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Drug sensitivity prediction plays a crucial role in precision cancer therapy. Collaboration among 
medical institutions can lead to better performance in drug sensitivity prediction. However, 
patient privacy and data protection regulation remain a severe impediment to centralized 
prediction studies. For the first time, we proposed a federated drug sensitivity prediction model 
with high generalization, combining distributed data sources while protecting private data. Cell 
lines are first classified into three categories using the waterfall method. Focal loss for solving class 
imbalance is then embedded into the horizontal federated deep learning framework, i.e., HFDL-fl 
is presented. Applying HFDL-fl to homogeneous and heterogeneous data, we obtained HFDL-

Cross and HFDL-Within. Our comprehensive experiments demonstrated that (i) collaboration by 
HFDL-fl outperforms private model on local data, (ii) focal loss function can effectively improve 
model performance to classify cell lines in sensitive and resistant categories, and (iii) HFDL-fl 
is not significantly affected by data heterogeneity. To summarize, HFDL-fl provides a valuable 
solution to break down the barriers between medical institutions for privacy-preserving drug 
sensitivity prediction and therefore facilitates the development of cancer precision medicine and 
other privacy-related biomedical research.

1. Introduction

Cancer remains an incurable disease worldwide. Cancer genomics studies have shown that each cancer patient possesses a unique 
genetic mutation profile. Patients with the same type of cancer respond differently to anticancer drugs [1]. Therefore, predicting 
the clinical response of patients to anticancer drugs based on multiple sources of genomic information and grouping patients for 
treatment are the focus of research in precision medicine for cancer.

Machine learning (ML) approaches provide powerful tools to predict drug sensitivity in cell lines by mining the relationship 
between genomic features and drug response metrics rather than time-consuming and expensive wet lab experiments [2]. Jie et al. 
[3] proposed a deep learning-based efficacy prediction system (DLEPS) that identifies drug candidates using a change in the gene 
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expression profile in the diseased state as input. Validation showed that DLEPS could generate insights into pathogenic mechanisms 
and drug repurposing. Likun et al. [4] proposed DeepTTA, an end-to-end deep learning model that utilizes a transformer for drug 
representation learning and a multilayer neural network for transcriptomic data prediction of drug responses. DeepTTA achieved 
higher performance in terms of root mean square error, Pearson correlation coefficient, and Spearman’s rank correlation coefficient 
on multiple test sets. Ahmed et al. [5] used a graph-based deep learning approach which was evaluated on the Genomics of Drug Sen-

sitivity in Cancer (GDSC) [6] and showed improved predictive performance than the shallow models, e.g., support vector machines 
and random forest.

However, the decentralization of medicine usually makes the local data volume insufficient for reliable ML model training. 
Collaboration and data sharing among individual data owners promise to be a good strategy for cost savings and improved predictive 
performance. However, with the advancement of genomic research, there is a growing privacy concern regarding the collection, 
storage, and analysis of such sensitive human data for hospitals or research institutions [7–11]. Limitations in the availability of 
private genomic data have negatively impacted the rate of development of cancer precision medicine based on drug sensitivity 
studies. Therefore, developing a computational framework for drug sensitivity prediction (DSP) is necessary to share locally sensitive 
genomic data without compromising private information.

For the first time, Honkela et al. [12] incorporated the differential privacy [13,14] mechanism into Bayesian linear regression 
for DSP. They balanced the prediction accuracy and privacy protection using 4x more samples compared to non-private regression. 
However, the proposed method suffers from the curse of dimensionality of gene expression features. Recently, Md. Mohaiminul et 
al. [15] built a differential privacy deep autoencoder (dpAE) using private gene expression features that performs low-dimensional 
data representation learning. They extracted GDSC’s dpAE features to build a differential privacy DSP model and achieved improved 
predictive performance than the previous related work. The approaches proposed by Honkela et al. and Md. Mohaiminul et al. 
both achieve privacy protection for local genomic data but do not take full advantage of data from different institutions to enhance 
performance for DSP while preserving privacy.

Federated learning (FL) was recently proposed by Google [16–18] and described a distributed and privacy-preserving way of 
training a global ML model collaboratively without others accessing private data. FL can be divided into horizontal federated learning 
(HFL), vertical federated learning (VFL), and federated transfer learning (FTL) [19]. HFL is applicable when the datasets share the 
same feature space but have different samples. VFL is applicable when the datasets share the same sample space but differ in the 
feature space. FTL is applicable when the two datasets differ not only in the samples but also in the feature space, and only a tiny 
part of the feature space and the sample space overlap. Three categories of federated learning models are widely used for medical 
data mining [20–25]. The most common scenario for DSP is that different institutions often have the same feature representations, 
e.g., gene expression. Compared to VFL and FTL, HFL is more suitable for collaborations among hospitals or research institutions 
holding genomic data. Essentially, HFL passes encrypted model parameters to the server instead of encrypted raw medical data, 
which provides a workable solution to the privacy and security issues mentioned above.

In this study, we verified the feasibility of applying HFL to collaborative drug sensitivity prediction based on distributed data 
sources. Combining the class imbalance property inherent to the prediction, a horizontal federated deep learning model with focal 
loss function was proposed, denoted as HFDL-fl. In addition to the practical design of the loss, we also studied the performance 
of federated models for homogeneity and heterogeneity and the parameter aggregation algorithm. We simulated the scenario that 
parties have their private data respectively and developed HFDL-fl among cross-source (HFDL-Cross) and within-source (HFDL-

within). Comprehensive experiments indicated that HFDL-Cross significantly outperforms private deep learning model training on 
local data. To sum up, our study demonstrated the effectiveness of applying HFL for drug sensitivity prediction for the first time and 
called for more attention and devotion in this area.

2. Materials and methods

In this study, we proposed a federated learning framework integrating distributed data sources to predict the sensitivity of drugs 
in cell lines while preserving private information. Fig. 1 shows the detailed pipeline of our proposed framework.

2.1. Data gathering and preprocessing

We integrated two datasets from GDSC [6] and CTRP [26] to build a horizontal federated learning model. The datasets were 
downloaded by using the R package oncoPredict [27] (https://osf .io /c6tfx/). Sensitivity measure (denoted by 𝑦𝑟𝑠,𝑐 ) and gene expres-

sion (denoted by 𝒙𝑟𝑛𝑎,𝑐 ) were considered the response variable and features for cell line 𝑐. In the two datasets, some cell lines missed 
values of the response variable. We removed drugs with 60 or more missing cell line response values. We applied gene expression-

based weighted averaging to fill in missing values for the remaining cell lines. Using the weighted averaging method on each dataset, 
cell lines similar in gene expression space have approximate response values. Detailed steps are as follows:

1. Let 𝑧∗𝑐 denote the missing value for the cell line 𝑐 in the response variable. Let 𝒙𝑟𝑛𝑎,𝑐 denote the vector of gene expression features 
for the cell line 𝑐.

2. Assume cell line 𝑘 has no missing data for response value. The diversity between cell lines 𝑐 and 𝑘 is calculated by 𝑑(𝑐, 𝑘) =
2

‖‖𝒙𝑟𝑛𝑎,𝑐 − 𝒙𝑟𝑛𝑎,𝑘
‖‖22. Search 𝐾 cell lines nearest to cell line 𝑐 by calculating the diversity.

https://osf.io/c6tfx/
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Fig. 1. The details pipeline of our proposed framework. (a) Data gathering and preprocessing. (b) Label assignment for cell lines according to response value. 
(c) Horizontal federated deep learning with focal loss, HFDL-fl, HFDL-Cross, HFDL-Within. (d) Evaluation procedure.

3. Then 𝑧∗𝑐 is compensated by

𝑧∗𝑐 =
𝐾∑
𝑘=1

1
𝑑(𝑐,𝑘)

𝐾∑
𝑘=1

1
𝑑(𝑐, 𝑘)

𝑧𝑘.

We set 𝐾 = 100 for the preprocessing of GDSC and CTRP datasets. Note that the weighted averaging method is applied separately 
to each dataset. Specifically, the nearest neighbor cell lines in terms of gene expression values are identified using only those cell 
3

lines that belong to the same dataset.
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Fig. 2. Histograms of response values of five drugs in both (a) GDSC and (b) CTRP.

Fig. 3. Waterfall distribution of response values for five drugs in both (a) GDSC and (b) CTRP.

2.2. Label assignment for cell lines according to response value

A low response value indicates that the cell line is sensitive to the drug; conversely, a high response value indicates that the cell 
line is resistant to the drug. Histograms of response values of five drugs in both GDSC and CTRP are shown in Fig. 2. Using the 
waterfall method, we discretized the drug sensitivity measures into three categories, resistant, intermediate and sensitive [28,29]. 
The complete procedure is described below:

1. The drug sensitivity measurements, which are the logarithm of IC50 in GDSC and the AUC in CTRP, were extracted and uniformly 
recorded as RS after being normalized to a range of 0 to 1.

2. Generate a waterfall distribution of RS values, i.e., sort all cell lines based on their RS values in descending order, as shown in 
Fig. 3.

3. If the waterfall distribution is non-linear (Pearson correlation coefficient to the linear fit ≤ 0.85), estimate the major inflection 
point of RS curve as the point on the curve with the maximal distance to a line drawn between the start and end points of the 
4

distribution.
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4. If the waterfall distribution appears linear (Pearson correlation coefficient to the linear fit > 0.85), then use the median RS 
instead of inflection point.

5. Cell lines within an 𝛼-fold (1.2-fold) difference centered around the inflection point are classified as being intermediate, cell 
lines with lower RS values than this range are defined as sensitive, and those with RS values higher than this range are called 
resistant.

6. Require at least 5% sensitive and resistant cell lines after applying these criteria.

2.3. Horizontal federated deep learning with focal loss applied in drug sensitivity prediction

We introduced the HFL framework aggregated deep learning model with focal loss as an alternative strategy for collaborative and 
privacy-preserving drug sensitivity prediction (DSP) modeling. In this section, we describe the pipeline step by step.

2.3.1. Drug sensitivity prediction model

DSP is a triple classification problem with resistant, intermediate, and sensitive categories. Features for cell line 𝑘 (denoted 
by 𝑥𝑘, 𝑘 = 1, 2, ⋯ , 𝑁) are drawn from a feature space 𝕏. The corresponding label 𝑦𝑘 (𝑘 = 1, 2, ⋯ , 𝑁) is drawn from the label space 
𝕐 ∶= {1,2,3} (resistant, intermediate, and sensitive). Let the features corresponding to resistant, intermediate, and sensitive are 
denoted 𝕏𝑟, 𝕏𝑖, 𝕏𝑠. That are

𝕏𝑟 = {𝑥𝑘 ∈𝕏∶ 𝑦𝑘 = 1},𝕏𝑖 = {𝑥𝑘 ∈𝕏∶ 𝑦𝑘 = 2},and 𝕏𝑠 = {𝑥𝑘 ∈𝕏∶ 𝑦𝑘 = 3}.

For any 𝑥𝑟
𝑘
∈𝕏𝑟, 𝑥𝑖𝑘 ∈𝕏𝑖, and 𝑥𝑠

𝑘
∈𝕏𝑠, the objective is to construct a function 𝑓 ∶ 𝕏 → 𝕐 such that

𝑓 (𝑥𝑟
𝑘
) = 1, 𝑓 (𝑥𝑖

𝑘
) = 2, 𝑓 (𝑥𝑠

𝑘
) = 3.

2.3.2. Focal loss to assign appropriate costs for class imbalance

Class imbalance is intrinsic to DSP problem. Since most classification algorithms assume balanced class distributions and assign 
equal misclassification costs. They fail to represent the characteristics of imbalanced class and are more likely to classify new 
samples to the majority class [30]. For DSP, the costs of false resistant and sensitive classifications should be much higher than that 
of intermediate. To mitigate the challenge of skewed class distribution, we incorporated focal loss [31] to increase the cost associated 
with misclassifying resistant or sensitive samples.

For the DSP problem, the focus loss function is given by:

𝐿𝐹𝐿 = −
𝐶∑
𝑡=1
𝛼𝑡(1 − 𝑝𝑡)𝛾 𝑦𝑡 log𝑝𝑡, (1)

where 𝐶 denotes the number of categories (𝐶 = 3 in this study), 𝑝𝑡 denotes a probability distribution of the prediction, 𝛼𝑡 denotes the 
weight factor which down-weights easy samples, 𝑦𝑡 denotes a real probability distribution. As shown in equation (2), where 𝑦𝑡 = 1 if 
𝑡 belongs to the true label, else 𝑦𝑡 = 0.

𝑦𝑡 =
⎧⎪⎨⎪⎩
1 (𝑡 = true label)

0 (𝑡 ≠ true label)
. (2)

In equation (1), 𝛼𝑡(1 − 𝑝𝑡)𝛾 is added to the cross entropy loss, and the focal loss is obtained. This way, the loss function will 
focus training on minority samples (resistant or sensitive). Two parameters affect the action of the focal loss on classification, 𝛼𝑡 and 
focusing parameter 𝛾 . Parameter 𝛼𝑡 for each category is generally set to the inverse of the sample proportion in binary classification, 
but it does not work in the multiclassification problem in this study. Besides, the focusing parameter 𝛾 is used to control the extent to 
which easy examples are down-weighted. In particular, 𝐿𝐹𝐿 degenerates to the cross entropy loss when 𝛾 = 0. For 𝛾 > 0, the higher 
the 𝛾 , the greater the effect of modulating factor (1 − 𝑝𝑡)𝛾 on the loss. If a sample is correctly classified, 𝑝𝑡 is close to 1, (1 − 𝑝𝑡)𝛾 tends 
to 0, and the loss for the sample will decrease significantly. In contrast, if a sample is misclassified, 𝑝𝑡 will be small, (1 − 𝑝𝑡)𝛾 tends 
to 1, and the loss remains essentially constant. Overall, it is equivalent to increasing the weight of inaccurately classified samples in 
the loss. We adopt the multi-class focal loss with 𝛾 = 1, 2, 3 in our experiments.

2.3.3. Private model

Since data owners may not want to publicly release genomic datasets for privacy concerns. In such cases, a site has to only rely 
on its local data for predictive analytics. We designed a private model of DSP for this scenario, which trains the classifier on local 
data source. Initially, we did a train test split on the whole dataset: 80% for training and 20% for testing, respectively, for each site. 
Then, we standardized the features of both the training and testing sets. As a result of this preprocessing, we obtained 𝕏𝑡𝑟𝑎𝑖𝑛 and 
𝕐𝑡𝑟𝑎𝑖𝑛, which represent the feature and label sets for training, and 𝕏𝑡𝑒𝑠𝑡 and 𝕐𝑡𝑒𝑠𝑡, which represent the feature and label sets for testing. 
The proportions of the three categories in training and testing sets are the same as the entire dataset using stratified sampling. We 
used two data sources, GDSC and CTRP, to train the private model. The corresponding experimental data are recorded as 𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 , 
𝕐𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 , 𝕏𝑡𝑒𝑠𝑡_𝐺𝐷𝑆𝐶 , 𝕐𝑡𝑒𝑠𝑡_𝐺𝐷𝑆𝐶 , and 𝕏𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 , 𝕐𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 , 𝕏𝑡𝑒𝑠𝑡_𝐶𝑇𝑅𝑃 , 𝕐𝑡𝑒𝑠𝑡_𝐶𝑇𝑅𝑃 . Classifier of private model is trained on 𝕏𝑡𝑟𝑎𝑖𝑛
5

and 𝕐𝑡𝑟𝑎𝑖𝑛, and tested on 𝕏𝑡𝑒𝑠𝑡.
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2.3.4. Horizontal federated deep learning model with focal loss

We proposed a horizontal federal deep learning model with focal loss (HFDL-fl) across two sources, GDSC and CTRP, to predict 
drug sensitivity. In the federated learning paradigm, each data owner is denoted as a client, which trains a local model with the same 
structure. The global model is obtained by aggregating local models. Let 𝑇 denote the number of rounds for aggregating local model 
updates. For stochastic gradient descent applied in deep neural network parameter learning, let 𝜂, 𝐸, 𝐵𝑡𝑟𝑎𝑖𝑛, and 𝐵𝑡𝑒𝑠𝑡 denote the 
learning rate, number of epochs, batch size in training, and batch size in testing, respectively. During local model training, based on 
given 𝜂, 𝐸, 𝐵𝑡𝑟𝑎𝑖𝑛, and 𝐵𝑡𝑒𝑠𝑡, gradient for its current model parameter 𝑤 was computed. We obtained the global model by aggregating 
parameter updates from the local models by FedAvg [32], FedNova [33], and SCAFFOLD [34]. The process was repeated until round 
𝑡 reached the preset number 𝑇 . The global model only relies on updates from the local models rather than raw data residing at 
clients. Algorithm 1 presents the core algorithm of HFDL-fl with FedAvg as the aggregating algorithm.

Algorithm 1: HFDL-fl with FedAvg.

Input:

Local datasets for training: 𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 , 𝕐𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 , 𝕏𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 , 𝕐𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 ;

Parameters in deep learning: learning rate 𝜂, number of epochs 𝐸, batch size in training 𝐵𝑡𝑟𝑎𝑖𝑛;
Number of communication rounds 𝑇
Output:

HFDL-fl model parameters for drug sensitivity prediction 𝑤𝑇
1 Server executes:

2 initialize 𝑥0
3 for 𝑡 = 0, 1, ⋯ , 𝑇 − 1 do

4 for 𝑖 ∈ (1, 2) do

5 send the global model 𝑤𝑡 to client 𝑃𝑖
6 △𝑤𝑡𝑖 ← LocalTraining(𝑖, 𝑤𝑡)
7 end

8 𝑤𝑡+1 ←𝑤𝑡 − 𝜂
∑
𝑖∈𝑆𝑡

|𝐷𝑖 |
𝑛

△𝑤𝑡
𝑘
(𝐷1 =𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 ; 𝐷2 =𝕏𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 )

9 end

10 return 𝑤𝑇
11 Client executes:

12 𝐿(𝑤; 𝒃) =∑
(𝑥,𝑦)∈𝒃 𝑙(𝑤; 𝑥; 𝑦) (focal loss)

13 LocalTraining(𝑖, 𝑤𝑡):
14 𝑤𝑡𝑖 ←𝑤𝑡

15 for epoch 𝑘 = 1, 2, ⋯ , 𝐸 do

16 for each epoch 𝒃 = {𝒙, 𝑦} of 𝐷𝑖 do

17 𝑤𝑡𝑖 ←𝑤𝑡𝑖 − 𝜂△𝐿(𝑤𝑡𝑖; 𝒃)
18 end

19 end

20 △𝑤𝑡
𝑖
←𝑤𝑡 −𝑤𝑡

𝑖

21 return △𝑤𝑡
𝑖

To verify the effect of homogeneity and heterogeneity of client-side data on HFDL-fl, we developed the HFDL-fl model for 
cross-source (HFDL-Cross) and the HFDL-fl model for within-source (HFDL-within). HFDL-Cross implements horizontal federal deep 
learning using GDSC as one client and CTRP as another client. The training data of the local models in the two clients is the training 
data in the private model in Section 2.3.3 (𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 and 𝕏𝑡𝑟𝑎𝑖𝑛_𝐶𝑇𝑅𝑃 ) for a fair comparative analysis. The testing data of the global 
model in HFDL-Cross is the combination of testing data in two private models (𝕏𝑡𝑒𝑠𝑡_𝐺𝐷𝑆𝐶 and 𝕏𝑡𝑒𝑠𝑡_𝐶𝑇𝑅𝑃 ). HFDL-Within implements 
horizontal federal deep learning within one dataset (GDSC or CTRP). Take HFDL-within in GDSC as an example, we partitioned 
𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 (training data in the private model) into mutually exclusive sets 

{
𝕏𝑖
𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶

}𝑁
𝑖=1

(𝑁 = 2 in this study), i.e., 𝕏1
𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶

∪

𝕏2
𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶

=𝕏𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 and 𝕏1
𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶

∩𝕏2
𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶

= ∅. We followed the same approach to partition the corresponding label set 
𝕐𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶 into 𝕐 1

𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶
and 𝕐 2

𝑡𝑟𝑎𝑖𝑛_𝐺𝐷𝑆𝐶
. The global model of HFDL-Within on GDSC will be tested on 𝕏𝑡𝑒𝑠𝑡_𝐺𝐷𝑆𝐶 (testing data in 

private model). The detailed scheme for the private model, HFDL-Within, and HFDL-Cross, is shown in Fig. 4.

2.4. Evaluation procedure

Accuracy (ACC), AUC_micro, AUC_macro, AUC for class 0 (AUC_class0), AUC for class 1 (AUC_class1) and AUC for class 2 
(AUC_class2) [35,36] were selected to evaluate the predictive performance for the private model, HFDL-within, and HFDL-Cross. For 
classifier 𝑓 ∶𝐷→ 𝐶 = {1, ⋯ , 𝑚} and finite set 𝑆 ⊂𝐷×𝐶 , let 𝑎𝑓,𝑆 ∈ℕ𝑚×𝑚0 be a confusion matrix, where 𝑎𝑓,𝑆

𝑖𝑗
= |{𝑠 ∈ 𝑆|𝑓 (𝑠1) = 𝑖 ∧𝑠2 = 𝑗}|. 

For the definition of 𝑎𝑓,𝑆
𝑖𝑗

, 𝑠1 corresponds to the features of the sample, and 𝑠2 corresponds to the label of the same sample. The 
Accuracy (ACC) were defined as:

accuracy: 𝐴𝐶𝐶 =
∑
𝑥 𝑎𝑥𝑥∑𝑚

𝑥=1
∑𝑚
𝑖=1 𝑎𝑥𝑖

.

The micro-AUC and macro-AUC are two kinds of the area under the Receiver Operating Characteristic (ROC) curve. Therein, micro 
6

calculates metrics globally by considering each element of the label indicator matrix as a label. Macro calculates metrics for each 
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Fig. 4. Scheme of detailed data training and testing for the private model, HFDL-Within, and HFDL-Cross.

Table 1

Total numbers of samples and gene expression features in GDSC and 
CTRP.

Database State Cell lines Gene expression features

GDSC
Raw 805 17419

Preprocessed 805 17180

CTRP
Raw 829 51847

Preprocessed 829 17180

label and finds their unweighted mean, which does not consider label imbalance. The AUC_class0, AUC_class1, and AUC_class2 are 
the results obtained by calculating the area under the ROC curve for each of the three classes separately. In the calculation process, 
each class is treated as a positive instance, while the other two classes are treated as negative instances.

3. Results

3.1. Data description

Five drugs, AZD7762, PLX4720, Olaparib, Linsitinib, and Fluorouracil, in both GDSC and CTRP databases, were studied to validate 
the proposed HFDL-Within and HFDL-Cross. Response data containing missing values were compensated by using the weighted 
averaging method described in section 2.1. The total number of samples and gene expression features are listed in Table 1. Among 
them, gene signatures that are common to both databases were preserved. According to the distribution of response values, cell lines 
in five drugs were classified into three categories: resistant, intermediate, and sensitive. The number of samples in each category is 
shown in Fig. 5. For Olaparib and Linsitinib in CTRP, the sample size of resistant category is relatively small. The proportions of 
samples in the three categories are approximately equal in both databases for the other three drugs.

3.2. Performance of HFDL-cross

The overall predictive performance of HFDL-Cross is significantly improved upon private models on local data. Overall, the 
predictive performance is dependent on two factors: the parameter aggregation algorithms in the global federated model and gamma 
7

of focal loss function in deep learning. The detailed performance evaluation process is as follows.
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Fig. 5. Number of samples in the three categories in (a) GDSC and (b) CTRP.

Table 2

Performance of HFDL-Cross on five drugs by adjusting gamma and parameter aggregation algorithm.

Drug Gamma Algorithm Global test ACC AUC_micro AUC_macro AUC_class0 AUC_class1 AUC_class2

AZD7762 2 SCAFFOLD 0.6697 0.8037 0.7440 0.7578 0.6464 0.8200

PLX4720 3 FedAvg 0.6208 0.7602 0.6249 0.6271 0.5582 0.6793

Olaparib 1 FedAvg 0.6667 0.7976 0.7111 0.6699 0.6327 0.8225

Linsitinib 2 FedAvg 0.6667 0.8137 0.7047 0.6982 0.6227 0.7829

Fluorouracil 3 FedNova 0.5505 0.7282 0.6552 0.7221 0.4928 0.7436

3.2.1. Overall drug sensitivity predictive performance of HFDL-cross

We applied HFDL-Cross on GDSC (denoted as client 0) and CTRP (denoted as client 1) database. We summarized the predictive 
performance on five drugs for gamma=1,2,3 and three aggregation algorithms FedAvg, FedNova, and SCAFFOLD. The results of 
the round with the highest test ACC were output. The distributions of the six performance criteria on five drugs are shown in 
Fig. 6. Generally, the overall performance with gamma=1,2,3 does not show significant performance differences. The aggregation 
algorithm FedAvg got better performance than SCAFFOLD and FedNova. Besides, the variance of FedNova in the performance of the 
five drug sensitivity predictions is higher than FedAvg and SCAFFOLD. The average values of the six performance criteria among 
the five drugs are shown in Fig. 7. The best performance on five drugs by adjusting gamma and aggregation algorithm is shown 
in Table 2. The best average global test ACC (gamma=1 and FedAvg algorithm), AUC_micro (gamma=1 and FedAvg algorithm), 
AUC_macro (gamma=1 and FedAvg algorithm), AUC_class0 (gamma=2 and SCAFFOLD algorithm), AUC_class1 (gamma=3 and 
FedAvg algorithm), AUC_class2 (gamma=1 and SCAFFOLD algorithm) are 0.6196, 0.7770, 0.6946, 0.7030, 0.6027, and 0.7865 
respectively. According to the results, the proposed algorithm under the effect of focal loss has relatively better performance on the 
cell lines that are resistant and sensitive.

3.2.2. Comparison between HFDL-cross and private model

We compared the predictive performance between the private model and HFDL-Cross on the five drugs mentioned above (Fig. 8). 
In a “small distribution gap” scenario (AZD7762 in Fig. 5), cross-source data collaboration by HFDL-fl achieved better performance 
than that in “large distribution gap” scenarios (Fluorouracil in Fig. 5). The average ACC, AUC_micro, AUC_macro, AUC_class0, 
AUC_class1, and AUC_class2 of the private model among five drugs on GDSC are 0.5528, 0.6171, 0.5269, 0.5027, 0.5554 and on 
CTRP are 0.7554, 0.6548, 0.5542, 0.5627, 0.5275, and 0.5508 respectively. For HFDL-Cross, the results are 0.5714, 0.7360, 0.6803, 
0.7205, 0.5512, 0.7542 on GDSC and 0.6963, 0.8224, 0.7094, 0.6613, 0.6442, and 0.8018 on CTRP, respectively. In summary, 
collaboration by HFDL-fl gained a substantial performance improvement to that of the private model on the local data. More detailed 
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results of HFDL-Cross and private model can be found in Supplementary Tables S1 and S2.
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Fig. 6. The distributions of (a) global test ACC, (b) AUC_micro, (c) AUC_macro, (d) AUC_class0, (e) AUC_class1, and (f) AUC_class2 on five drugs.

Table 3

Performance of HFDL-Within by adjusting gamma and parameter aggregation algorithm.

Dataset Drug Gamma Algorithm Global test ACC AUC_micro AUC_macro AUC_class0 AUC_class1 AUC_class2

AZD7762 2 FedAvg 0.6770 0.7478 0.6823 0.6165 0.6558 0.7589

PLX4720 1 FedNova 0.5466 0.7246 0.6381 0.6802 0.5705 0.6483

GDSC Olaparib 1 FedNova 0.5652 0.7022 0.6913 0.6700 0.5984 0.7937

Linsitinib 3 FedAvg 0.5466 0.7246 0.6589 0.7631 0.4738 0.7249

Fluorouracil 1 FedAvg 0.4720 0.5769 0.5676 0.6846 0.4670 0.5369

AZD7762 1 FedAvg 0.6988 0.7763 0.7077 0.6767 0.5832 0.8490

PLX4720 1 SCAFFOLD 0.7470 0.8454 0.6600 0.5882 0.6718 0.7008

CTRP Olaparib 3 FedAvg 0.8133 0.8895 0.7689 0.6313 0.8048 0.8540

Linsitinib 2 FedAvg 0.7530 0.8773 0.6744 0.5741 0.6150 0.8046

Fluorouracil 2 SCAFFOLD 0.6566 0.7761 0.6900 0.7200 0.5473 0.7878

3.3. Performance of HFDL-within

To access the applicability of HFDL-fl in the homogeneity scenario, we applied HFDL-fl within GDSC or CTRP, respectively, i.e., 
HFDL-Within. HFDL-Within simulates the situation where samples of clients are homologous or have a similar distribution. Samples 
in GDSC or CTRP datasets were first divided into training and testing sets. The training set was then divided into two sets as two 
simulated clients. Similar to the statistics in Section 3.2.1, the results of HFDL-Within modeled on GDSC and CTRP are shown in 
Table 3. Although data distribution in each client is homogeneous, the performance of HFDL-Within is not significantly improved than 
that of HFDL-Cross due to the reduced sample size. In addition, HFDL-Within on CTRP shows better performance than HFDL-Within 
on GDSC among the five drugs. The experimental results revealed that the performance of HFDL-Within did not vary significantly 
when we used various gamma values of 1, 2, and 3. This finding is in line with the conclusion drawn from the results of HFDL-Cross. 
Furthermore, FedAvg demonstrated a more stable aggregation performance for the global model.

4. Discussion

Machine learning models can exhibit excellent performance if large-scale public data is available. However, non-restricted suf-
9

ficient data is always unavailable due to privacy regulations in realistic clinical scenarios. Drug sensitivity prediction studies based 
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Fig. 7. Average performance for (a) global test ACC, (b) AUC_micro, (c) AUC_macro, (d) AUC_class0, (e) AUC_class1, and (f) AUC_class2 of HFDL-Cross on five drugs.

on machine learning models are deeply plagued by the same problem of limited samples in local hospitals or research institutions, 
which reduces their clinical application to a certain extent. Federated learning overcomes such challenges by shifting the centralized 
training approach to the cryptographic delivery of model parameters. Therefore, we proposed a horizontal federated deep learning 
model with focal loss (HFDL-fl) to improve the generalization of drug sensitivity prediction with privacy preservation. Applying 
the HFDL-fl model to single and distributed data sources, respectively, we obtained HFDL-Within and HFDL-Cross. We explored 
three challenging situations for federated learning-based drug sensitivity prediction, loss function design for class imbalance problem 
(i), the performance of federated learning for homogeneity and heterogeneity scenarios (ii), and parameter aggregation algorithms 
for global model (iii). To this end, we designed experiments to assess ACC, AUC_micro, AUC_macro, AUC_class0, AUC_class1, and 
AUC_class2 of HFDL-Cross, HFDL-Within, and private models.

The design of the loss function for class imbalance problem (i) is crucial for both traditional deep learning and federated deep 
learning. We classified the cell lines into three categories based on IC50 and AUC distribution using the waterfall method (Sec-

tion 2.2), which effectively avoids the unsmooth excess of dichotomous classification for intermediate category. The ratio of samples 
in three categories of resistant, intermediate, and sensitive is approximately 1:5:1 (Fig. 5). If misclassifications in every category 
are assigned the same penalty, federated deep learning model will tend to classify samples as intermediate. The results suggest that 
despite the proposed algorithm having some misclassification, it attained a high AUC score, particularly for sensitive and resistant 
categories. This indicates that the classifier has strong discriminative power for accurately distinguishing between these categories. 
Besides, it can be seen that focal loss can play a more influential role for federated model based on the superior performance of 
federated model over private model (Fig. 8).

For evaluating the impact of homogeneous and heterogeneous data on federated learning performance (ii), we proposed HFDL-

Within and HFDL-Cross. The HFDL-Cross unites two heterogeneous data sources (GDSC and CTRP) and jointly trains about 1000 
samples that respond to the same drug. HFDL-Within is modeled on GDSC or CTRP data sources alone, i.e., the homogeneous data 
from the same data source is divided into two clients for federated training. Overall, HFDL-Cross has better predictive performance 
than HFDL-Within (Table 2, Table 3, and Fig. 6). HFDL-Cross is only inferior to HFDL-Within on CTRP in terms of ACC. Although 
homogeneous data are more helpful for parameter aggregation, the reduced sample size will affect the federated model performance 
of HFDL-Within.

Federated learning can aggregate data across clients to train a joint model whose performance will be influenced by the parameter 
aggregation algorithm (iii). To obtain the global model, we applied three typical algorithms, FedAvg, SCAFFOLD, and FedNova. 
10

Results revealed that FedAvg algorithm exhibited a more stable aggregation performance in both the federated learning for HFDL-



Heliyon 9 (2023) e18615X. Xu, Z. Qi, X. Han et al.

Fig. 8. Comparison between private models and HFDL-Cross on (a) global test ACC, (b) AUC_micro, (c) AUC_macro, (d) AUC_class0, (e) AUC_class1, and (f) AUC_class2.

Cross and HFDL-Within (Table 2 and Table 3). A more detailed comprehensive evaluation and summary of the typical aggregation 
algorithms can be referred to [37].

Using the conclusions from (i)(ii)(iii), we obtained HFDL-fl across distributed data sources with optimal gamma and aggregation 
algorithms. Experimental results on five drugs common to both GDSC and CTRP show that our proposed HFDL-Cross outperformed 
the private model (Fig. 8). The private model exhibited a small performance advantage over HFDL-Cross on AUC_class1 solely for 
the drug Fluorouracil in GDSC. Furthermore, for the drugs Fluorouracil and Linsitinib in CTRP, the private model has shown a minor 
improvement over HFDL-Cross on ACC. However, after further examination of the AUC, it was discovered that the private model’s 
high performance for these two predictions compromises AUC. On the other hand, the HFDL-Cross model outperformed the private 
model in AUC performance for all drugs in both databases.

Overall, the proposed framework of HFDL-fl achieves improved generalizability for drug sensitivity prediction by integrating data 
from distributed sources while guaranteeing individuals’ privacy. We believe that the medical aid platform based on the federated 
ML-model can provide more accurate analysis and prediction of medical conditions under data security and provide a scientific 
guarantee for the subsequent promotion of precision medicine.
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