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Abstract

Background

The current classification of traumatic brain injury (TBI) into “mild”, “moderate”, or “severe”

does not adequately account for the patient heterogeneity that still exists within each of

these categories. The objective of this study was to identify “sub-groups” of mild TBI (mTBI)

patients based on data available at the time of the initial post-TBI patient evaluation and to

determine if the sub-grouping correlates with patient outcomes at 90 and 180 days post-

TBI.

Methods

Data from patients in the TRACK-TBI Pilot dataset who had a Glasgow Coma Scale (GCS)

score of 13 to 15 at arrival to the Emergency Department and a closed head injury were

included. Considering 53 clinical variables that are typically available during the initial evalu-

ation of the patient with mild TBI, sparse heirarchial clustering with cluster quality assess-

ment was used to identify the optimal number of patient sub-groups. Patient sub-groups

were then compared for ten outcomes measured at 90 or 180 days post-TBI.

Results

Amongst the 485 patients with mTBI, optimal clustering was based on the inclusion of 12

clinical variables that divided the patients into 5 mild TBI sub-groups. Clinical variables driv-

ing the sub-clustering included: gender, employment status, marital status, TBI due to
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falling, brain CT scan result, systolic blood pressure, diastolic blood pressure, administration

of IV fluids in the Emergency Department, alcohol use, tobacco use, history of neurologic

disease, and history of psychiatric disease. These 5 mild TBI sub-groups differed in their 90

day and 180 day outcomes within several domains including global outcomes, persistence

of TBI-related symptoms, and neuropsychological impairment.

Conclusions

Sub-groups of patients with mTBI can be identified according to clinical variables that are

relatively easy to obtain at the time of initial patient evaluation. A patient’s sub-group assign-

ment is associated with multidimensional patient outcomes at 90 and 180 days. These find-

ings support the notion that there are clinically meaningful subgroups of patients amongst

those currently classified as having mTBI.

Introduction

The current structure for classifying patients with traumatic brain injury (TBI) includes three

main sub-groups defined by Glasgow Coma Scale (GCS) score: mild, moderate, and severe.

[1–2] Classifying TBI into these three subgroups has substantial limitations: within each of the

three sub-groups there exists a large amount of heterogeneity in patient and injury characteris-

tics and wide variability in post-TBI patient outcomes. For example, a patient who had loss of

consciousness for 20 minutes, amnesia for 20 hours, and a GCS score of 13 is categorized as

having had a mild TBI (mTBI). Similarly, a patient who had no loss of consciousness, no

amnesia, and a GCS score of 15 but had a few minutes of blurred vision and nausea following

the head injury is also considered to have had a mTBI. Despite these two patients both being

classified as having had “mTBI”, one might expect that the severity and outcomes associated

with their injuries may be different. A more refined sub-classification structure for defining

the severity of TBI would be useful if the new sub-categories of TBI severity correlated with

patient outcomes. Furthermore, a more refined sub-classification of TBI would be most clini-

cally useful if information available at the time of the initial patient evaluation were sufficient

for determining an individual’s sub-group. A classification structure with these characteristics

could guide patient management decisions and inform appropriate counseling with respect to

prognosis.

The objective of this study was to identify sub-classes or “clusters” within a group of

patients all currently defined as having mTBI. The sub-classification was determined by con-

sidering several heterogeneous characteristics that are typically available when the patient with

mTBI presents for initial evaluation and that might relate to patient outcomes: GCS scores,

injury characteristics, medical history, substance use, neuroimaging results, vital signs, and

basic blood test results. To address the high-dimensionality challenge that is present when

using a large number of variables, we used a data-driven approach that automatically selected

available clinical features to sub-classify patients and then compared the resulting mTBI sub-

groups for their multidimensional 90- and 180-day patient outcomes. In contrast with the

majority of existing work that focuses on building predictive models that use clinical variables

to predict a single outcome variable of interest, our study has a different perspective in that it

allows for the simultaneous consideration of multiple baseline variables and their association

with multiple different outcome measures.
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Methods

Data

The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI)

Pilot dataset was downloaded from the Federal Interagency Traumatic Brain Injury Research

(FITBIR) Informatics System after obtaining appropriate approvals for accessing the data.

(tracktbi.ucsf.edu) (fibtir.nih.gov) TRACK-TBI Pilot was conducted between July 2007 and

Februray 2011.

The TRACK-TBI Pilot dataset includes multiple Excel files and each file contains different

variables of patient characteristics at baseline and patient outcomes at follow-up. A global

unique identifier (GUID) is used to track different variables of the same patient across the mul-

tiple files. The information used in this study was found in 12 different TRACK-TBI Pilot files,

including: Abbreviated Injury Score (AIS), Assessment, CT scan results, injury history, medi-

cal history, subject demographics, Glasgow Outcome Score Extended (GOSE) [3], the brief

symptom inventory (BSI) [4], the Functional Independence Measure (FIM) [5], the Rivermead

Post-Concussion Symptoms Questionnaire (RPQ) [6], the Wechsler Adult Intelligence Scale

(WAIS) [7], and the Trail Making Test (TMT) score [8–9]. We used the FITBIR GUID to

extract the variables in this study from the FITBIR files and integrate them into one file for all

the patients.

In the dataset for this study, each variable was either extracted from one variable in a FIT-

BIR file or was a combination of multiple variables. Specifically, based on domain knowledge

we combined the descriptions of injury mechanisms for each patient into 8 categories, includ-

ing: bike, pedestrian, motorcycle, motor, other person, fall, striking, and other types; IV fluid

was a combination of Saline and Crystalloid, i.e. IV fluid = yes if Saline = yes or

Crystalloid = yes; vital signs including diastolic and systolic blood pressure, heart rate, and

respiratory rate measured at ED arrival and ED discharge were each categorized into three lev-

els, i.e. low, normal, and high, according to clinically-relevant thresholds. O2 saturation was

categorized into two levels, i.e. low and normal.

Patient selection

For these analyses, we selected patients from the TRACK-TBI Pilot dataset who had a GCS

score of 13 to 15 at arrival to the Emergency Department and a closed head injury. Of the 599

patients in the dataset, 485 patients met these inclusion criteria.

Clinical variables

After careful review of the variables available within the TRACK-TBI Pilot dataset, consider-

ation of our own clinical knowledge, and knowledge gained from previously published studies,

53 clinical variables were included as potentially relevant for mTBI sub-classification. [10–19]

These variables are listed in Table 1.

Outcome variables

We included 10 patient outcome measures: the Glasgow Outcome Score Extended (GOSE) [3]

at 90 and 180 days, as well as eight others at 180 days (data on these outcome variables at 90

days were not recorded in the TRACK-TBI Pilot Study) including the brief symptom inven-

tory (BSI) [4], the motor and cognition subscores of the Functional Independence Measure

(FIM) [5], the cognition, emotion and somatic subscores of the Rivermead Post-Concussion

Symptoms Questionnaire (RPQ) [6], the digit span score from the Wechsler Adult Intelligence

Scale (WAIS) [7], and the Trail Making Test (TMT) score [8–9]. These outcome measures
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Table 1. Clinical variables included in analyses.

variable category variable name type values

demographics age numerical years

gender binary 0–1: female, male

ethnicity binary 0–1: not Hispanic or Latino, Hispanic or Latino

education ordinal 1–4: before high, high, college, grad

employment binary 0–1: employed, unemployed/not working

marital status binary 0–1: married/living together/common law, not married/living together/

common law

medical history alcohol use binary 0–1: no, yes

tobacco use binary 0–1: no, yes

previous TBI binary 0–1: no, yes

prior developmental disease binary 0–1: no, yes

prior neurological disease binary 0–1: no, yes

prior psychiatric disease binary 0–1: no, yes

This injury Intention of injury binary 0–1: unintentional, intentional

Injury mechanism—bike binary 0–1: no, yes

Injury mechanism—pedestrian binary 0–1: no, yes

Injury mechanism—motorcycle binary 0–1: no, yes

Injury mechanism—motor binary 0–1: no, yes

Injury mechanism—other person binary 0–1: no, yes

Injury mechanism—fall binary 0–1: no, yes

Injury mechanism—striking binary 0–1: no, yes

Injury mechanism—other types binary 0–1: no, yes

Injury severity score (ISS) numerical 0–75

ISS outside head binary 0–1: no, yes

ED examination GCS total score at ED arrival numerical 13–15

GCS assessment condition at ED arrival binary 0–1: no sedation or paralysis, sedation or paralysis

GCS total score at ED discharge numerical 3–15

GCS eye response subscale at ED

discharge

numerical 1–4

GCS motor response subscale at ED

discharge

numerical 1–6

GCS verbal response subscale at ED

discharge

numerical 1–5

GCS assessment condition at ED

discharge

binary 0–1: no sedation or paralysis, sedation or paralysis

hospital type binary 0–1: primary, secondary

post-traumatic amnesia duration ordinal 1–5: none, <1 minute, 1–29 minutes, 30–59 minutes, 1–24 hours

loss of consciousness duration ordinal 1–7: none, <1 minute, 1–29 minutes, 30–59 minutes, 1–24 hours, 1–7 days,

>7 days

CT result binary 0–1: without abnormality, abnormal

pupil reactivity at ED arrival ordinal 1–3: both, one, neither reactive

blood work alcohol intoxication at ED binary 0–1: no, yes

any drug intoxication binary 0–1: no, yes

(Continued)
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evaluate post-TBI global outcomes, psychological status, TBI related symptoms, physical func-

tion, and cognitive activity limitations/ neuropsychological impairment. Literature search and

domain knowledge were used to binarize each outcome score into “good” and “bad” out-

comes. Table 2 shows the outcome variables and rules for binarization. [20–26]

Table 1. (Continued)

variable category variable name type values

vital signs diastolic blood pressure at ED arrival ordinal 1–3: low (less than 60 mm Hg), normal (60–89 mm Hg), high (at least 90

mm Hg)

systolic blood pressure at ED arrival ordinal 1–3: low (less than 90 mm Hg), normal (90–139 mm Hg), high (at least 140

mm Hg)

heart rate ate ED arrival ordinal 1–3: low (less than 60 bpm), normal (60–100 bpm), high (at least 101 bpm)

O2 saturation at ED arrival ordinal 1–2: low (less than 90%), normal (at least 90%)

respiratory rate at ED arrival ordinal 1–3: low (less than 12/min), normal (12-20/min), high (at least 21/min)

diastolic blood pressure at ED discharge ordinal 1–3: low (less than 60 mm Hg), normal (60–89 mm Hg), high (at least 90

mm Hg)

systolic blood pressure at ED discharge ordinal 1–3: low (less than 90 mm Hg), normal (90–139 mm Hg), high (at least 140

mm Hg)

heart rate at ED discharge ordinal 1–3: low (less than 60 bpm), normal (60–100 bpm), high (at least 101 bpm)

O2 saturation at ED discharge ordinal 1–2: low (less than 90%), normal (at least 90%)

respiratory rate at ED discharge ordinal 1–3: low (less than 12/min), normal (12-20/min), high (at least 21/min)

complications and treatment at

ED

hypotension binary 0–1: no, yes

seizure binary 0–1: no, yes

hypoxia binary 0–1: no, yes

IV fluid binary 0–1: no, yes

blood transfusion binary 0–1: no, yes

intubation binary 0–1: no, yes

https://doi.org/10.1371/journal.pone.0198741.t001

Table 2. Outcome variables and rules for binarization into “good” vs “bad” recovery.

Outcome variables (total and subscales) Binarization Availability at 90

days

Availability at

180 days

Glasgow Outcome Scale Extended (GOSE)

[26]

1–6 (bad outcome)

7–8 (good outcome)

yes yes

Brief System Inventory (BSI) [20] GSI T-score > 63 or two or more subscales with T-score > 63 (bad outcome);

otherwise (good outcome)

no yes

Functional Independence Measure (FIM)–

Motor [21]

all responses 6 or higher (good) vs. any response 5 or lower (bad) no yes

Functional Independence Measure (FIM)—

Cognition [21]

all responses 6 or higher (good) vs. any response 5 or lower (bad) no yes

Rivermead Post-Concussion Symptoms

Questionnaire (RPQ) -Cognition [22]

any item rated 3 or 4 (bad) vs. no item rated 3 or 4 (good) no yes

Rivermead Post-Concussion Symptoms

Questionnaire (RPQ)–Emotion [22]

any item rated 3 or 4 (bad) vs. no item rated 3 or 4 (good) no yes

Rivermead Post-Concussion Symptoms

Questionnaire (RPQ)–Somatic [22]

any item rated 3 or 4 (bad) vs. no item rated 3 or 4 (good) no yes

Wechsler Adult Intelligence Scale 4th edition

(WAIS) Processing Speed Index [25]

> = 1 standard deviation below the mean (bad) no yes

Trail Making Test (TMT) [23–24] Age adjusted normalized times. Bad = 1 standard deviation above mean or

more. A "Bad" outcome overall would be the result of a "Bad" outcome on A or

B individually.

no yes

https://doi.org/10.1371/journal.pone.0198741.t002
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Clinical data imputation

Because the sub-classification was performed on clinical variables, we only imputed missing

data for clinical variables, but did not impute data for missing outcome variables. We only

included clinical variables for which fewer than 10% of patients had missing values, except for

several TBI-related variables that we hypothesized to be exceptionally important for sub-classi-

fying patients: post-traumatic amnesia (PTA) duration, loss of consciousness (LOC) duration,

previous TBI, and pupil reaction at ED arrival. As a classic imputation method, Multivariate

Imputation by Chained Equations (MICE) implemented in the R package “mice” [27] was

used to impute missing data. MICE works by building a series of regressions with missing data

conditional upon observed data. Logistic regression is used if the variable with missing data is

binary; multinomial logit regression is used if the variable is categorical with more than two

levels; linear regression is used if the variable with missing data is numerical. The quality of

imputation was confirmed by comparing the empirical distributions of each variable before

and after the imputation and finding no statistically significant difference between the

distributions.

Sparse hierarchical clustering (SHC) with cluster quality assessment

Hierarchical Clustering (HC) is a conventional clustering algorithm to build a hierarchy of

subgroups by producing a dendrogram that represents a nested set of subgroups. HC starts

from the bottom of the dendrogram where each subject is in its own subgroup and the pairwise

distance between the subgroups is measured. In the next upper level of the dendrogram, the

pair of subgroups with the closest distance is merged into a bigger subgroup and the dendro-

gram is thus iteratively built. However, when the number of variables used in HC is large, like

in this study, Sparse Hierarchical Clustering (SHC) [28] is more appropriate than conventional

HC. SHC can automatically select informative features to the clustering result, or in other

words, automatically eliminate features that do not contribute to sub-classifying patients.

Conventional HC is based on an overall distance matrix between each pair of samples, i.e.

U. Instead of U, SHC builds a dendrogram based on a weighted distance matrix D, where each

clinical variable is associated with a weight. An L1-penalty [29] is imposed on the weights to

make sure the estimated weights are “sparse”, i.e., to shrink the estimated weights for clinical

variables not significantly contributing to the clustering to be exactly zero. Mathematically,

SHC solves the following optimization problem to estimate the weight vector w and the

weighted distance matrix D:

ðw�;D�Þ ¼ argmax
w;D

nX

j
wj

X

i;i0
ui;i0;jDi;i0

o

subject to
P

i;i0D
2

i;i0 � 1; kwk2 � 1; kwk1 � s; wj � 0; for j ¼ 1; . . . ; q:
ð1Þ

Here, ui,i0,j is the distance between samples i and i0 on the j-th clinical variable. wj is the j-th

element in the weight vector w, i.e., the weight for the j-th clinical variable. q is the number of

clinical variables. kwk1 is an L1-penalty defined as a summation of the absolute weights. The

constraint on kwk1 is to impose sparsity. kwk2 is the L2-norm, which is used together with

other constraints in (1) to facilitate efficiency of the optimization solution. Di,i0 is an element

in D representing the weighted distance between samples i and i0. s is a tuning parameter. Dif-

ferent values for the tuning parameter (s) result in different numbers of clinical variables with

non-zero weights. To determine the optimal number of clinical variables, a gap statistic is com-

puted, which measures the strength of the clustering obtained on the real data relative to the

clustering obtained on permuted data that does not contain subgroups [28]. The optimal
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number of clinical variables is the one that maximizes the gap statistic. SHC has been imple-

mented in the R package “sparcl”, which was used to perform the analysis in this study.

Furthermore, depending on where the dendrogram is cut, SHC can produce different num-

bers of subgroups. To determine the optimal number of subgroups, we adopted a cluster qual-

ity measure proposed by Kapp and Tibshirani [30] called “in group proportion (IGP)”. IGP is

defined to be the proportion of samples classified to a cluster whose nearest neighbor is also

classified to the same cluster. According to this definition, IGP is between 0 and 1; and the

higher the IGP, the better quality of the cluster. Mathematically, IGP for a cluster c is defined

as:

IGP cð Þ ¼
#fijClassðiÞ ¼ ClassðiNÞ ¼ cg

#fijClassðiÞ ¼ cg
; ð2Þ

where Class (i) is the cluster membership of sample i; iN is i’s nearest neighbor who can be

found from the estimated weighted distance matrix D
�

using SHC. We determined the cut of

the dendrogram (i.e., the optimal number of subgroups) that produced a high overall IGP

across all the resulting clusters.

Sparse outcome selection (SOS)

After the subgroups are found, they are compared with each other in terms of multi-dimensional

outcome variables. For a pair of subgroups, e.g., c0 and c1, the goal is to find the subset of out-

come variables on which c0 and c1, significantly differ. Conventional methods would perform a

hypothesis testing on each outcome variable and use FDR to control the overall type I error.

However, FDR is known to be too conservative. [31] Thus, sparse learning was used to identify

the subset of outcome variables simultaneously, which overcomes the weakness of multiple com-

parisons and FDR. Specifically, suppose there are p outcome variables. Let yi = 1 or 0 represent-

ing bad or good recovery for the i-th outcome variable, i = 1,. . .,p. Let x = 1 or 0 representing

subgroups c1 and c0. A logistic regression model can be used to link the subgroup membership

of each patient with the log-odds of bad recovery in terms of the i-th outcome variable, i.e.,

log
Pðyi ¼ 1Þ

Pðyi ¼ 0Þ
¼ ai þ bix; ð3Þ

where αi is the log-odds of bad recovery for subgroup c0 and βi represents the increase of log-

odds for subgroup c1 compared with c0. If βi = 0, it means that the two subgroups do not differ

on the i-th outcome. To simultaneously identify the subset of outcomes on which the two sub-

groups differ, we imposed an L1-penalty on the joint log-likelihood function over all the out-

comes, i.e.,

ðα�; β�Þ ¼ argminα;β �
Pp

j¼1
ljðaj; bjÞ þ l1kβk1; ð4Þ

where lj(αj,βj) is the log-likelihood function corresponding to the i-th outcome based on the

model in (3). β = (β1,. . .,βp) and α = (α1,. . .,αp). The L1-penalty on β, i.e., kβk1, has the effect of

shrinking the βi’s with a small magnitude to be exactly zero and the remaining non-zero βi’s

compose the subset of outcomes on which the two subgroups significantly differ. λ1 is a tuning

parameter that can be selected by minimizing the cross-validated deviance.

Results

In this section, we first introduce the summary statistics to describe the clinical variables from

TRACK-TBI Pilot dataset used in our study. Then, we present sub-classification based on
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clinical variables, followed by characterization of each subgroup with clinical variables and

multi-dimensional outcomes. To compare clinical variables and outcomes between each pair

of clusters, a Chi-square test for proportions is used, from which a p-value can be provided to

indicate the significance of the test result.

Summary statistics for the variables included in this analysis and the percentage of missing

data for each variable are shown in Table 3. Variables that significantly contributed to patient

sub-classification are indicated with “�”.

Sub-classification based on clinical variables

Inclusion of 12 clinical variables maximized the gap statistic in SHC (Fig 1). These variables

are highlighted using “�” in Table 3. Using the 12 clinical variables, SHC produced the dendro-

gram shown in Fig 2. The optimal cut was found using IGP, which produced five clusters (i.e.

subgroups of patients with TBI), whose IGPs are 0.95, 1.00, 0.98, 0.98, and 0.99 for clusters

A-E, respectively. Clusters A-E included 17%, 9%, 14%, 27%, and 33% of all the TRACK-TBI

Pilot subjects respectively.

Subgroup characterization using clinical variables

We used a “pie chart array” to visualize the distributions of the 12 clinical variables within

each cluster, as shown in Fig 3. Each pie in the column corresponds to one of the 12 clinical

variables in Table 3 that significantly contributed to the clustering. Red and green colors of

each pie represent the proportions of the two levels for each variable (all 12 variables are

binary).

The most obvious difference between the five clusters is the proportion of patients with

brain CT abnormality. Clearly, almost all the patients with an abnormal CT (i.e. “complicated

Fig 1. Based on the gap statistic it was determined that 12 clinical variables provided optimal clustering of

patients with TBI.

https://doi.org/10.1371/journal.pone.0198741.g001
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Table 3. Summary statistics of clinical variables included in the analysis.

variable category variable name summary statistics

(frequency/mean)

summary

statistics (%)

percentage of data

missing

demographics Age (mean +/- SD) 42.6 +/- 18.7 0%

�gender (female/male) 138/347 28.5/71.5 0%

Ethnicity (not Hispanic or Latino/Hispanic or Latino) 410/75 84.5/15.5 0.4%

Education (before high/ high/college/grad) 89/246/102/48 18.4/50.7/21/

9.9

5.8%

�Employment (employed/unemployed) 283/202 58.4/41.6 6.8%

�marital status (married/not married) 156/329 32.2/67.8 5.4%

medical history �alcohol use (no/yes) 240/245 49.5/50.5 0%

�tobacco use (no/yes) 326/159 67.2/32.8 0%

previous TBI (no/yes) 134/351 27.6/72.4 39.8%

prior developmental disease (no/yes) 431/54 88.9/11.1 0%

�prior neurological disease (no/yes) 292/193 60.2/39.8 0%

�prior psychiatric disease (no/yes) 336/149 69.3/30.7 0%

this injury Intention of injury (unintentional/intentional) 418/67 86.2/13.8 3.5%

Injury mechanism–bike (no/yes) 404/81 83.3/16.7 0%

Injury mechanism–pedestrian (no/yes) 450/35 92.8/3.2 0%

Injury mechanism–motorcycle (no/yes) 472/13 97.3/26.8 0%

Injury mechanism–motor (no/yes) 395/90 81.4/18.6 0%

Injury mechanism—other person (no/yes) 405/80 83.5/16.5 0%

�Injury mechanism–fall (no/yes) 329/156 67.8/32.2 0%

Injury mechanism–striking (no/yes) 469/16 96.7/3.3 0%

Injury mechanism—other types (no/yes) 471/14 97.1/2.9 0%

Injury severity score (ISS) (mean +/- SD) 9.4 +/- 9.7 0%

ISS outside head (no/yes) 107/378 22.1/77.9 7.2%

ED examination GCS total score at ED arrival (mean +/- SD) 14.7 +/- 0.5 0%

GCS assessment condition at ED arrival (no sedation or paralysis/

sedation or paralysis)

480/5 99/1 0.6%

GCS total score at ED discharge (mean +/- SD) 14.4 +/- 2.2 6.6%

GCS eye response subscale at ED discharge (mean +/- SD) 3.8 +/- 0.6 6.0%

GCS motor response subscale at ED discharge (mean +/- SD) 5.8 +/- 0.9 6.2%

GCS verbal response subscale at ED discharge (mean +/- SD) 4.7 +/- 0.8 6.6%

GCS assessment condition at ED discharge (no sedation or paralysis/

sedation or paralysis)

392/93 80.8/17.2 5.6%

hospital type (primary/secondary) 402/83 83/17 0.6%

post-traumatic amnesia duration (none/<1 minute/1-29 minutes/30-

59 minutes/1-24 hours)

202/35/124/47/

77

41.6/7.2/25.6/

9.7/15.9

19.2%

loss of consciousness duration (none/<1 minute/1-29 minutes/30-59

minutes/1-24 hours/1-7 days/>7 days)

134/71/211/36/

26/3/4

27.6/14.6/43.5/

7.4/5.4/0.6/0.8

22.3%

�CT result (without/with abnormality) 255/230 52.6/47.4 2.5%

pupil reactivity at ED arrival (both/one/neither reactive) 476/6/3 98.1/1.2/0.6 15.9%

blood work alcohol intoxication at ED (no/yes) 458/27 94.4/5.6 0%

any drug (no/yes) 458/27 94.4/5.6 0%

(Continued)
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Table 3. (Continued)

variable category variable name summary statistics

(frequency/mean)

summary

statistics (%)

percentage of data

missing

vital signs �diastolic blood pressure at ED arrival (low/normal/high) 0/329/156 0/67.8/32.2 19.6%

�systolic blood pressure at ED arrival (low/normal/high) 0/257/228 0/53.0/47.0 2.1%

heart rate ate ED arrival (low/normal/high) 26/346/113 5.4/71.3/23.3 0.8%

O2 saturation at ED arrival (low/normal) 2/483 0.4/99.6 3.9%

respiratory rate at ED arrival (low/normal/high) 6/427/52 1.2/88/10.7 2.3%

diastolic blood pressure at ED discharge (low/normal/high) 0/434/51 0/89.5/10.5 19.8%

systolic blood pressure at ED discharge (low/normal/high) 0/365/120 0/75.3/24.7 5.2%

heart rate ate ED discharge (low/normal/high) 16/425/44 3.3/87.6/9.1 5.0%

O2 saturation at ED discharge (low/normal) 1/484 0.2/99.8 9.3%

respiratory rate at ED discharge (low/normal/high) 5/466/14 1.0/96.1/2.9 6.6%

complications and

treatment

Hypotension (no/yes) 475/10 97.9/2.1 0.6%

Seizure (no/yes) 475/10 97.9/2.1 0.6%

Hypoxia (no/yes) 463/22 95.5/4.5 0.6%

�IV fluid (no/yes) 192/293 39.6/60.4 0%

blood transfusion (no/yes) 473/12 97.5/2.5 0%

Intubation (no/yes) 470/15 97.9/2.1 0%

Clinical variables found by sparse hierarchical clustering that significantly contribute to sub-classifying TRACK-TBI Pilot patients are indicated by “�”. SD = Standard

Deviation.

https://doi.org/10.1371/journal.pone.0198741.t003

Fig 2. Dendrogram built by sparse hierarchical clustering showing the five clusters (A-E) of patients with TBI used in

subsequent analyses. The percentages refer to the proportion of TRACK-TBI Pilot patients assigned to each cluster.

https://doi.org/10.1371/journal.pone.0198741.g002
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mTBI”) fall into clusters A and E, while almost all the patients with a normal CT fall into clus-

ter B, C, and D. Table 4 shows the percentage of patients with an abnormal CT in each cluster.

Please note although B and C are the same in terms of both having 100% patients with a

normal CT, they differ significantly in some other variables. Specifically, B has higher percent-

ages of tobacco use (p<0.001), neurologic disease history (p<0.001), and psychiatric disease

history (p = 0.004) than C.

Similarly, we compare D vs B, and D vs C. D is similar to B and C in terms of having 92.5%

patients with a normal CT. However, D has lower percentages of abnormal diastolic & systolic

blood pressure at ED (p<0.001, p<0.001) and neurologic disease history (p<0.001), compared

with B. If comparing with C, D has higher percentages of alcohol use (p<0.001), tobacco use

Fig 3. Distributions of clinical variables in clusters A-E and in entire TRACK-TBI Pilot population. Red represents

proportions of males, unemployment, unmarried, injury due to falls, abnormal CT, abnormal diastolic blood pressure

at ED arrival, abnormal systolic blood pressure at ED arrival, use of fluid at ED, use of alcohol, use of tobacco, history

of neurologic diseases, and history of psychiatric diseases. SesEmpl = employment; CT.Scan = CT result; A.

BldPressrDiast = diastolic blood pressure at ED arrival; A.BldPressrSyst = systolic blood pressure at ED arrival; ED.

Fluids = IV fluid; alcohol = alcohol use; tobacco = tobacco use; HistNeurologic = prior neurological disease;

HistPsychiatric = prior psychiatric disease; TTP = TRACK-TBI Pilot.

https://doi.org/10.1371/journal.pone.0198741.g003

Table 4. Percentage of patients with an abnormal brain CT in each cluster.

A B C D E

% patients with an abnormal CT 100% 0% 0% 7.5% 86.7%

https://doi.org/10.1371/journal.pone.0198741.t004
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(p<0.001), neurologic disease history (p<0.001), and psychiatric disease history (p<0.001), a

higher percentage of unmarried people, and lower percentages of abnormal diastolic & systolic

blood pressure at ED (p<0.001, p<0.001).

Furthermore, although A and E are similar in terms of CT scans, A has a lower percentage

of unemployment (p = 0.001), a higher percentage of unmarried people (p = 0.001), and higher

percentages of abnormal diastolic & systolic blood pressure at ED (p = 0.001, p<0.001), fluid

use (p = 0.002), and alcohol and tobacco use (p<0.001, p< 0.001).

Multi-dimensional outcomes of subgroups

Table 5 shows the proportion of patients in the entire TRACK-TBI Pilot population with

“bad” post-TBI outcomes for GOSE, BSI, FIM motor and cognitive subscales, RPQ cognitive,

Table 5. Proportion of patients with poor recovery in the entire TRACK-TBI Pilot population.

GOSE 90 days GOSE 180 days BSI FIM Motor FIM Cognition RPQ Cognition RPQ Emotion RPQ Somatic WAIS TMT

Number of Patients 362 318 277 80 80 274 274 274 247 248

Proportion with bad

outcomes

0.345 0.344 0.249 0.063 0.150 0.318 0.292 0.434 0.138 0.266

https://doi.org/10.1371/journal.pone.0198741.t005

Fig 4. Distributions of “good” (green) and “bad” (red) outcomes in the entire TRACK-TBI Pilot population and

in each cluster. (No patient in cluster B had FIM Motor and Cognition measurements, so they are left blank). GOSE

90 = GOSE at 90 days; GOSE 180 = GOSE at 180 days; BSI = BSI at 180 days; FIM Motor = FIM–Motor at 180 days;

RPQ Cognition = RPQ–Cognition at 180 days; RPQ Emotion = RPQ–Emotion at 180 days; RPQ Somatic = RPQ–

Somatic at 180 days; WAIS = WASI at 180 day; TMT at 180 days.

https://doi.org/10.1371/journal.pone.0198741.g004
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emotional and somatic outcomes, WAIS, and TMT. The definitions of “bad” outcomes are in

Table 2. We used a “pie chart array” to help visualize the distributions of outcome variables

within each cluster, as shown in Fig 4.

The SOS approach was used to compare outcomes in sub-groups B, C and D (the “normal

brain CT” groups). It was found that B and C differ on GOSE180, BSI, RPQ Somatic, and

WAIS. Chi-square tests for proportions on these four outcome measures confirmed that B has

significantly worse recovery across the four outcome measures (p = 0.01, 0.01, 0.04, 0.05). We

contend that this is because although all the patients in B and C have a normal CT, B is worse

than C in terms of more tobacco use and neurologic/psychiatric disease history. This seems to

affect the recovery on specific domains like BSI, RPQ somatic, and WAIS, and interestingly

also the overall recovery measured by GOSE at 180 days. Comparing the outcome measures in

D and C, SOS found that D and C differ on GOSE180 and RPQ Somatic. Chi-square tests for

proportions on these two outcome measures confirmed that D has significantly worse recovery

across the two outcome measures (p = 0.03, 0.005). Recall that D has higher percentages of

alcohol use (p<0.001), tobacco use (p<0.001), neurologic disease history (p<0.001), and psy-

chiatric disease history (p<0.001), which seem to affect the recovery on both RPQ somatic and

GOSE 180. This is in line with the previous finding on B and C. SOS did not find any outcome

measure that significantly differs between D and B, implying that patient difference observed

at the time of their clinical assessment did not lead to outcome differences.

Comparing the outcome measures in A and E, SOS found that A and E differ only on

GOSE180, with A having significantly worse overall recovery (p = 0.05). After removing the

13.3% patients with a normal CT from E, we applied SOS again on A and E_sub (i.e., the subset

of patients in E with an abnormal CT). SOS, again, only found GOSE 180 differed between

groups, but with an even smaller p value of 0.04. This indicates that for two clusters with 100%

abnormal CT (i.e., A and E_sub), patients’ overall recovery tends to be worse for the cluster

whose patients are “unhealthy” in terms of other metrics such as alcohol and tobacco use, dia-

stolic & systolic blood pressure, and use of IV fluids in the ED (i.e., cluster A). Also, A has a sig-

nificantly lower percentage of unemployment and a higher percentage of unmarried people.

This implies demographics may also play a role in overall recovery.

Finally, we compared the outcome measures between the CT normal vs abnormal patients.

This is similar to combining A and E into one cluster and B, C, D into another cluster. Since

we know that A and E have substantial heterogeneity in terms of clinical variables other than

CT (so do B, C, and D), we wanted to interrogate what would happen if we ignored this hetero-

geneity. Interestingly, GOSE score measured at 90 days post-TBI (but not GOSE score mea-

sured at 180 days post-TBI) was found to be significantly different between the CT normal and

abnormal groups, with the CT normal group having a significantly better recovery than the

CT abnormal group (p<0.001). Note that within the 10 outcomes we focused on in this paper,

only GOSE was measured at 90 and 180 days, while others were only measured at 180 days.

This means that CT abnormality seems to have a more substantial impact on near-term out-

comes (i.e., at 90 days), while delineation of the heterogeneity beyond CT helps predict longer-

term outcomes and on more dimensions.

Discussion

The main objective of this study was to identify sub-groups of patients within a population of

individuals who presented with mild TBI (GCS scores of 13–15). Identifying sub-groups based

upon clinical data that are typically available at the time a patient with TBI is initially evaluated

could allow for recognition of baseline clinical variables that associate with “good” or “bad”

patient outcomes. The main finding of this study is that 5 sub-groups of patients were
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identified within the larger patient population. The twelve clinical variables that contributed to

the clustering structure included: gender, employment status, marital status, injury mecha-

nism, head CT findings, systolic blood pressure, diastolic blood pressure, receiving IV fluids

while in the ED, having a history of alcohol use, a history of tobacco use, a history of psychiat-

ric disease, and a history of neurologic disease. Patients in each of the five clusters have differ-

ent outcomes in regards to global post-TBI outcomes (e.g. GOSE), psychological health (e.g.

BSI), cognition (e.g. WAIS), and post-TBI related symptoms (RPQ). This study helps to iden-

tify patient variables that should be further investigated when developing and validating prog-

nostic models for TBI and when identifying more precise sub-categories of mTBI that

correlate with patient outcomes. Predictive outcome models consisting of data that are easily

and routinely collected during the initial evaluation of patients with mTBI would assist the cli-

nician with determining how aggressively to manage the patient and with providing prognoses

to the patients.

There are several published studies that have performed univariate analysis on TRACK-TBI

Pilot data that utilize clinical characteristics as predictors for patient outcomes. Connor et al.

[11] studied the influence of a previous history of TBI with loss of consciousness (LOC) on

current TBI and found patients with previous TBI have less-severe acute injuries, but experi-

enced worse outcomes at 180 days, i.e. higher BSI, lower satisfaction with life, lower WAIS-IV,

and lower CVLT-II. Yuh et al. [10] investigated univariate predictors of GOSE, including

demographics, DTI, MRI, and CT imaging, and clinical characteristics, and discovered MRI

evidence for contusion,� 1 ROI with severely reduced fractional anisotropy (FA), neuropsy-

chiatric history, age, and years of education as significant predictors of GOSE at 90 days,

and� 1 ROI with severely reduced FA, neuropsychiatric history, and years of education as sig-

nificant predictors of GOSE at 180 days. Diaz-Arrastia et al. [12] studied two TBI-related bio-

markers, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein

(GFAP), and found no significant association with GOSE at 180 days. Korley et al. [13] investi-

gated the diagnostic and prognostic values of serum brain-derived neurotrophic factor

(BDNF), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1

(UCH-L1) by correlating them with the outcomes of RPQ and GOSE at 180 days, and found

that the 180-day recovery can be predicted by BDNF with 65% accuracy and the addition of

GFAP/UCH-L1 did not significantly improve the prediction. Yue et al. [14] discovered a nega-

tive association of the ANKK1 T allele with cognitive outcome measured by the WAIS at 180

days, i.e. T/T patients performed significantly worse than C/T and C/C patients. Winkler et. al.

[15] discovered that a single-nucleotide polymorphism (SNP) in catechol-o-methyltransferase

(COMT) Met158 allele is associated with a lower incidence of PTSD and higher GOSE score at

180 days. A rs6277 T-allele in the dopamine D2 receptor was also found to be associated with

better verbal learning and recall on California Verbal Learning Test (CVLT-II) but not with

non-verbal processing speed (WAIS-PSI) or cognitive activity measured by the TMT. [13]

Furthermore, there are several studies aiming to find multivariate predictors in order to

explore the joint value of multiple predictors on outcomes. Lingsma et al. [17] studied an

mTBI subgroup with available 90- or 180-day GOSE scores from TRACK-TBI Pilot and found

that lower GOSE scores at 90 and 180 days share the same significant predictors, including

older age, pre-existing psychiatric conditions, lower education, injury caused by assault, and

extracranial injury in addition to the head trauma. Yuh et al. [18] also performed multivariate

modeling to identify factors associated with 90 day patient outcomes, focusing only on a mTBI

subgroup that was evaluated with head CT for their mTBI. CT evidence of subarachnoid hem-

orrhage, unemployment, one or more brain contusions on MRI, and� 4 foci of hemorrhagic

axonal injury on MRI were found to be significant predictors of GOSE scores at 90 days. Cnos-

sen et al. [19] developed a predictive model for 180-day post-concussive symptoms for mTBI
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patients using the least absolute shrinkage and selection operator (LASSO) model and discov-

ered years of education, history of psychiatric disorder, and previous TBI were the strongest

predictors for RPQ at 180 days.

Consistent with the previous studies, in our study, CT results, employment status, neuro-

logic disease history and psychiatric disease history were also identified as significant clinical

variables contributing to TRACK-TBI Pilot patient sub-classification. Additional factors con-

tributing to sub-classification in our study included: gender, marital status, TBI due to falling,

post-TBI blood pressure, use of IV fluids in the emergency department, alcohol use and

tobacco use. Furthermore, all of the aforementioned studies performed “supervised” learning

of the data, i.e., they assessed how well each clinical variable or combinations of variables can

predict an outcome of interest. Our study, on the other hand, performed “unsupervised” learn-

ing, i.e., we aimed to find natural subgroups of TBI patients who are relatively homogenous in

clinical characteristics within each subgroup and have greater contrast between subgroups.

The subgroup membership was then correlated with multidimensional outcome variables.

This unsupervised learning approach has advantages over supervised learning in that: 1) The

method naturally facilitates multi-domain outcome assessments (physical, psychological, cog-

nitive) of each patient subgroup, and thus eventually could help to determine overall manage-

ment strategies for patients with mTBI instead of just treating one particular outcome. 2) This

method can facilitate genetic and biological discovery of the underlying basis leading to

within-subgroup homogeneity and between-subgroup heterogeneity.

There are several limitations of this study including: 1) We did not have access to specific

brain CT results, beyond “normal” vs. “abnormal”. It is possible that the type and severity of

brain CT abnormality would contribute to mTBI sub-classification and it is likely that these

more specific CT data would correlate with patient outcomes. 2) We excluded clinical variables

for which more than 10% of patients had missing values, except for several TBI-related vari-

ables that we hypothesized to be exceptionally important for sub-classifying patients. It is likely

that there are other clinical variables contributing to mTBI sub-classification not included in

our analysis. 3) GOSE scores of 7 (lower good recovery) and 8 (upper good recovery) were

combined into one group for analyses. A recent publication provides evidence that patients

within each of these two categories might have substantially different multidimensional out-

comes. [32] Future analyses will consider patients with GOSE score of 7 and GOSE score of 8

separately. 4) Patient outcomes beyond 180 days post-TBI were not evaluated.

Conclusions

We performed a clustering analysis and identified five sub-groups of mTBI based upon differ-

ences in patient socio-demographics, neurologic and psychiatric history, history of alcohol

and tobacco use, receiving IV fluids in the ED, blood pressure, injury mechanism, and brain

CT findings. Multi-dimensional patient outcomes differed amongst these sub-groups at 90

days and 180 days post-TBI. We plan to test the clustering structure identified in this study

using a unique subject sample obtained from FITBIR and to use the knowledge gained from

this study to build predictive models for TBI outcomes based upon data available at the time of

initial evaluation of the patient with TBI.
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