure 4A. Moreover, blur significantly

compromised performance by removing textural details. As de-

picted in Figure 4B, tasks like FIR, MIR, and chorioamnionitis

were less robust to blur compared to meconium, underscoring

their reliance on textural details. Zoom blur, which affected im-

ages non-uniformly, impaired textural features in the outer part
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Figure 4. The average AUC performance

drop of PlacentaCLIP+ from using the orig-

inal images to corrupted images on each

task identified in the primary dataset

The AUC drop (y axis) is computed by subtracting

the AUC of PlacentaCLIP+ on the original images

from the AUC on corrupted images, averaged

across all corruption levels for each random split.
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(A) Performance under different image artifacts.
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(C) Performance under different exposure artifacts.

(D) Performance under different WB inaccuracies.

FIR, fetal inflammatory response; MIR, maternal

inflammatory response.
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of the image, particularly where the umbilical cord is present,

more than the center. The lesser impact of zoom blur compared

to uniform blur suggests a stronger reliance on the features in

the center placenta disk than on the cord for all tasks. Notably,

while the relative performance between other tasks stayed

consistent across all three types of blur, chorioamnionitis ex-

hibited a much lower performance drop with zoom blur, suggest-

ing greater robustness to blur in the cord region. This finding was

further supported by the relative performance change between

tasks under varying brightness levels. Increasing brightness (or

overexposure) removed information more quickly from brighter

regions, while decreasing brightness (or underexposure) similarly

affected darker regions. Chorioamnionitis was more adversely

affected by decreased brightness than increased brightness,

suggesting that the model relies more on darker regions (e.g.,

the disk) than the brighter regions (e.g., the cord) for predicting
Pa
this condition. This result partially aligns

with pathological examination, where MIR

and chorioamnionitis are found in the disk

region, while FIR at stage 2 or higher is pri-

marily found in the cord.

Module contribution to

performance and robustness

To further investigate the differential

behavior of the proposed modules, we

analyzed their performance across vary-

ing corruption levels as part of the robust-

ness evaluation protocol. Figure 5 demon-

strates how each module responded to

changes in corruption severity. Specif-

ically, applying the cross-modal distilla-

tion module (PD) yielded superior AUC

scores at lower corruption levels (levels

0–2) compared to the retrieval module

(PR). Conversely, at higher corruption

levels (levels 3–5), the retrieval module

outperformed the distillation module in

terms of AUC. This variation in perfor-

mance suggests that the retrieval module

primarily enhances robustness, while the

distillation module boosts performance.
Importantly, the two modules are complementary, as their com-

bined use (PDR) resulted in higher AUC scores. Finally, these

modules demonstrated scalability, with the inclusion of

additional data (PDR+ ) improving both performance and

robustness.

Module hyperparameter evaluation

To analyze the effects of the hyperparameter for each proposed

module, we trained the model with each module individually

across a range of parameter settings, as shown in Figure 6.

The x axis represents the hyperparameter values regulating the

strength of each loss function, while the y axis depicts the corre-

sponding model performance. The PDR line represents the per-

formance of the final model with all modules and additional data

incorporated, and the P line indicates the performance of the

baseline pre-aligned model without any proposed modules. It

is observed that the performance of the model with individual
tterns 5, 101097, December 13, 2024 7
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At lower corruption levels (below level 3), the distillation module outperformed

the retrieval module. As the corruption level increased, the retrieval module

showed better performance. Adding the distillation module on top of the

retrieval module did not further improve robustness (i.e., the performance of

PDR and PR converged as the corruption level increased). These results

validate our design; distillation enhances performance, while retrieval im-

proves robustness.
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modules falls between these two lines for all parameter settings

experimented.

Particularly noteworthy is the trend observed in the distillation

line. We noted a general decline in performance as the weight of

the loss increased. This aligns with our expectations; introducing

a distillation loss from a pre-trained model enhances reasoning

capabilities, but an excessively high weight assigned to this

loss can lead to a considerable domain shift from the pre-trained

language model. This shift can adversely affect model perfor-

mance. If the weight for the distillation loss is set too high, then

it effectively reduces to a distillation-only loss, as seen in our pre-

vious work.44 Thus, it is preferable to assign a lower weight for

this module. In contrast, the cross-modal retrieval module ex-

hibits a different pattern; model performance improves and

then plateaus as the weight of this loss increases. This trend,

opposite to that of distillation, is anticipated, since this module

is linked to trainable parameters and does not introduce domain

shift. Increasing this loss introduces additional priors, but

beyond a certain point, it adds no further benefit. Consequently,

further performance improvement are not anticipated after a

certain threshold, making it advisable to select a more conserva-

tive weight for this module.

Statistical analysis
We contrasted each module’s performance on the primary data-

set and under the robustness evaluation protocol to assess

whether they met their intended design rationales. Furthermore,

to identify potential biases within the model, we examined its

performance in relation to the demographic information present

in the primary dataset. We used a paired t test with a significance

level of 0.05 applied to the AUC scores. This involved treating the

five classifiers trained on different splits as individual subjects.

The t test was conducted as a within-subjects test, considering

that all other configurations remained identical except for the test

variables. Additionally, we applied the Benjamini-Hochberg pro-
8 Patterns 5, 101097, December 13, 2024
cedure85 to all multiple tests to control the false discovery rate.

All results are presented in the following sections.

Module contribution to performance and robustness

Performance was measured using the internal validation set,

while robustness was assessed using the robustness evaluation

set (i.e., internal evaluation with introduced artifacts). The use of

the cross-modal retrieval module (R) significantly strengthened

robustness, as indicated in rows 1 and 2 of Table 1, though

its impact on performance enhancement was comparatively

modest. Conversely, rows 2 and 3 demonstrate that the use of

the distillationmodule (D) led to a significant uplift in performance

but had a limited affect on robustness. These results are consis-

tent with our model designs. Additionally, the enhancements in

accuracy and robustness provided by the proposed modules

were complementary (DR). When both modules were applied

(row 6), there was a significant improvement in both accuracy

and robustness. Last, the proposed modules demonstrated

scalability, as the addition of extra data (+ ) into the training set

consistently resulted in significant gains in both accuracy and

robustness (rows 7–10). These findings align with the robustness

evaluation results from Module contribution to performance and

robustness.

Bias assessment

In the bias assessment, our aim was to identify any potential

biases in model performance across different demographic

groups. Statistical analysis was conducted on the main dataset

for various demographic categories.

We first analyzed the mean AUC across all tasks, considering

race as the within-subject factor and each model trained on a

different random split as the subject. The t test results, presented

in Table 2, indicated no statistically significant differences in

model performance among the known racial groups. Only the

performance for the ‘‘unknown’’ racial category was notably bet-

ter than that for the ‘‘White’’ group. Additional analysis (Table S7)

revealed that the disparity in class distribution for the sepsis

classification task contributed to this performance difference.

Next, the mean AUC across all tasks was compared using

maternal age groups (in years) as defined in the obstetric care

consensus,86 with eachmodel trained on a different random split



Table 1. Pairwise t test results applied to the AUC between

applying set A of modules and set B of modules on both the

primary dataset and the robustness evaluation

A B DoF

Performance Robustness

T score p-Corr T score p-Corr

1 PDR PD 4.0 1.351 0.248 3.880 0.030

2 PR P 4.0 2.874 0.057 3.452 0.037

3 PDR PR 4.0 4.010 0.023 0.970 0.385

4 PD P 4.0 4.569 0.017 1.435 0.250

5 PD PR 4.0 2.718 0.059 �1.811 0.181

6 PDR P 4.0 20.550 0.000 4.031 0.030

7 PDR+ P 4.0 16.077 0.000 12.114 0.001

8 PDR+ PD 4.0 5.631 0.010 9.442 0.002

9 PDR+ PR 4.0 7.930 0.003 13.286 0.001

10 PDR+ PDR 4.0 8.237 0.003 11.273 0.001

The performance of all modules is reported using the same image

encoder. Cross-modal retrieval improved robustness, while cross-modal

distillation enhanced the performance of the image encoder. Perfor-

mance was measured using the average AUC score for each set of mod-

ules on the original primary dataset. Robustness wasmeasured using the

average AUC score for each set of modules on the corrupted primary da-

taset (robustness evaluation protocol). P represents the use of pre-

aligned encoders, D indicates cross-modal distillation, and R refers to

cross-modal retrieval. PDR+ denotes the use of additional data in

conjunction with all modules. A bar is placed above the differing module.

DoF, degree of freedom; p-corr, corrected p value.

Table 2. Pairwise t test comparing the AUC between

demographic groups A and B

A B T DoF p-Corr

Black/African

American

American Indian/

Alaska Native

0.885 4.0 0.502

Black/African

American

White 0.832 4.0 0.502

White American Indian/

Alaska Native

0.737 4.0 0.502

Asian American Indian/

Alaska Native

1.329 4.0 0.358

Asian Black/African

American

1.735 4.0 0.338

Asian White 3.387 4.0 0.103

Other American Indian/

Alaska Native

1.303 4.0 0.358

Other Asian 0.754 4.0 0.502

Other Black/African

American

2.037 4.0 0.278

Other White 4.049 4.0 0.077

Unknown American Indian/

Alaska Native

1.588 4.0 0.351

Unknown Asian 2.737 4.0 0.156

Unknown Black/African

American

4.737 4.0 0.068

Unknown other 1.391 4.0 0.358

Unknown White 9.690 4.0 0.010

Performance was measured using the average AUC score for each set of

modules on the original primary dataset. DoF, degree of freedom; p-Corr,

corrected p value.
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as the subject. As shown in Table 3, the model demonstrated

improved performance in the age group of 45 and above. There

was no clear biological explanation for this. However, the in-

crease in average age from pre-training to the internal validation

set, as shown in Figure 1C, may have contributed to this perfor-

mance difference.

Additionally, the analysis involved comparing the mean AUC

across all tasks with gestational age groups (in weeks), as out-

lined in the committee opinion,87 as the within-subject factor.

The results revealed no statistically significant differences in

model performance across the different gestational age groups.

Finally, we assessed the mean AUC across all tasks, using

fetal sex as the within-subject factor, with each model trained

on a different random split as the subject. The analysis yielded

a t score of 1.069 and a p value of 0.345, indicating no statisti-

cally significant difference in model performance based on fetal

sex.

External validation
To evaluate the model’s performance in practical application

scenarios, where users may capture placental images under

diverse conditions, we conducted tests using the dataset from

MRRH. The distinctiveness of this dataset lies in its provision

of multiple images, varying in quality, for each placenta. For

our analysis, we computed the best, worst, and mean perfor-

mance metrics. The best and worst performances were deter-

mined by selecting the images where the model achieved the

highest and lowest effectiveness for each placenta, respectively.

Meanwhile, the mean performance was calculated by averaging

the predicted probabilities across all images for each placenta.
As shown in Figure 7A, the mean performance on the MRRH da-

taset, which we regard as the most representative metric, was

satisfactory but lower than expected. Apart from the domain shift

from the training data, this reduced performance is attributable

to variations in image quality, as evidenced by the substantial

gap between the best and worst results and the variations in Fig-

ure 7B. Thus, it is reasonable to anticipate that the model’s real-

world performance in various clinical settings, on good-quality

images, would fall between the mean and the best-observed

results.

DISCUSSION

This study advances placenta analysis by introducing new data,

models, and evaluation techniques. The integration results in a

unified placenta analysis model with promising capabilities for

placental feature identification and neonatal sepsis prediction,

validated through our robustness evaluation protocol and a

cross-national dataset. Unlike previous methods,47,64–69 our

approach synchronizes both internal and external representa-

tions. Moreover, our method extracts external knowledge from

pre-trained language models without human intervention,

whereas other methods70–72 often rely on expert input. This

distinction improves the generalizability of our approach, partic-

ularly in scenarios where expert knowledge is scarce or difficult

to obtain. Moreover, this study examines robustness across
Patterns 5, 101097, December 13, 2024 9



Table 3. Pairwise t test comparing the AUC of PlacentaCLIP+

using images from maternal age groups A and B

A B T DoF p-Corr

45 % MA 35 % MA < 40 6.936 4.0 0.007

45 % MA 40 % MA < 45 4.460 4.0 0.022

45 % MA MA < 35 7.205 4.0 0.007

35 % MA < 40 40 % MA < 45 1.465 4.0 0.217

MA < 35 35 % MA < 40 2.417 4.0 0.110

MA < 35 40 % MA < 45 2.126 4.0 0.121

Performance was measured using the average AUC score for each set of

modules on the original primary dataset. MA, maternal age; DoF, degree

of freedom; p-Corr, corrected p value.
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different application settings, a critical concern in medical imag-

ing. Our robustness analysis clarifies the factors that influence

performance, providing insights for future model design. Finally,

our findings offer guidance for clinical photography, identifying

significant factors such as glare, JPEG compression, and blur,

while noting lesser impacts from contrast, shadow, and minor

white balance variations.

Clinical implementation and global health implications
In the United States andmost birth settings around theworld, the

placenta undergoes only a brief visual examination after deliv-

ery.14,15 Clinicians often receive minimal training on what to

look for in the placenta,17 focusing primarily on obvious signs

such as incomplete sections thatmay indicate retained placenta.

Generally, only a small proportion of placentas—around 20% in

the United States—are sent for a full pathological examination,

which takes 2–4 days to complete14,15; the remainder are dis-

carded. In low-resource settings, such as Uganda, pathology

departments may lack the capacity to examine placentas

entirely, or such examinations are performed rarely, potentially

missing crucial information about the pregnancy that could influ-

ence health outcomes.26,27 Another issue is that hospital proto-

cols for identifying which placentas should undergo pathological

examination are often ineffective, with clinicians either unaware

of College of American Pathologists guidelines or their own insti-

tutional guidelines, leading to the selection of placentas that do

not provide the most critical information.20 This results in wasted

resources and missed opportunities to examine placentas with

significant clinical relevance.

We aim to further refine the PlacentaCLIP+ algorithm to even-

tually integrate it into a mobile app that clinicians worldwide

could use at the bedside for real-time, clinically relevant diagno-

ses concerning the placenta and maternal and neonatal health

immediately after birth.42,44,45 This would augment the clinician’s

placental expertise, allowing the model to identify important ab-

normalities, such as incomplete placentas or signs of infection.42

Due to its ease of use, the app could be beneficial in any delivery

setting worldwide, with the potential to significantly reduce

morbidity and mortality. For example, by enabling the early iden-

tification of undetected incomplete placenta or infection risks,

providers could intervene more quickly to reduce hemorrhage

and sepsis rates. In high-resource settings, PlacentaCLIP+

could be used to triage placentas for full histopathological exam-

ination. In this workflow, obstetric providers would photograph
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the placenta in the delivery room and use the findings, along

with their clinical judgment, to determine whether to submit the

placenta for further examination. This process could increase

the proportion of clinically relevant placentas sent to pathology

and enable prioritization for rapid examination.

If we can sufficiently refine PlacentaCLIP+ to provide strong

predictive value within an app, then we would evaluate its feasi-

bility with the target end-users—clinicians working across

various settings. Its similarity to existing smartphone applica-

tions that use photographs, such as those for submitting bank

checks or receipts, should ease adoption and simplify training

(i.e., minimal training would be needed for clinicians to take a

photograph of the placenta). Point-of-care use would be

straightforward, and integration with electronic health records

could be achieved through the Health Level 7 system.88 While

introducing the app might add to the birth workflow, we antici-

pate that the tool and process could be streamlined to take min-

imal time (approximately 5 min) due to its simplicity and similarity

to existing smartphone applications. Ultimately, it could save

time and resources by reducing the incidence of poor health out-

comes at birth.

PlacentaCLIP+ could also be valuable in research on preg-

nancy, birth, and childhood, providing a cost-effective way to

include placental pathology and improve our understanding

of long-term maternal and child health outcomes. A substantial

body of evidence demonstrates links between placental

pathologies/features and pregnancy complications,8–11,89,90

risk of recurrence,12,91 risks to the future health of the

mother13,92 and child,93–95 and adverse long-term offspring

health outcomes.7,96–102

Privacy and security concerns related to PlacentaCLIP+

would be minimal, as the algorithm analyzes images of a

discarded organ. However, if clinical or demographic data

were incorporated into the app, then additional measures would

be required to ensure patient privacy and data security.

PlacentaCLIP+ is part of our broader PlacentaVision project103

aimed at enhancing the timely diagnosis of maternal, placental,

and neonatal conditions that could affect health outcomes. Our

findings suggest that bias across different ethnic and racial

groups presents a relatively low risk. We are actively expanding

our datasets from various sites to improve the algorithm’s

generalizability. PlacentaCLIP+ likely meets the definition of

software as a medical device104 by the US Food and Drug

Administration (FDA). If new FDA regulations are implemented,

then clearance would be required before its use in the United

States. However, given our focus on global health, we antici-

pate that the algorithm will be of significant value worldwide

before we pursue FDA clearance.

Limitations of the study
Despite its advancements, themodel still exhibits a performance

decline under the robustness evaluation protocol, suggesting

potential areas for further enhancement. Ideally, themodel’s per-

formance should mirror the consistency of a pathologist’s ability

to interpret visual cues under varying conditions. This gap in

robustness compared to human experts may be attributed to

biases in the training data and limitations in the model architec-

ture, where images are of uniform quality and captured under

consistent lighting conditions. To address this, increasing the
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Figure 7. Performance of PlacentaCLIP+ on three placental feature identification tasks in the external validation set from MRRH and some

qualitative examples of performance variation

(A) The performance for the three identified tasks using themodels trained on the NMHdataset. Worst: themetrics were generated by selecting an image for each

case where PlacentaCLIP+ performed the worst. Mean: the metrics were generated by averaging the probabilities predicted by PlacentaCLIP+ over all the

images for each case. Best: the metrics were generated by selecting the image for each case there PlacentaCLIP+ performed the best. AUC, area under the

receiver operating characteristic curve; mAP, mean average precision.

(B) Example performance and image quality variation. The examples on the left are more affected by the identified artifacts than those on the right. The reported

model performance under each image is presented in the form of a task: prediction/ground truth.
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diversity of the training dataset or introducing additional regula-

rization into the model architecture could potentially enhance its

robustness.

While the proposed robustness evaluation protocol is compre-

hensive, it inevitably has limited scope due to practical con-

straints and the complexity of real-world scenarios. In the future,

a more dynamic and adaptive protocol, similar in concept to

Autoaugment,105 could be developed to generate meaningful
combinations of aspects for a more thorough evaluation and

explanation of a model’s capabilities. Additionally, while the

external validation dataset, which comprises images of varying

quality, offers valuable insights into real-world model perfor-

mance, it lacks sufficient diversity across demographic groups

and devices. Another limitation of our study is its exclusive focus

on the fetal side of the placenta without incorporating additional

clinical data and considering the maternal side. Given the
Patterns 5, 101097, December 13, 2024 11



ll
OPEN ACCESS Article
established correlations between clinical data and placental out-

comes106 as well as the relevance of maternal-side placental

features to health outcomes,77 expanding the analysis to both

sides of the placenta and incorporating clinical data is a critical

next step.

Conclusion
In conclusion, this study presents a comprehensive analysis and

three enhancements to a placenta analysis model. With proper

photo-taking techniques,73 the model’s ability to accurately

analyze placental images captured under various conditions,

as indicated by the robustness evaluation protocol and the

external validation results, makes it particularly suitable for envi-

ronments where access to high-quality imaging equipment and

expert medical personnel is limited. By leveraging commonly

available devices like smartphones and tablets for image cap-

ture, thismodel can bridge the gap in placental assessment in re-

gions where traditional pathology resources are scarce or non-

existent. The potential of this model to improve neonatal care

in low-resource environments, where such advancements are

most urgently needed, is particularly promising. This holds sig-

nificant implications for advancing equitable and accessible

maternal-fetal healthcare on a global scale with the potential to

transform neonatal care in LMICs.

METHODS

Ethics statement
This work was conducted under Penn State single institutional

review board (IRB) approval (STUDY00020697). The primary

data collection was conducted under Northwestern IRB

approval (STU00207700 and STU00215628). The external vali-

dation data collection was conducted under MUST REC

MUREC 1/7 and Mass General Brigham IRB (2019P003248).

Module design and motivation
Cross-modal pre-alignment using natural images

In our previous method,44 we trained the image encoder (fv) us-

ing an unmodifiable (‘‘frozen’’) pre-trained text encoder (fu),

similar to the ConVIRT method.46 To enhance the robustness

and generalizability of the model, we incorporated the

NegLogCosh similarity and used sub-features. This approach

was viewed as a form of distilling knowledge from the text

encoder to the image encoder. However, in the context of

placenta analysis, a frozen text encoder pre-trained on other

tasks may not adapt to the specific demands of this domain

without fine-tuning. A frozen text encoder does not learn the

information specific to placenta features during training, which

can limit both the accuracy and generalizability of the model.

Moreover, pathology reports are highly structured, which

may not suffice for training a language model without compro-

mising its reasoning capability. Therefore, directly aligning

trained text features with untrained image features may not

be reasonable, as the text and image encoders may not be

calibrated to a common conceptual space. Overcoming this

misalignment would require a large corpus of image-text

paired training data, which is prohibitively costly for placenta

images and pathology reports. To navigate these constraints,

in our work, we used a cost-effective dataset of natural im-
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age-text pairs sourced from the internet as the initial training

data to pre-align the encoders and used our placenta data

to shift the encoders to our specific placenta domains.

To conserve computational resources, we started with the

CLIP47 ResNet50 and transformer models, which have already

been trained on 400 million image-text pairs. Through

continued training of the aligned encoders, we were able to

adapt the text encoder to the demands of placenta analysis

tasks and more effectively guide the image encoder. This

approach addresses the limitations inherent in using a frozen

pre-trained text encoder and allows for simultaneous training

of both encoders while preserving the specific knowledge of

placenta features learned during training.

Cross-modal distillation

In our prior research, we used a pre-trained bidirectional

encoder representations from transformers (BERT) model80,107

as the text encoder for encoding pathology reports, leveraging

its language understanding and reasoning capabilities. BERT

is a language model that is capable of understanding the rela-

tionships between words in a given text, which makes it

particularly useful for tasks that involve language understand-

ing and reasoning. For example, a trained BERT model can

recognize that the presence of meconium staining may affect

the diagnosis of other placenta features, such as inflammation

responses and chorioamnionitis. This capability comes from

BERT’s extensive training on diverse text data, including med-

ical documents that discuss the relationships between various

terms. However, neither the pathology report nor the placenta

image contains all the necessary information to model these

relationships. Therefore, the text encoder only serves to

encode the pathology report, and it is not designed to reason

about these relationships, as suggested by Shen et al.108 To

address this limitation, we distill the knowledge from the

pre-trained BERT by guiding the contrastive loss. Specifically,

we split the text encoder fu into the alignment text encoder fuc
and the reasoning text encoder fub, which allows us to obtain

uci = gucðfucðtiÞÞÞ and ubi = gubðfubðtiÞÞÞ. We applied the

feature recomposition45 technique on ubi to reduce feature

suppression. Then, we modified (Equation 1) into

lðv/uÞ
i = � log

exp ðCvi;uciD=tÞ
PN

k = 1 exp ðCvi;uckD=tÞ

� l1 log
exp ðCvi;ubiD=tÞ

PN
k = 1 exp ðCvi;ubkD=tÞ

;

(Equation 3)

where l1 is a hyperparemeter. The first objective aligns the image

features with the alignment text feature to ensure that we have a

text encoder that co-evolves with the image encoder as the

training progresses; the second objective aligns the image fea-

tures with the frozen BERT encoder to ensure that the reasoning

capability of the text encoder is retained.

By distilling knowledge from the BERT encoder, we aim to

improve the reasoning capabilities of the model and use the

captured relationships between placental features that are not

explicitly present in the pathology report or placenta image.

This approach allows us to leverage the BERT’s robust contex-

tual modeling capabilities and improve the model’s accuracy in

placenta analysis tasks.
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Cross-modal retrieval

The pathology report can vary in length depending on the

number of placental features identified by the pathologist.

The CLIP text encoder, however, is designed to accept a

maximum of 77 text tokens, which means that we inevitably

have to truncate the reports to fit the encoder. This truncation

potentially results in information loss and may impair the

model’s ability to accurately encode the relationships be-

tween the words within the report. Additionally, CLIP generally

performs better with shorter textual inputs, as it was

trained on brief text segments. To address the issue, we pre-

viously randomly rearranged the placental features at each

iteration to ensure that all features were covered in the

training stage. Nonetheless, this approach of rearrangement

and truncation may inadvertently generate false positive

feature matches, where different text features are matched

to the same image feature at each iteration or where features

from non-relevant parts of the images are used in the match-

ing process, which can cause the model to learn spurious re-

lationships. False positive samples can have a negative

impact on the model’s performance and accuracy, as they

can lead to robustness issues or poor generalization to new

inputs.

To address the issue of false positives, we propose a cross-

modal retrieval method. Traditional pooling layers use average

pooling or its variants, which are based solely on the image

modality, to obtain a feature vector from the feature map.

Our method, however, necessitates aligning textual features

with specific regions of the feature map based on the textual

content. For example, if a pathology report mentions the pres-

ence of meconium staining, then we should not expect the

model to match the textual feature related to meconium with

the region of the feature map that corresponds to the umbilical

cord. Our cross-modal retrieval module is designed to

enhance the alignment between textual and visual features

in a way that minimizes false positives and improves the

model’s performance. Formally, let V be the image feature

map and u the corresponding textual feature. We obtain the

textual query Qu, the image key Kv, and the image value Vv

as follows:

Qu = LNðuuÞWQ;Kv = LNðVÞWK ;Vv = LNðVÞWV ; (Equation 4)

where LN is the layer-norm layer and Ws are the learnable

weights. Then, we obtain the image feature based on the query

text as v0u = LNðAttnðQu;Kv;VvÞÞ and perform a final projection

and residual connection following Gorti et al.109 to obtain vu =

LNðFCðv0uÞ + v0uÞ, where FC is a fully connected layer. Then, we

update Equation 3 to

l
ðv/uÞ
i = � log

exp ðCvi;uciD=tÞ
PN

k = 1 exp ðCvi;uckD=tÞ

� l1 log
exp ðCvi;ubiD=tÞ

PN
k = 1 exp ðCvi; ubkD=tÞ

� l2 log
exp ðCvui;uciD=tÞ

PN
k = 1 exp ðCvui; uckD=tÞ

;

(Equation 5)

where the ls are hyperparameters.
By enhancing the alignment between textual and visual fea-

tures, we can reduce the number of false positive samples and

guide the model to learn more meaningful relationships between

placental features and pathology reports, thereby improving its

robustness.

Image pre-processing
We applied the AI-PLAX algorithm42 to the primary dataset to

mask out the background of each image, aligning with method-

ologies used in previous research.

WeemployedourAI-SAMalgorithm,75 trainedusing thedataset

described in AI-PLAX,42 tomask the background of each image in

the external validation dataset. The preference for AI-SAM over

AI-PLAX in segmentation tasks stems from AI-PLAX’s limited

robustness todomain shifts43 andAI-SAM’s capability for interac-

tive modifications, advantageous in application settings.

All images were resized to 5123384 pixels to preserve all con-

tent. For pre-training augmentation, we applied random adjust-

ments of brightness and contrast by up to 20%, saturation and

hue shifts by up to 5%, and random rotation by up to 180�. For
fine-tuning or validations, we used no augmentation.

Pathology report pre-processing
We used a simple pre-processing procedure for the pathology

reports. The reports were split by anomalies and stored as a

set. Irrelevant text, such as standard descriptions and informa-

tion about the pathologist, was removed using keyword match-

ing. When training our PlacentaCLIP model, we performed boot-

strap sampling45 from the set and concatenated the sampled

items into complete sentences.

Model implementation
The image encoder was a ResNet50,78 and the text encoder was

a transformer model.79 The BERT model80 used for cross-modal

distillation was trained in a self-supervised manner107 on the

MEDLINE/PubMed corpus.110

Pre-training stage

Our model and training code were written in Python 3.10.6 and

PyTorch 1.11.0. Pre-training was conducted for 30 epochs with

a batch size of 64. We utilized the PyTorch implementation of

the AdamW optimizer111 with default settings combined with

a cosine learning rate scheduler. The initial learning rate was

set to 1:03 10� 5, with a weight decay of 0.2 and 10% warm-

up steps.

Fine-tuning stage

Evaluations were performed using scikit-learn 1.0.2 and pin-

gouin 0.5.4. Fine-tuning was conducted by encoding the images

using the pre-trained image encoder and training a logistic

regression model for each task using the scikit-learn package.

We trained the model using five nearly balanced random splits.

An example is shown in Table 4.

Robustness evaluation dataset generation
Common image artifacts in placenta photos

Various artifacts can be introduced during placenta photo cap-

ture, potentially negatively affecting the accurate identification

of placental features. In this study, we considered four common

artifact types: blood stains, glare, JPEG compression, and

shadow, as shown in Figure 8. Blood stains are often present
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Table 4. An example random split of the fine-tuning dataset

Meconium (n = 1,400) FIR (n = 669) MIR (n = 1,419) Chorioamnionitis (n = 886) Sepsis (n = 340)

Fine-tuning 700/1,400 (50.0%) 334/669 (49.9%) 709/1,419 (50.0%) 443/886 (50.0%) 170/340 (50.0%)

Positive 349/700 (49.9%) 167/334 (50.0%) 345/709 (48.7%) 224/443 (50.6%) 86/170 (50.6%)

Negative 351/700 (50.1%) 167/334 (50.0%) 364/709 (51.3%) 219/443 (49.4%) 84/170 (49.4%)

Evaluation 700/1,400 (50.0%) 335/669 (50.1%) 710/1,419 (50.0%) 443/886 (50.0%) 170/340 (50.0%)

Positive 330/700 (47.1%) 145/335 (43.3%) 378/710 (53.2%) 215/443 (48.5%) 80/170 (47.1%)

Negative 370/700 (52.9%) 190/335 (56.7%) 332/710 (46.8%) 228/443 (51.5%) 90/170 (52.9%)

The other four random splits are similar in number of each cases. FIR, fetal inflammatory response; MIR, maternal inflammatory response.
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on the placenta and can obscure important features. These

stains are usually dark red with irregular shapes, making them

difficult to differentiate from actual features. Glare, caused by

direct or reflected bright light sources, is common on reflective

surfaces such as the placenta and can distort features, compli-

cating identification. Many photo-taking devices, such asmobile

phones, use JPEG compression to reduce file sizes, which can

remove high-frequency or detailed information. While this gener-

ally does not affect standard object recognition tasks, it can be

detrimental to identifying fine placental features. Shadows are

another common challenge, appearing when the light source is

behind the camera or when other objects cause uneven lighting

across the placenta. Computationally, we simulated blood stains

with randomly placed dark red spatters, glare with randomly

placed white spatters, and shadows using a combination of

randomly generated polygons and ellipses with blurred edges.

Common image blurring in placenta photos

Accurate diagnosis of placental features relies on observing

low-level patterns present in the placenta photographs. How-

ever, when an image is blurry, these critical details are

frequently distorted or lost, posing challenges to the diag-

nostic process. In practical settings, blurry placenta photo-

graphs are common, arising from a multitude of factors. To

evaluate the robustness of the model, we introduced common

types of blur, as shown in Figure 9, which include defocus, mo-

tion, and zoom blur. Defocus blur can result from an improp-

erly focused lens when adjusting the camera position to

accommodate the placenta’s size. Motion blur may occur if
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the photographs are captured while the camera is still in

motion. In addition, altering the camera’s proximity to the

placenta or using the lens’ zoom function to adjust the pla-

centa’s apparent size in the image without pausing to refocus

can cause zoom blur.

Common exposure artifacts in placenta photos

The brightness of an image refers to the perceived luminance of

an image. It can be affected by both ambient lighting conditions

and specific camera settings. For example, a lower exposure

setting yields a darker image, while a higher exposure setting

produces a brighter one. Similarly, contrast refers to the range

of differentiation between the darkest and lightest parts within

an image. This can be affected by the lighting conditions at the

time of capture and the camera settings. For example, a photo-

graph taken under bright sunlight generally shows a higher

contrast than one taken for the same subject on an overcast

day. Finally, saturation refers to the intensity and vividness of

colors in an image. This can again be affected by lighting condi-

tions and camera settings. For example, a subject photographed

under brighter lighting conditions tends to show higher color

vibrancy.

To evaluate the robustness of the placenta analysis model

against alterations in brightness, contrast, and saturation, we

systematically manipulated these attributes in the placenta pho-

tographs. This was achieved through adjusting the brightness,

contrast, and saturation levels in the original images using image

processing techniques, resulting in a set of images with varying

levels of these factors as shown in Figure 10.
Figure 8. Examples of common image arti-

facts in placenta photos

The images from left to right are in the order of

increasing corruption level.



Figure 9. Examples of common image blur in

placenta photos

The images from left to right are in the order of

increasing corruption level.
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Common white balance inaccuracies in placenta photos

White balance (WB) is the process of adjusting the color temper-

ature of a photograph to eliminate color casts and accurately

represent the colors in the image. The WB setting can drastically

affect the appearance and diagnostic quality of a photo. When

the color temperature of the light source does not match the

camera’s WB setting, the photo shows a color cast that distorts

the original colors of the objects. For instance, an image taken

under incandescent lighting might acquire a warm hue. WB is

important in placenta analysis because the color of certain fea-

tures in a placenta photo can be a key factor in accurate diag-

nosis. To evaluate the robustness of the model under different

WB settings, we need to account for different color temperature

preset options.

Various methods exist for adjusting WB, including using

preset options, manual adjustment, or automatic correction.

Modern digital cameras usually offer WB presets that cover

common light sources, such as daylight, cloudy, tungsten

light, and flash photography. Nonetheless, these presets are

not always accurate and may require manual adjustment.
Pa
Incorrect WB can also occur if it is not

properly set or if lighting conditions

change during a photo session (e.g.,

from sunny to overcast or from natural

light to artificial light). To simulate the ef-

fects of incorrect WB on placenta anal-

ysis, we adopted the method proposed
by Afifi and Brown,83 which alters each placenta image to

five different WB presets using two color profiles. This tech-

nique allowed us to evaluate the robustness of the

model under different color casts commonly encountered in

real-world scenarios. We followed the same approach and

modified each placenta image to five different WB presets us-

ing two color profiles, as shown in Figure 11.
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the data requires the submission and approval of IRB protocols at both the

originating and requesting institutions along with the execution of data
Figure 10. Examples of common exposure

artifacts in placenta photos

The images from left to right are in the order of

increasing corruption level.
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Figure 11. Examples of common WB inac-

curacies in placenta photos

The images from left to right are in the order of

increasing color temperature presets.
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use agreements between the institutions. Currently, the data are owned by in-

dividual sites and shared with Penn State through established data use

agreements.

Our source code is available on GitHub (https://github.com/ymp5078/

PlacentaCLIP)112 and has been archived on Zenodo.113 Any additional infor-

mation required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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