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� Thyroid cancer patients have reduced
richness and diversity of gut
microbiota.

� A predictive model of 10 genera could
distinguish thyroid cancer patients
from healthy controls.

� The loss of the short-chain fatty acid-
producing bacteria may promote
thyroid carcinoma.

� The functional changes that occur in
thyroid cancer patients affect the
processing of genetic information.

� A four-genus microbial signature may
be able to distinguish thyroid
carcinoma patients with metastatic
lymphadenopathy from those
without metastatic
lymphadenopathy.
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Introduction: Emerging evidence suggests that the essence of life is the ecological balance of the neural,
endocrine, metabolic, microbial, and immune systems. Gut microbiota have been implicated as an impor-
tant factor affecting thyroid homeostasis.
Objectives: This study aims to explore the relationship between gut microbiota and the development of
thyroid carcinoma.
Methods: Stool samples were collected from 90 thyroid carcinoma patients (TCs) and 90 healthy controls
(HCs). Microbiota were analyzed using 16S ribosomal RNA gene sequencing. A cross-sectional study of an
exploratory cohort of 60 TCs and 60 HCs was conducted. The gut microbiota signature of TCs was estab-
lished by LEfSe, stepwise logistic regression, lasso regression, and random forest model analysis. An inde-
pendent cohort of 30 TCs and 30 HCs was used to validate the findings. Functional prediction was
achieved using Tax4Fun and PICRUSt2. TC patients were subsequently divided into subgroups to analyze
the relationship between microbiota and metastatic lymphadenopathy.
Results: In the exploratory cohorts, TCs had reduced richness and diversity of gut microbiota compared to
HCs. No significant difference was found between TCs and HCs on the phylum level, though 70% of TCs
2, China.
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had increased levels of Proteobacteria-types based on dominant microbiota typing. A prediction model of
10 genera generated with LEfSe analysis and lasso regression distinguished TCs from HCs with areas
under the curves of 0.809 and 0.746 in the exploration and validation cohorts respectively. Functional
prediction suggested that the microbial changes observed in TCs resulted in a decline in aminoacyl-
tRNA biosynthesis, homologous recombination, mismatch repair, DNA replication, and nucleotide exci-
sion repair. A four-genus microbial signature was able to distinguish TC patients with metastatic lym-
phadenopathy from those without metastatic lymphadenopathy.
Conclusion: Our study shows that thyroid carcinoma patients demonstrate significant changes in gut
microbiota, which will help delineate the relationship between gut microbiota and TC pathogenesis.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction Tenth People’s Hospital (Approval no. SHSY-IEC-KY-4.0/16-
Thyroid carcinoma is the most common head and neck endo-
crine malignancy. In China, thyroid carcinoma ranks 7th overall
amongst malignant tumors threatening the health of residents
[1]. Microecology theory states that the essence of life is the eco-
logical balance of the neural, endocrine, metabolic, microbial, and
immune systems [2]. Gut microbiota have been implicated in var-
ious thyroid disorders, including thyroid cancer [3–6]. Obesity, a
risk factor for thyroid cancer, influences the balance of intestinal
bacteria and nutrients [7]. Moreover, recent studies have reported
that gut microbiota may act as a regulator of immunity, and there-
fore may indirectly play a role in tumorigenesis and certain related
immune therapies [8,9]. It has been suggested that gut microbiota
may be a promising biomarker of immune-related adverse events
[10]. Therefore, it is worthwhile to explore the relationship
between gut microbiota and thyroid cancer.

Recent evidence has linked thyroid cancer to gut microbiota. In
2017, a study using gas chromatography-time-of-flight mass spec-
trometry analyzed the serum of thyroid cancer patients with and
without distantmetastatic disease (n = 37 and n = 40). Thyroid cancer
patients with distant metastatic disease had elevated levels of
gamma-aminobutyric acid and aminooxy acetic acid, perhaps sec-
ondary to diet and/or gut microbiota [11]. Functional prediction anal-
ysis in these patients suggested a potential interaction between their
intestinal flora and their thyroid glands. The following year, Feng et al
examined the gut microbiota and metabolites in stool samples from
thyroid cancer patients and normal controls (n = 30 and n = 35) using
16S rRNA sequencing and liquid chromatography-mass spectrometry
[12]. A gut signature that included six genera was proposed as a
microbial predictor to distinguish thyroid cancer patients from nor-
mal controls. The authors proposed that gut microbial dysbiosis
affects lipid metabolism in thyroid cancer patients, thereby con-
tributing to the development of cancer. In the same year, Zhang
et al also observed a significant difference in gut microbiota between
20 patients with thyroid cancer and 36 normal controls, also using
16S rRNA gene sequencing [13]. Nevertheless, because these previous
studies employed small sample sizes, they only offer limited informa-
tion with regards to the relationship between gut microbiota and
thyroid cancer. Moreover, these prior studies neglected to examine
the relationship between gut microbiota and additional traits of thy-
roid cancer patients, such as metastatic lymphadenopathy.

Thus, we conducted a cross-sectional study examining the stool
samples of thyroid cancer patients with a relatively large sample
size. We employed 16S rRNA gene sequencing and multiple bioin-
formatics methods to comprehensively investigate the relationship
between gut microbiota and thyroid cancer.

Materials and methods

Ethics statement

The protocols involved with regards to the human patients in
this study were approved by the Ethics Committee of Shanghai
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18/01). All subjects were voluntarily recruited and informed of
the nature of the study before sample collection. Written informed
consent was obtained from all study subjects.
Study design and sample collection

This study enrolled thyroid carcinoma patients from Shanghai
Tenth People’s Hospital from May 2017 to March 2019 and
recruited healthy people as controls from the resident community
in northern Shanghai, China. Selection criteria for the thyroid car-
cinoma patients included the following: (i) clinically diagnosed
with thyroid cancer within six months, and (ii) planning to
undergo total thyroidectomy. The healthy controls were age, gen-
der, and body mass index (BMI) matched with the thyroid cancer
patients. All of the following were excluded: (i) patients not patho-
logically confirmed to have thyroid cancer following surgery, (ii)
subjects with gastrointestinal diseases or any other severe mental
or physical diseases, (iii) subjects with a history of orally ingested
antibiotics, prebiotics, probiotics, or any other similar drug within
the two months prior to stool sampling, and (iv) subjects with
abnormal thyroid function, as indicated by the serum free tri-
iodothyronine (fT3), serum free thyroxine (fT4), serum thyroid-
stimulating hormone (TSH), serum anti-thyroid peroxidase anti-
body (TPOAb), and serum anti-thyroid autoantibodies (TgAb) tests.

The stool samples of thyroid patients were collected prior to
surgery. Demographic information including age, gender, and
BMI was obtained during subject recruitment. The following indi-
cators were obtained from eight-hour fasting blood samples: (i)
thyroid function indicators including fT3, fT4, and TSH, and (ii) thy-
roid antibodies including TPOAb and TgAb. The diagnosis of thy-
roid cancer was confirmed by two independent pathologists from
Shanghai Tenth People’s Hospital. Pathological TNM staging was
performed for each thyroid cancer patient based on the AJCC 8th
edition [14].

In total, 90 thyroid carcinoma patients (TC group) and 90
healthy controls (HC group) were included in the study. All study
subjects were of Han nationality and lived in the eastern coastal
provinces of China, where the typical diet includes rice, meat, veg-
etables, beans, and seafood, etc. The diets of all subjects were var-
ied, and no subjects were vegetarians. The demographic
information and clinical characteristics of the enrolled subjects
are listed in Table 1. The TC group included 88 cases of papillary
thyroid cancer (PTC) and two cases of follicular thyroid cancer
(FTC). In terms of staging, the TC group included 56 cases of TCs
with local lymph node metastasis (N1 group) and 34 cases of TCs
without lymph node metastasis (N0 group). There were no cases
with distant metastatic disease.
DNA extraction and 16S rRNA gene sequencing

Each stool sample was snap-frozen with liquid nitrogen follow-
ing collection and was stored in a sterile container (Sarstedt,
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Table 1
Clinical characteristics of TCs and HCs in this study.

Characteristics Exploratory cohort Validation cohort p-
value#

TC (n = 60) HC (n = 60) p-
value*

TC (n = 30) HC (n = 30) p-
value*

Demographic

Gender, male/female (female %) 20/40 (66.67%) 26/34 (56.67%) 0.260 13/17 (56.67%) 12/18 (60.00%) 0.793 0.666
Age, years, median (min–max) 41 (16–72) 44.5 (22–71) 0.964 42 (22–69) 38.5 (23–65) 0.487 0.070
BMI, kg/m2, median (min–max) 22.3 (18.8–25.2) 22.4 (19.2–24.6) 0.686 22.3 (20.2–25.2) 21.8 (18.8–23.9) 0.277 0.078

Characteristics of thyroid cancer

Pathological diagnosis, PTC/FTC 58/2 / / 30/0 / / 0.551a

Pathological T stage, T1-2/T3-4 57/3 / / 29/1 / / 0.717
Pathological N stage, N0/N1 24/36 / / 10/20 / / 0.539
Pathological M stage, M0/M1 60/0 / / 30/0 / / /
Extrathyroidal invasion, positive/not reported 7/53 / / 1/29 / / 0.190
BRAF, V600E mutation/wild type/not available 16/10/34 / / 5/4/21 / / 0.453

Thyroid function, [range], median (min–
max)

fT3, [2.8–6.3 pmol/L] 4.74 (3.29–5.99) 4.72(3.51–5.97) 0.850 4.955 (2.68–5.92) 4.585 (2.85–5.72) 0.482 0.064
fT4, [10.5–24.4 pmol/L] 12.79 (10.18–

19.85)
13.09 (10.16–
18.4)

0.322 13.08 (10.18–
19.79)

12.81 (10.43–
19.36)

0.935 0.564

TSH, [0.38–4.34 IU/L] 2.16 (1.28–3.17) 2.065 (1.12–3.26) 0.261 2.155 (1.28–3.17) 2.15 (1.5–2.84) 0.122 0.114

Thyroid antibody, [range], median (min–
max)

TgAb, [<110 IU/mL] 10 (10–94) 10 (10–92) 0.726 10 (10–94) 10 (10–24) 0.246 0.073
TPOAb, [<40 IU/mL] 2 (2–35.82) 2 (2–38.76) 0.871 2 (2–25.13) 2 (2–25.18) 0.704 0.450

The statistical significance of other characteristics was tested by the Wilcoxon rank-sum test or chi-square test.
* Comparisons between TCs and HCs.
# comparisons between all subjects in the exploratory cohort and those in the validation cohort.
a The statistical significance of diagnosis between two cohorts was tested by Fisher’s exact test.
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80.734.311, Germany) within a �80 �C refrigerator (Haier, DW-
86L626, China) until use [15]. Stool samples were transported to
the Shanghai Majorbio Bio-pharm Technology Co., Ltd. laboratory
on dry ice within three months following freezing. DNA extraction
was performed using the E.Z.N.A.� Soil Kit (Omega, Bio-tek, Nor-
cross GA, USA). The concentration of bacterial DNA was measured
using the Nanodrop 2000 (Thermo Scientific, USA). DNA samples
were stored at �80 �C (Haier, DW-86L626, China) until all samples
were ready for sequencing. The V3-V4 region of the bacteria’s 16S
rRNA was amplified by polymerase chain reaction with barcode-
indexed primers (338-F: 50-ACTCCTACGGGAGGCAGCAG-30 and
806-R: 50-GGACTACHVGGGTWTCTAAT-30) using TransStart FastPfu
DNA Polymerase (TransGen BioTech, AP221-02, Beijing, China) on
an ABI GeneAmp�9700 polymerase chain reaction system (USA).
Amplicons were then purified by gel extraction (AxyPrep DNA
GelExtraction Kit, Axygen Biosciences, Union City, California,
USA) and were quantified using QuantiFluor-ST (Promega, USA).
The adapter sequences were added on the purified amplicons using
a TruSeqTM DNA Sample Prep Kit (Illumina, San Diego, USA), and
paired-end sequencing was performed using an Illumina MiSeq
instrument (Illumina, San Diego, USA).

Analysis of 16S rRNA gene sequencing data

The Majorbio Cloud Platform (https://cloud.majorbio.com/) was
used to analyze the 16S rRNA gene sequencing data. Paired-end
reads obtained through Miseq sequencing were first spliced
according to the overlapping relationships (Flash, v1.2.11). Quality
control was performed simultaneously (Fastp v0.19.6). In brief, the
bases with a mass value<20 at the tail of the reads were filtered.
Reads under 50 bp were also filtered, thereby removing the reads
containing N-base. According to the overlapping relationships,
the paired-end reads were merged into a sequence with a mini-
mum overlap length of 10 bp and a maximum mismatch ratio of
0.2. The samples were identified based on the barcode and primers
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with a maximum mismatching primer of 2 permitted and no mis-
matching barcode accepted. Quantitative Insights Into Microbial
Ecology (QIIME v1.9.1) was used to filter the sequencing reads
and to construct a table featuring the 16S rRNA sequencing data.
Sequences with a similarity of 97% were clustered into operational
taxonomic units (OTUs) (Uparse v7.0.1090). Taxonomy was
assigned using the RDP Classifier (v2.11) and Silva database (v132).

After generating an OTUs table for all subjects, a cross-sectional
study was performed using a randomly generated cohort that
included 60 TCs and 60 HCs. An independent cohort of 30 TCs
and 30 HCs was used to validate the initial findings. The assign-
ment of subjects was done prior to further data analysis.

Statistical analysis

A p-value of <0.05 was considered statistically significant in this
study. The Kolmogorov-Smirnov test was used to test the normal-
ity (SPSS� Statistics v22). The Wilcoxon rank-sum test,
independent-samples t-test, Chi-square test, and Fisher’s exact test
were used to compare the differences in richness, diversity, and
clinical characteristics between the two groups respectively (SPSS�

Statistics v22). Principal coordinates analysis (PCoA) and analysis
of similarities (ANOSIM) with a permutation of 999 were used to
determine whether or not inter-group differences were signifi-
cantly greater than intra-group differences (Majorbio Cloud Plat-
form). Using typing analysis, the samples were clustered into
three types with the highest Calinski-Harabasz (CH) index deter-
mined by the Partitioning Around Medoids algorithm (Majorbio
Cloud Platform). The Kruskal-Wallis H test was used to compare
differences in taxa between the three groups (Majorbio Cloud Plat-
form). Linear discriminant analysis (LDA) effect size (LEfSe) was
used to identify the microbial taxa that significantly differed
between the TCs (n = 60) and HCs (n = 60), with a threshold LDA
score of > 3.5 used. LEfSe was also used to identify the microbial
taxa that significantly differed between the TCs with and without
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metastatic lymphadenopathy, with a threshold LDA score of > 3.0
used (Majorbio Cloud Platform) [16].

Logistic regression was performed using both the forward and
backward stepwise selection methods (likelihood ratio) (SPSS�

Statistics v22). Lasso regression analysis was performed with the
R environment (v3.6.0) using glmnet package [17]. Random forest
model analysis was performed on the Majorbio Cloud Platform
with default settings. Functional pathway analysis was performed
using Tax4Fun and PICRUSt2, based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, with the 16S rRNA gene
sequencing data obtained from the TCs (n = 90) and HCs used to
infer the metagenomes (n = 90) (Majorbio Cloud Platform). Differ-
ences in pathways between the TCs and HCs were identified using
LEfSe with a threshold LDA score of > 2.0 used (Galaxy Platform,
http://huttenhower.sph.harvard.edu/galaxy) [18].

Constructing the co-occurrence network

Based on the OTU arcsine square root transformation relative
abundance data, a co-existing network was generated through
weighted gene co-expression network analysis (WGCNA) with
the R environment (v3.6.0) and using the WGCNA package
(v1.69). A matrix table that included the top half of the OTUs
(894 of 1788) with the greatest variance across all samples was uti-
lized. Ten samples were excluded as outliers according to sample
clustering. An unsigned network with nearly scale-free topology
based on a soft threshold power of 6 (R2 = 0.84, slope = -1.13)
was generated. The minimum number of OTUs in each module
was 10. The co-occurrence network was constructed based on
the inter-modular connectivity weighted values with a threshold
of>0.01 utilized (Cytoscape v3.6.0). Among the modules, a grey
module containing 706 OTUs was excluded, as its co-existing rela-
tionship had no significance. The heatmap correlation analysis was
generated using the Spearman methods. A phylogenetic tree was
also generated with IQ-TREE (v1.6.8) using the setting of maximum
likelihood method.
Results

Overview of the 16S rRNA gene sequencing data

In performing 16S rRNA gene sequencing of all stool samples
(n = 180), a total of 8,508,520 sequences were sorted into 1788
OTUs according to phylogenetic taxonomic levels. The good’s cov-
erage indices for the observed OTUs in the HC and TC groups were
99.72% ± 0.078% and 99.79% ± 0.062% (Mean ± SD) respectively,
confirming the thoroughness of the sampling. A broad overview
of the clinical traits and taxonomic data of all subjects is provided
in (Fig. 1A–C). Firmicutes, Bacteroidetes, Actinobacteria, and Pro-
teobacteria were the four dominant phyla, with total abundances
accounting for 98.95% ± 2.29% and 98.86% ± 3.78% (Mean ± SD) of
the microbiomes of the HCs and TCs, respectively (Fig. 1B). The
genera Prevotella_9 andMegamonaswere detected in high numbers
in a relatively high number of subjects, 48.33% (87/180) and
23.33% (42/180) respectively, though their abundances (with
observed OTUs < 5) were quite low in the remainder of subjects
(Fig. 1C), which resulted in an uneven distribution of these organ-
isms amongst our study population.

Decreased richness and diversity of gut microbiota in TCs

To study the differences in gut microbiota between TCs and
HCs, an exploratory cohort (n = 180) was randomly-generated from
the two groups. This included a TC group (n = 90) and an HC group
(n = 90). TC samples demonstrated reduced gut microbiota rich-
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ness and diversity, as measured by the Ace index and Shannon
index (p = 3.74e-05, and p = 0.0025, Fig. 2A,B) respectively. PCoA
analysis on the unweighted UniFrac distance was performed to
assess the overall diversity of the microbiota. ANOSIM demon-
strated significant differences between the TC and HC groups
(R = 0.1667, p = 0.001, Fig. 2C). These findings suggest gut microbial
dysbiosis in TC patients.

Differences in microbial abundances between TC and HC subjects

On the phylum level, no significant difference in relative abun-
dance of the top four dominant phyla was observed between the
two groups (Fig. 2D). Additionally, there was no significant differ-
ence in the Firmicutes/Bacteroidetes ratio between the two groups
(Fig. 2E). Thus, we further analyzed the microbiota according to
the distribution of dominant organisms on unweighted UniFrac
distance, and the samples were clustered into three types by the
Partitioning Around Medoids algorithm (Fig. 2F–G). There were a
greater number of type 1 cases in the HC group (n = 43) compared
to the TC group (n = 24, Fig. 2H). Further, significant differences in
Proteobacteria abundances were observed among the three types
(corrected p-value = 9.26e-04, Fig. 2I and J). These findings suggest
that TC patients have a relatively higher abundance of Proteobacte-
ria in the gut.

In the exploratory cohort, significant differences in microbial
abundances were observed between the two groups. Three genera
were over-represented in TCs, and seven genera were over-
represented in HCs on the genus level (Fig. 2K). In addition, the
LEfSe results validated that Proteobacteria levels were significantly
higher in the TC group (LDA score = 4.2, p = 0.009).

A gut microbiota-based signature can predict thyroid cancer status
Based on the initial LEfSe findings, we next assessed the value of

gut microbiota as biomarkers using forward stepwise logistic
regression, random forest model analysis, and lasso regression.
The performance of each of the candidates was assessed using a
receiver operating characteristic (ROC) curve, firstly on the
exploratory cohort data. Using the stepwise logistic regression
model and the random forest model as signature-predictors
yielded areas under the curves (AUC) of 0.797 and 0.804, respec-
tively. Lasso regression suggested that all 10 genera could be
employed as combined predictors, which yielded an AUC of 0.809
(Fig. 2L).

The above findings were then validated using the independent
validation cohort (TC vs. HC, n = 30 and n = 30, Fig. 2M). The lasso
model performed the best, with an AUC of 0.746. Therefore, this
signature combination of 10 genera has the highest potential in
terms of TC diagnostic value. This signature includes increased
levels of g__Bacteroides, g__Lachnoclostridium, and g__no-
rank_f__Lachnospiraceae, and reduced levels of g__Prevotella_9,
g__Collinsella, g__Faecalibacterium, g__Dorea,
g__Ruminococcaceae_UCG-014, g__Ruminococcaceae_UCG-002, and
g__Subdoligranulum.

Microbial functional dysbiosis in TCs

To study the functional and metabolic-related changes of the
gut microbiota in TC patients, we conducted functional prediction
analysis. A total of 273 KEGG categories were obtained by Tax4Fun,
and 337 KEGG categories were obtained by PICRUSt2 (Fig. 3A).
LEfSe analysis identified 30 Tax4Fun KEGG categories that signifi-
cantly differed between the two groups and 52 PICRUSt2 KEGG cat-
egories that significantly differed between the two groups (Fig. 3B).
The fewer KEGG categories obtained using Tax4Fun and their
respective p-values suggest that Tax4Fun’s estimates are more
conservative. Twenty one common KEGG categories that signifi-



Fig. 1. Taxonomic features of the gut microbiota of the healthy controls (n = 90) and the thyroid cancer patients (n = 90). Clinical phenotype annotations (A) for all subjects,
with an overview of the 10 most abundant phyla (B) and 30 most abundant genera (C) in the stool samples identified by 16S rRNA gene sequencing. The taxa levels were
determined by summing the OTUs and are presented by relative abundance.
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cantly differed between the two groups were identified by both
Tax4Fun and PICRUSt2 (Fig. 3C and D). Among these 21 categories,
the majority were related to metabolism (13/21, 61.9%). Of note,
five categories related to the processing of genetic information,
including ‘‘Aminoacyl-tRNA biosynthesis,” ‘‘Homologous recombina-
tion,” ‘‘Mismatch repair,” ‘‘DNA replication,” and ‘‘Nucleotide excision
repair” were significantly increased in the HCs, which suggests
deficient genetic information processing in TCs.
Gut microbiota and local lymph node metastasis in TCs

Lymph node metastasis is common in thyroid cancer. In this
study, 62.22% (56/90) of TC patients had metastatic lym-
phadenopathy at presentation. Therefore, we subdivided the TC
patients into N0 (n = 34) and N1 (n = 56) subgroups. No significant
difference in gut microbiota richness or diversity was observed
between the two subgroups (Ace index: p = 0.111; Shannon index:
p = 0.632), and no significant difference in overall distribution on
the unweighted Unifrac-based PCoA was observed either (ANOSIM,
R = �0.0019, p = 0.507).

We next analyzed the relative abundances of microbiota in the
N1 and N0 subgroups. The relative abundances of the 10 TC-related
genera showed no significant difference across the two groups (p-
value > 0.05). LEfSe analysis identified five genera with increased
abundances in the N1 group, and five genera with increased abun-
dances in the N0 group (Fig. 4A). We applied back-forward step-
wise logistic regression, random forest model analysis, and lasso
regression to establish a microbial model that could predict the
presence of local metastatic lymphadenopathy. An eight-genera
model established using lasso regression performed the best with
an AUC of 0.797. Meanwhile, a four-genera model (g__Hungatella,
g__Alistipes, g__Fusobacterium, and g__Phascolarctobacterium) gen-
erated using back-forward stepwise logistic regression, performed
nearly as well, with an AUC of 0.778 (Fig. 4B). Because of the
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increased simplicity of the second model, which requires fewer
genera, the four-genera model may be most suitable to character-
ize the gut microbiota changes that occur in thyroid cancer
patients with metastatic lymphadenopathy.

Using functional prediction analysis, a total of 272 KEGG cate-
gories were obtained by Tax4Fun, and 313 KEGG categories were
obtained by PICRUSt2 (Fig. 4C). LEfSe analysis identified only 18
KEGG categories that significantly differed between the N0 and
N1 subgroups. (Fig. 4D–E).
The OTU co-existing network identified a potential regulator

Gut bacteria constitute a complex ecosystem where certain spe-
cies are not only impacted by the host but also by other bacteria
within the community. A total of 188 co-expressed OTUs were
clustered by WGCNA into eight modules, each of which was
labeled by color and constituted a distinct network (Fig. 5A). After
mapping the OTUs to corresponding phyla, the phylogenetically
related OTUs clustered into the same modules preferentially,
although each module also contained OTUs from different taxa. Fir-
micutes was the dominant phyla within the co-existing network
(Fig. 5B).

The associations between modules and clinical characteristics
are presented by heatmap (Fig. 5C). A negative correlation between
the pink module and disease status (r = -0.18, p = 0.02) was
observed. In the pink module, OTU457 and OTU1399 display a rel-
atively high numbers of reads (Fig. 5D). Five OTUs (OTU1022,
OTU1245, OTU511, OTU457, and OTU490) potentially play a dom-
inant role, with membership scores > 0.75 (Fig. 5E). Of note,
because of its high levels and dominant role, the OTU457
(g__Ruminococcaceae_UCG-002) may act as a regulator within the
pink-module community. In addition, these findings also serve as
validation of the significant difference in
g__Ruminococcaceae_UCG-002 levels between TCs and HCs.



Fig. 2. Bioinformatic analysis of 16S rRNA gene sequencing data in the exploratory cohort. (A-B) Box and whisker plots of the alpha diversity indices for richness (Ace index)
and diversity (Shannon index) of the bacterial communities on the OTU level in thyroid carcinoma (TC) patients (n = 60) and healthy controls (HC, n = 60), respectively. (C)
Principal coordinates analysis based on the unweighted UniFrac distance showed that the overall microbial diversity differed significantly between TC patients and controls
(ANOSIM, R = 0.1667, p = 0.001). (D–F) Variations of stool microbiota composition in TCs. (D) The relative proportions of bacterial phyla in TC patients (n = 60) and healthy
controls (n = 60). Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria are presented in different colors with other phyla grouped as ‘‘Others.” (E) The Firmicutes to
Bacteroidetes (F/B) ratio did not significantly differ between the TC and HC groups. (F) The samples were clustered into three types with the highest Calinski-Harabasz (CH)
indices using the Partitioning AroundMedoids algorithm according to the abundance of the dominant microbial taxa. (G) The distribution of samples in the three cluster types
is presented based on the unweighted Unifrac distance. The bar-plots show (H) the proportions of cases of different types in the TC and HC groups and (I) the relative
abundances of the dominant phyla in the three types. (J) The microbial differences on the phylum level across the three types show that the abundance of Proteobacteria is
lower in type 1 than in the other types (Kruskal-Wallis H test. ***, corrected p-value < 0.001). (K) LEfSe analysis identified the microbes whose abundances significantly
differed between the TC and HC groups. The findings with regards to phylum, family, and genus are shown in the plot (LDA score > 3.5, p < 0.05). Model candidates for disease
discrimination were established using multivariable binary logistic regression, random forest model analysis, and lasso regression analysis. The performance of the model
candidates was assessed by area under the ROC curve for (L) the exploration data (TC: 60, HC: 60) and (M) the validation data (TC: 30, HC: 30), respectively.
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Discussion

Recent evidence suggests that the gut microbiome, a sophisti-
cated and metabolically active community, likely influences thy-
roid homeostasis in the host [19]. Herein, we characterized the
microbiome of TC patients by examining the stool samples of a rel-
atively large TC cohort by 16S rRNA gene sequencing. Our data
demonstrate that the microbiomes of TC patients are reduced in
richness and diversity, and there are significant changes in the rel-
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ative abundances of 10 genera. Based on inferred functional analy-
sis of these genera, our results suggest that the microbiomes of TC
patients lack certain genetic information processing capabilities,
such as base excision repair and nucleotide excision repair.

The microbiomes of patients with TC exhibited decreased
microbial richness and diversity, compared to healthy controls.
Reduced microbial diversity has been documented in a variety of
diseases and is considered to be one of the major characteristics
of gut microbial dysbiosis. However, upon reviewing the two pre-



Fig. 3. Functional analysis prediction. (A) The Venn plot shows the predicted KEGG function counts for the TCs (n = 90) and HCs (n = 90) based on Tax4Fun and PICRUSt2. (B)
21 KEGG terms significantly differed between the TCs and HCs (LEfSe analysis, LDA score > 2, p < 0.05). The bubble plot shows the 21 KEGG categories at the intersection of the
(C) Tax4Fun and (D) PICRUSt2 findings, with significant differences between TCs and HCs. The categories increased in the TC group are marked with a triangle, and the
categories increased in the HC group are marked with a circle.

Fig. 4. The relationship between gut microbiota and lymph node metastasis in TCs. (A) LEfSe analysis identified the genera whose abundances significantly differed between
the N0 and N1 subgroups (LDA score > 3, p < 0.05). (B) Three model candidates were established using multivariable binary stepwise logistic regression (backward), random
forest model analysis, and lasso regression analysis, respectively. The performance of the above three model candidates was assessed by area under the ROC curve. (C) The
Venn plot shows the predicted KEGG functions of the microbiota in the N1 and N0 subgroups respectively based on Tax4Fun and PICRUSt2. The bubble plots show the KEGG
categories that significantly differed between the N1 and N0 groups according to (D) Tax4Fun and (E) PICRUSt2 (LEfSe analysis, LDA score > 2, p < 0.05). The categories
increased in the N1 subgroup are marked with a triangle, and the categories increased in the N0 subgroup are marked with a circle.
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vious studies linking gut microbiota and thyroid cancer [12,13],
some of our findings are somewhat contradictory. Zhang et al
found that the gut microbiomes of patients with thyroid cancer
are significantly increased in richness compared to controls, as
measured by the Ace index [13]. Feng et al also found an increased
richness and diversity of gut microbiota in TCs, as indicated by the
Chao and Shannon indices. Our somewhat contradictory results
67
may stem from various factors including demographics of the con-
trols, tumor TNM status, diet, etc. In the previous studies, only a
few of the TC patients presented with metastatic lymphadenopa-
thy, however, 62.22% of our TC population presented with meta-
static lymph nodes. Though we found no significant relationship
between gut microbiota richness and diversity in thyroid cancer
patients with and without metastatic lymphadenopathy, our find-



Fig. 5. OTU co-existing network and module-trait associations. (A) OTU co-existing network where OTUs (nodes) are colored according to the WGCNA clusters. (B) OTU co-
occurrence network where OTUs (nodes) are colored according to the phyla to which they are classified. The thickness of the line (edges) represents the weighted value of
node connectivity. (C) Module–trait associations are presented by heatmap. Each cell in the matrix contains the Spearman correlation coefficient between one OTU module
and a clinical trait as well as the corresponding p-value. (D) Phylogenetic trees based on the maximum likelihood method showing the phylogenetic relationships between
the OTUs in the pink module. The confidence of the branch generated by the bootstrap test is illustrated. (E) The membership score of each OTU in the pink module is shown
in the dot-plot.
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ings do suggest a gut dysbiosis exists in TC patients. In addition, it
has been proposed that the microbiome can be readily reshaped by
dietary exposures [20]. The noted prior studies were conducted in
northeastern China, while our study was conducted in Southeast-
ern China. Therefore, the diet habits of the subjects in our study
likely differ significantly from those of subjects in the previous
studies. We speculate that regional and environmental variables
may influence the gut microbiome and therefore research in this
area.

In addition to changes in richness and diversity, we found ele-
vated levels of Proteobacteria in the majority of TCs through typing
analysis. Proteobacteria is considered a signature of microbial dys-
biosis [21]. The overgrowth of these bacteria may be related to
obesity and a high-fat diet. Although the TCs and HCs in our study
showed no significant difference in BMI index, it is possible that
changes in intestinal microbiota related to diet may occur prior
to increases in BMI. The elevation in Proteobacteria levels may sig-
nify gut dysbiosis related to the underlying pathogenesis of the
thyroid cancer, especially because obesity is one of the risk factors
for thyroid cancer.

In our study, the intestinal microbial changes that occurred in
thyroid carcinoma patients were best characterized by 10 genera.
The decreased relative abundance of Prevotella in TCs is in accor-
dance with prior studies [12,13]. It has been proposed that Prevo-
tella is one of the dominant microorganisms in the human gut,
especially in hosts who follow a plant-based diet [22]. The low
levels of Prevotella in TC patients may therefore suggest a relation-
ship between the ingestion of animal-derived foods and thyroid
carcinoma. However, some components of the model we derived
to predict TC differed from previous studies, which showed greater
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heterogeneity of the intestinal flora of TC patients. Research on the
role of intestinal flora in thyroid cancer is still rare. Ameta-analysis
based on all of the prior research in this area may be helpful in
explaining the heterogeneity of gut microbiota in TC patients.

TC patients with metastatic lymphadenopathy demonstrated a
microbial signature that consisted of increased levels of
g__Fusobacterium and g__Alistipes, as well as decreased levels of
g__Hungatella and g__Phascolarctobacterium. None of these four
genera were a component of the microbial signature that we used
to distinguish TCs from HCs, but perhaps they play a role in pro-
moting metastasis. For example, Fusobacterium has been reported
to be persistently associated with distant metastases in human col-
orectal cancer [23], which suggests its potential as a noninvasive
biomarker of metastatic disease. Moreover, the genus Alistipes
has also been documented as a microbial regulator of pathogenic-
ity. [24]. Some studies indicate Alistipes is pathogenic in colorectal
cancer and is related to mental depression [25–27]. Further,
Fusobacterium and Hungatella have been implicated as
methylation-regulating bacteria in colorectal cancer, which may
lead to upregulation of DNAmethyltransferase based on mechanis-
tic validation studies using cell lines and animal models [28]. Aber-
rant DNA methylation is one of the features of thyroid carcinoma
and is related to its development [29]. Therefore, we infer that
gut microbiota changes may influence circulating DNA methyl-
transferase levels, thereby promoting the development and spread
of thyroid carcinoma.

We deduce that the loss of short-chain fatty acid (SCFA)-
producing bacteria may promote the development of thyroid can-
cer. These bacteria include Faecalibacterium,
Ruminococcaceae_UCG-002, and Phascolarctobacterium. Faecalibac-
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terium, one of the dominant genera in our population, is known as
a commensal biological indicator of human health, as well as an
SCFA producing genus [30,31]. SCFA-producing genera are typically
found in abundance within the human gut, benefiting the host by
participating in the fermentation of carbohydrates into SCFAs,
including acetate and propionate. It has been reported that SCFAs
may induce apoptosis or cell injury in colon cancer cells [32]. Thus,
we believe a low abundance of Faecalibacterium may result in gut
microbial dysbiosis either prior to or following the development
of thyroid cancer. Further, accumulating evidence suggests that
the abundance of Phascolarctobacterium drops in many diseases.
For example, Sung et al. suggested that reduced Phascolarctobac-
terium levels can predict clinical recurrence of hepatic
encephalopathy in patients with cirrhosis of the liver [33]. TCs in
our study had relatively low levels of Ruminococcaceae_UCG-002,
which was identified as a potential regulator (OTU457). This may
be a novel finding regarding the relationship between thyroid can-
cer and gut microbiota. Future studies with a larger sample size
would be useful to validate this hypothesis.

Our results suggest that the microbiomes of TCs are deficient in
their genetic information processing capabilities compared to HCs.
A previous study proposed that the inhibition of aminoacyl-tRNA
biosynthesis is an effective antimicrobial strategy [34], which
may explain the decreased richness and diversity we saw in the
gut microbiomes of TCs. A loss of the homologous recombination
function has been documented as one of the key factors of DNA
repair failure [35]. Moreover, the biological functions of mismatch
repair, DNA replication, and nucleotide excision repair play impor-
tant roles in genomic stability and tumorigenesis [36,37]. Genetic
events are common in the development of thyroid carcinoma
including BRAF mutations, RAS mutations, etc [38]. Therefore,
based on the predicted functions of the bacteria, changes in the
microbiome may be involved in thyroid cancer pathogenesis.

Though the concept of studying the relationship between gut
microbiota and thyroid cancer was not very novel, our study has
the following strengths. Our sample size was relatively larger than
previous studies that examined the relationship between gut
microbiota and thyroid cancer [12,13]. As such, an independent
cohort was able to be reserved for validation in our study. Using
the independent cohort to confirm the performance of the estab-
lished microbial models increases the credibility of the results
and boosts our confidence in the models’ abilities to distinguish
the respective groups. Further, our study was conducted in a rela-
tively comprehensive manner. In addition to using multiple meth-
ods to generate microbial models, we conducted a subgroup
analysis of thyroid cancer patients with and without metastatic
lymphadenopathy and used the WGCNA method to explore the
potential co-existing relationship among intestinal flora. Given
the results of this study, there are potential clinical applications.
Stool is a promising biological sample for non-invasive diagnosis.
Further, the regulation of intestinal microecology with probiotics
and prebiotics may become a valuable approach to the manage-
ment of thyroid cancer.

However, there are a few limitations to this single-center cross-
sectional study. Because of the study design, we were unable to
observe changes in microbiota that occur over time or after the
development of cancer. A longitudinal study would be useful to
demonstrate that changes in an individual’s microbiota occur fol-
lowing the development of disease. In addition, some of our find-
ings were contradictory to the results of two previous studies
[12,13]. A multi-center study with a larger number of subjects
would be useful to determine what trends occur across a more var-
ied patient population. Additional factors could also be considered
when designing future research such as diet, the Bristol stool scale,
etc. Further, when using 16S rRNA gene sequencing to study gut
microbiota, neither the microbial information identified at the spe-
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cies level nor the predictions of microbial function are comprehen-
sive enough. Accordingly, adoption of the shotgun metagenomics
method could help to overcome these limitations. Finally, our find-
ings should be verified using animal models. The relationship
between certain microbes and thyroid cancer could be further
explored through fecal microbiota transplantation in thyroid
cancer-bearing mice.
Conclusion

Our results offer greater insight into the host-microbiota rela-
tionship and may serve as an important resource for researchers
who plan to perform studies in this field in the future. Our findings
help to better characterize the intestinal microbial dysbiosis that
occurs in TC patients. Functional prediction based on the microbial
dysbiosis suggests that faulty processing of genetic information
may link certain gut microbiota to the pathogenesis of TC.
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