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Abstract

Emotional intelligence (EI) is a multi-faceted construct consisting of our ability to perceive, monitor, regulate and use
emotions. Despite much attention being paid to the neural substrates of EI, little is known of the spontaneous brain activity
associated with EI during resting state. We used resting-state fMRI to investigate the association between the amplitude of
low-frequency fluctuations (ALFFs) and EI in a large sample of young, healthy adults. We found that EI was significantly
associated with ALFFs in key nodes of two networks: the social emotional processing network (the fusiform gyrus, right
superior orbital frontal gyrus, left inferior frontal gyrus and left inferior parietal lobule) and the cognitive control network
(the bilateral pre-SMA, cerebellum and right precuneus). These findings suggest that the neural correlates of EI involve
several brain regions in two crucial networks, which reflect the core components of EI: emotion perception and emotional
control.
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Introduction

Emotional intelligence (EI) is the capacity to process emotional

information accurately and effectively, including the ability to

monitor one’s own and others’ feelings and emotions, discriminate

among them and use this information to guide one’s thinking and

actions [1]. There is an increasing body of evidence indicating that

EI plays a critical role in daily life. Research has shown that EI can

predict successful social interactions [2], job performance [3],

mental health [4] and emotional well-being [5]. In contrast,

impaired or deficient EI has been linked to certain symptoms, such

as substance abuse disorder [6], anxiety and depression [7,8].

EI is generally considered as a multidimensional construct

[1,9,10]. Most conceptualizations of this construct address one

or more of the following basic components: (i) the ability to be

aware of and express emotions; (ii) the ability to be aware of

others’ feelings; (iii) the ability to manage and regulate emotions;

(iv) the ability to realistically and flexibly cope with the

immediate situation; and (v) the ability to generate positive

affect in order to be sufficiently self-motivated to achieve

personal goals [11]. In short, EI includes the ability to engage

in sophisticated information processing about one’s own and

others’ emotions and the ability to use this information as a

guide to thinking and behavior [12]. Accordingly, the emotional

processing and executive control may be two core processes

associated with EI.

Previous neuroimaging studies suggested that the various

aspects of EI were supported by separate neural substrates. The

social cognition network (SCN) facilitates the understanding of

others’ feelings, thoughts or desires [13–15]. The SCN includes

the medial prefrontal cortex (mPFC) and the superior temporal

sulcus (STS), which show altered activity during face recognition

and mental state attribution [14], and the temporoparietal

junction (TPJ), which is associated with the process of inferring

temporary states such as the goals, intentions, and desires of

other people [15]. In addition, the inferior frontal gyrus (IFG),

amygdala, anterior cingulate cortex, and anterior insula are also

important portions of the SCN [14]. From the perspective of

large-scale networks, the salience network (with key nodes of

anterior insula and anterior cingulate cortex) and central

executive network (with key nodes of dorsolateral prefrontal

cortex and posterior parietal cortex) were considered to be two

key networks in cognition [16]. Another critical network related

to EI is the emotion processing network. Leppänen and Nelson

suggested that the neural systems that are involved in processing

emotional signals from faces include the amygdala, orbitofrontal
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cortex (OFC), fusiform gyrus and posterior STS [17]. In

addition, the anterior insula and anterior cingulate cortex in the

salience network were activated in emotional processing [18]. A

recent review revealed that the process of experience and

perception of emotion involved in broadly distributed functional

networks, such as the salience network, executive network and

default mode work [19,20]. Structural or anatomical imaging

studies (e.g., voxel-based morphometry and diffusion tensor

imaging) have found more direct relations between EI and

regions in the social emotional processing networks, such as the

ventromedial prefrontal cortex, STS, insula and fusiform gyrus

[21–23]. Additionally, the top-down control network involving

fronto-parietal and cingulo-opercular control networks [24–27]

have been linked to control of emotional expression. Specially,

the fronto-parietal component seems to initiate and adjust

control, while the cingulo-opercular component provides stable

set-maintenance, and both are connected to the cerebellar

error-network [25,27]. A psychophysiological interactions anal-

ysis indicated that volitional regulation of emotions produced

distributed alterations in connectivity between visual, attention

control, and default networks [28]. Several voxel-based

morphometry studies found that some regions in the top-down

control network were linked to EI, such as the frontal and

inferior parietal areas, precuneus and cerebellum [23,29]. A

resting state functional connectivity (RSFC) study found that

total trait EI was positively correlated with RSFC between the

mPFC and the precuneus, as well as between the left anterior

insula and the middle part of the right dorsolateral prefrontal

cortex [30].

Although previous studies mainly focused on structural or

anatomical neuroimaging to investigate the EI-related brain

regions and networks, it is necessary to pay more attention to

explore the underlying spontaneous brain activity related to EI.

The spontaneous fluctuations in the blood oxygen level

dependent (BOLD) signal reveal the intrinsic functional

architecture of the brain and relate to extrinsic task perfor-

mance [31,32]. Moreover, the absence of demanding cognitive

activities and instructions makes it more straightforward to

compare brain activity across groups that may differ in

behavioral performances [33]. Therefore, the task-free resting

state spontaneous activity has a unique advantage to investigate

the underlying neural basis of EI. The amplitude of spontaneous

low-frequency fluctuations (ALFFs) are widely used for mea-

surement of the spontaneous fluctuations in brain activity [34-

36]. The ALFF has been suggested to reflect the intensity of

regional spontaneous brain activity [34,37]. It has been proved

to correlate with task-evoked BOLD responses and is also found

to have robust predictive value for behavior [32]. Specially,

ALFF has been reported to be associated with cognitive

processing abilities (e.g., conceptual processing capacity; object

color knowledge performance) [35,38] and personality traits

[39,40]. Furthermore, ALFF was considered as promising

potential biomarkers of mental disease or disorders, such as

bipolar disorder [41], amnestic mild cognitive impairment [42],

PTSD [33] and Parkinson’s disease [43]. These findings suggest

that ALFF may be an effective indicator to reflect EI-related

spontaneous regional brain activity.

To our knowledge, no study has yet investigated the relationship

between the resting state fMRI indicator of ALFF and EI. Thus, in

the present study, we explored the ALFFs of resting state fMRI

signals to elucidate the intrinsic neural basis of EI. As mentioned

previously, EI is a multidimensional construct and includes the

ability to understand one’s own and others’ emotions and the

ability to regulate and manage emotions. These different processes

may involve in emotional information processing and advanced

executive control function of the brain. Therefore, we hypothe-

sized that EI might be linked to several brain regions or networks,

such as emotion processing networks, cognitive control networks,

salience networks or default mode networks.

Methods

Ethics statements
The procedure of this study was approved by the Ethics

Committee of the Southwest University. Written informed consent

was obtained from all participants. They were informed that the

experiment was completely voluntary and they can quit at any

time during the experiment. Two of the participants are less than

18 years old, so written informed consent was obtained from their

parents on behalf of them.

Participants
One hundred and seventy participants were recruited to take

part in this study. Seven of them exhibited excessive head motion

and two failed to register to the standard Montreal Neurological

Institute (MNI) space in data preprocessing and thus were

excluded. Finally, one hundred and sixty-one individuals were

included in the formal analysis. All the participants were healthy,

right-handed college students (91 females and 70 males;

19.4061.28 years old, range: 17–25 years old) with no history of

neurological or psychiatric disorders. Each participant was

required to complete the emotional intelligence scale immediately

after the rest-state scanning.

Emotional intelligence scale
All the participants completed the Chinese version of the

Wong and Law Emotional Intelligence Scale (WLEIS), a 16-

item self-report questionnaire designed to measure trait EI [44].

The scale has been demonstrated to be reliable and valid to

assess Chinese trait EI [10,45–47]. The WLEIS is comprised of

four subscales: (a) self-emotion appraisal (SEA), (b) others’

emotion appraisal (OEA), (c) regulation of emotion (ROE), and

(d) use of emotion (UOE) [44]. Examples of WLEIS items are

as follows: ‘‘I have good understanding of my own emotions’’

(SEA); ‘‘I always know my friends’ emotions from their

behavior.’’ (OEA); ‘‘I have good control of my own emotions.’’

(ROE); ‘‘I always encourage myself to try my best.’’ (UOE)

[44]. All the responses were made on 7-point Likert-type scales

Table 1. Means and SDs of WLEIS total and subscale scores.

EI-total SEA OEA ROE UOE

Mean 83.20 21.53 21.08 19.73 20.86

SD 14.73 4.53 4.73 5.04 3.80

doi:10.1371/journal.pone.0111435.t001
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(from 1: strongly disagree, to 7: strongly agree). In the present

study, the internal consistency reliabilities (Cronbach as) of the

total scale and four subscales were 0.92, 0.84, 0.92, 0.70 and

0.90, respectively.

Image acquisition
MRI data were obtained using a 3.0 Tesla Siemens Trio

scanner (Siemens Medical, Erlangen, Germany) in Southwest

University, China. First, high-resolution anatomical images were

acquired sagittally with the following parameters: 128 slices, 2530/

3.39 ms (TR/TE), 1.33 mm (thickness), 256*256 mm (FOV),

1100 ms (inversion time), 7u (flip angle). In addition, an echo-

planar imaging sequence was used to collect resting state

functional images, and the acquisition parameters were: 33 axial

slices; slice thickness, 3 mm; repetition time (TR), 2 s; echo time

(TE), 30 ms; image matrix, 64*64; flip angle, 90u; field of view

(FOV), 200*200 mm; and 240 volumes. During the resting state

scanning, participants were instructed to lay still with eyes closed,

and not to think of anything in particular.

Data preprocessing
The anatomical and functional image preprocessing was

performed using SPM8 (Wellcome Department of Conitive

Nurology, London, UK, SPM8; http://www.fil.ion.ucl.ac.uk/

spm) and Data Processing Assistant for Resting-State fMRI

(DPARSF) [48]. The first 10 volumes of the functional images

were discarded to ensure the signals approached a dynamic

equilibrium. Then, slice timing was used to correct slice order,

and head motion correction was performed to estimate and

modify the head movements. Seven participants exhibited head

motion .2 mm maximum translation and/or 2u rotation

throughout the course of scans, so they did not go into the

formal data analysis. Then, each participant’s anatomical image

was coregistered to the mean functional image and was

subsequently segmented. Next, the segmented data was used

to normalize all the functional images into standard MNI space

in 3*3*3 mm voxel sizes. The normalized images were spatially

smoothed with an 8-mm full-width at half maximum (FWHM).

After the linear trends were removed, the images were

temporally band-pass filtered (0.01–0.08 Hz) to reduce low-

frequency drift and high-frequency noise [49].

ALFF analysis
ALFF analysis [34] was performed using the Resting-State

fMRI Data Analysis Toolkit (REST 1.8) [50]. According to

Zang et al. [34], the time series was transformed to a frequency

domain with a fast Fourier transform (FFT) and the power

spectrum was then obtained. The obtained power spectrum was

square-rooted and averaged across 0.01–0.08 Hz at each voxel,

and this averaged square root was taken as the ALFF. The

ALFF value of each voxel in the brain was extracted as the sum

of amplitudes within the low-frequency range (0.01–0.08 Hz)

[35,38]. To reduce the global volume effects of variability across

the participants, the ALFF maps were divided by whole brain

mean ALFF values. Because low-frequency fluctuations are

sensitive to signals in the gray matter [38], we calculated ALFFs

only in the gray mask. Following the methods of Wang et al.

[35] and Wei et al. [38], we included voxels with a probability

Figure 1. Brain regions which exhibited significant correlations between ALFFs and WLEIS total scores. Color bars represent R values.
The results are shown with p,0.05 (corrected).
doi:10.1371/journal.pone.0111435.g001
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higher than 0.4 in the SPM8 template onto the gray matter

mask, and finally there were 53,464 voxels (1,443,528 mm3) in

the gray matter mask.

ALFF-EI correlation analysis
A multiple regression analysis was conducted to examine the

correlations between the mean ALFF values and the EI scores. We

included gender and age as nuisance covariates in this analysis.

Because there is no agreed conclusion about the gender effect on

EI [51,52], we also performed the analysis without regressing out

gender. We found these results were similar (for additional details

about the effect of gender on EI, see Text S1 in File S1). We

performed further analysis to examine the moderator role of

gender on the relationship between ALFF and EI and found the

moderating effect of gender was not significant. To control for

Type I errors, AlphaSim was used for multiple comparisons

correction. A threshold of corrected cluster p,0.05 (single voxel

p,0.01, cluster size $1,647 mm3) was set.

Results

Behavioral data
The means and standard deviations of WLEIS total score and

scores on its four subscales are presented in Table 1. Pearson

correlation analysis showed that the correlations among the four

subscales ranged from 0.432 to 0.641 (ps ,0.001) and the

correlations between each subscale and the total score ranged from

0.765 to 0.852 (ps ,0.001).

EI-related brain regions
We performed regression analysis to explore the correlations

between the brain’s regional spontaneous activity and EI. As

shown in Figure 1, Figure 2 and Table 2, EI total scores were

positively correlated with ALFFs in the left PCC (rpeak = 0.38,

rcluster = 0.37, ps ,0.001), bilateral SMA (mainly the pre-SMA;

rpeak = 0.37, rcluster = 0.46, ps ,0.001) and right precuneus (rpeak

= 0.29, rcluster = 0.34, ps ,0.001), and negatively correlated with

ALFFs in the right cerebellum (rpeak = 20.41, rcluster = 20.39,

ps ,0.001) and right fusiform gyrus (rpeak = 20.29, p,0.001;

rcluster = 20.22, p,0.005).

Within the subscales of the WLEIS, the following associations

were found. As shown in Table 2, ALFFs in the SMA/pre-SMA,

cerebellum, fusiform gyrus, right precuneus, left PCC and

temporal pole (TP) were significantly associated with most

subscales of WLEIS. Whereas, the right superior orbital frontal

cortex (OFC) and left supramarginal gyrus (SMG) were merely

correlated with ROE and the left inferior parietal lobule (IPL) and

left IFG were only correlated with OEA. Specially, the SMA/pre-

SMA, precuneus, PCC, SMG, IPL and IFG were positively

correlated with EI, but the fusiform gyrus, OFC and TP were

negatively correlated with EI. All significant correlations were set

at the threshold of corrected cluster p,0.05 (single voxel p,0.01,

cluster size $1,647 mm3).

Discussion

In the present study, we performed ALFF-EI correlation

analysis to investigate the neural basis of EI. Our results indicated

that inter-individual differences in EI were reflected in the ALFFs

during resting state. As expected, EI was linked with some regions

that are known to be involved in social and emotional information

processing to understand emotions of self and others, such as the

fusiform gyrus, right superior orbital frontal gyrus, left inferior

frontal gyrus and left inferior parietal lobule. Additionally, some

regions in the top-down control network, such as the bilateral pre-

SMA, cerebellum and right precuneus were associated with EI,

which may contribute to the control of emotional expression.

Figure 2. Scatter plots of the relationships between WLEIS total score and mean ALFF values in the significant clusters. A, B, C, D and
E showed significant correlations between EI total score and mean ALFFs in left PCC, bilateral SMA/pre-SMA, right precuneus, right cerebellum and
right fusiform gyrus, respectively.
doi:10.1371/journal.pone.0111435.g002
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EI-related brain regions in the social emotional
processing network

We found ALFFs in the fusiform gyrus were negatively

correlated with EI total, SEA, OEA and UOE scores and

ALFFs in the superior OFC were negatively correlated with

ROE score. These results indicated that people with high EI

showed low spontaneous neural activities in these brain regions.

The fusiform gyrus and OFC are core parts of the emotional

processing network [17]. The fusiform gyrus is a face-sensitive

region [53]. Specially, the activity in this area is enhanced in

response to fearful as compared with neutral facial expressions

[17,54]. The OFC is also critical for perceptual processing of

emotional signals from faces [17]. Furthermore, OFC has been

linked to the experience of anger [55], as well as to aggression

[19]. The fusiform gyrus can send visual information to the

amygdala and OFC and receive feedback from them [17]. This

neural circuit may provide the basis of facial expression

cognition and contribute to the understanding and regulation

of emotions according to others’ feedback in interpersonal

communications. It is worth noting that ALFFs in the fusiform

gyrus and OFC were negatively related to EI. Given that the

fusiform gyrus and OFC, like the amygdala, were associated

with negative emotion processing, we suppose that people with

low EI would experience more negative emotions. This

speculation is in accordance with the finding that impaired or

deficient EI was linked to anxiety and depression [7,8]. These

results may contribute to our understanding on the mechanism

of susceptibility of depression and social maladjustment of

people with low EI. However, further work is required to

confirm the mechanism by which the fusiform gyrus, OFC and

EI are linked.

Table 2. Regions in which ALFFs were significantly related with WLEIS in the whole-brain analysis.

Brain regions BA Peak MNI coordinates Peak R No. of voxels

x y z

EI-total

L PCC 29 29 251 6 0.38 74

B SMA/pre-SMA 6/8 26 21 51 0.37 272

R precuneus 31/7 18 254 18 0.29 96

R cerebellum 3 260 23 20.41 1601

R fusiform/temporal pole 37/38 36 15 248 20.29 192

SEA

L PCC 29 29 251 6 0.37 61

R precuneus 31/7 15 257 27 0.32 135

B SMA/pre-SMA 6/8 6 9 54 0.28 91

L cerebellum 215 236 230 20.39 743

L fusiform 37 239 224 230 20.37 558

R temporal pole 38 33 18 248 20.27 156

R fusiform 37 42 227 233 20.27 113

OEA

L inferior parietal lobule 40 254 239 54 0.39 80

L inferior frontal gyrus 44/45 236 39 12 0.33 61

R cerebellum 33 272 224 20.35 551

L cerebellum 251 269 233 20.31 271

L fusiform 37 230 218 239 20.26 121

ROE

B SMA/pre-SMA 6/8 26 21 51 0.42 245

L supramarginal gyrus 40 254 224 18 0.36 63

R cerebellum 9 257 218 20.34 285

R superior orbital frontal gyrus 11 12 45 227 20.32 85

UOE

B SMA/pre-SMA 6/8 29 18 51 0.30 122

R precuneus 31/7 21 251 18 0.29 83

R cerebellum 9 257 218 20.39 679

L temporal pole 38/20 236 15 230 20.36 622

R temporal pole 38/28 39 18 230 20.35 77

R fusiform 37 33 224 227 20.29 78

Note: The threshold was set at p,0.05 (AlphaSim corrected). BA = Brodmann area; B = bilateral; R = right; L = left; SEA = self-emotion appraisal; OEA = others’
emotion appraisal; ROE = regulation of emotion; UOE = use of emotion. All of the correlation coefficients were significant at the level of p,0.001.
doi:10.1371/journal.pone.0111435.t002
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In this study, there was a significant positive relationship

between OEA score and ALFFs in the IFG and IPL. The IFG

and IPL are important parts of the mirror neuron system

[56,57]. There is a ‘‘mirror’’ system in the brain such that the

same areas are activated when we observe another person

experiencing an emotion as when we experience the same

emotion ourselves, so we can experience the emotional states of

another person [58]. A lot of research revealed the mirror

system’s role in social cognition and its contribution to

understanding the actions and intentions of other individuals

[59,60]. In line with these findings, our results showed that

increased spontaneous brain activity in the IFG and IPL was

associated with higher OEA. The IFG and IPL are important

nodes of the social cognition network [14,15,61]. Posterior

regions of the IFG are involved in emotional judgement and

might have a role in top-down aspects of emotion recognition

[62]. By contrast, the IPL might play a role in high-level mental

state inference, such as understanding others’ behavior in terms

of internal beliefs, feelings, goals, and intentions [15,61].

Taken together, we provide evidence that EI was significantly

associated with ALFFs in certain regions in the social emotional

processing network, which is involved in understanding the

emotions of self and others.

EI-related brain regions in the cognitive control network
Our results showed a significant positive correlation between

EI total, ROE and UOE scores and ALFFs in the bilateral

SMA/pre-SMA. By contrast, EI total and four subscales were

negatively correlated to ALFFs in the cerebellum. ALFFs in the

right precuneus were positively associated with EI total, SEA

and UOE scores. The SMA/pre-SMA, cerebellum and precu-

neus are key nodes of the cognitive control network [24–27].

The SMA/pre-SMA is known to be involved in the processing

of task switching [63] and response inhibition [64,65].

Moreover, the pre-SMA was found to be associated with the

control of action [66] and response selection [67]. The pre-

SMA was also involved in appraisal and expression of negative

emotion [68] and emotional conflict detection [69]. Specially,

reappraisal, a cognitive strategy of regulating negative emotions,

was reliably associated with activation in the pre-SMA [68,70].

These findings demonstrate the cognitive and behavioral control

functions of the pre-SMA in emotional processing. It is

consistent with our finding that increased spontaneous activity

in pre-SMA was associated with higher ability of ROE and

UOE. We speculate that the activity of the pre-SMA may be

conducive to emotional control (to express or inhibit emotion) in

complicated interpersonal interactions and further improving the

ability of emotional regulation and use.

The cerebellum has neuroanatomical associations with SMA/

pre-SMA [71–73].The traditional view of cerebellar function is

that it is purely involved in motor control and coordination

[74]. However, increasing studies suggest that the cerebellum

also contributes to cognitive processing and emotional control

[72,73,75,76]. A repetitive transcranial magnetic stimulation

study found that the inhibition of cerebellar function would lead

to increased negative mood as a result of impaired emotion

regulation [77]. A meta-analysis suggested that the cerebellum

does not play a domain-specific role in social cognition, but

most probably provides domain-general executive and semantic

support [78]. Besides the social cognition function, the

cerebellum is also activated in negative emotion processing,

such as anger [79]. Interestingly, the cerebellar activations

associated with negative emotions occurred concomitantly with

activations of mirror neuron domains, suggesting that the

potential role of the cerebellum in control of emotions may

be particularly relevant for goal-directed behavior that is

required for observing and reacting to another person’s negative

expressions [80]. In the present study, we found ALFFs in the

cerebellum were negatively linked to EI, indicating that low

spontaneous activity in cerebellum was related to high EI. This

finding is partly consistent with the structural imaging result that

the right cerebellum was negatively correlated to the intraper-

sonal factor of EI [23]. However, it is difficult to interpret why

spontaneous activity in cerebellum was negatively related to EI.

Because of the multiple functions of brain regions, we suppose

that pre-SMA might mainly involve in emotion regulation and

control, while the cerebellum tends to be active in negative

emotion processing. Future studies should further explore the

relationship between the activity in the cerebellum and EI.

The precuneus is in the fronto-parietal control network and is

involved in initiating and adjusting control [25,27]. In our study,

the precuneus was positively associated with EI total and UOE

scores. This result partly fits with previous evidence that the total

EI was positively correlated with RSFC between the mPFC and

the precuneus [30]. Moreover, the precuneus was also found to be

involved in the processes of emotional regulation [81] and

emotional awareness [82]. The ability of emotional awareness

and regulation may further improve the efficiency of using

emotions. It is worth noting that the SMA/pre-SMA, cerebellum

and precuneus are not independent but functionally connected in

a larger network [25,27].

This study may have some limitations. First, the subjects in this

study were young college students with high educational

backgrounds. Their EI may be higher than the average

population. Future studies might use more representative samples

to test our findings. Second, although these results provide insight

into the neural bases of EI, they only revealed EI-related brain

regions, and we do not know whether they work together or

independently. Furthermore, a framework that relies on domain

general, distributed structure–function mappings emerges recently

[83]. Some studies in social cognitive neuroscience revealed that a

specific mental activity or trait may involve several domain general

networks, such as salience network, central executive network,

dorsal attention network and default mode network [20,83,84].

Thus, future research may investigate how these networks

functionally associate with EI.

In summary, we examined whether individual differences in

the amplitude of spontaneous low-frequency fluctuations (ALFFs)

during resting state were predictive of variations in EI. We found

that several brain regions were significantly associated with EI,

including the bilateral fusiform gyrus, right superior OFC, left

IFG and left IPL that belong to the social emotional processing

network and the bilateral pre-SMA, cerebellum and right

precuneus that are in the top-down control network. These

regions are involved in understanding and controlling emotions.

These findings provide additional evidence of individual differ-

ences in brain spontaneous activity linked to EI and deepen our

understanding on the core components of EI.
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