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Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein

misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All

TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central

nervous system (CNS), which results in neuronal loss and ultimately death. Like other pro-

tein misfolding diseases including Parkinson’s disease and Alzheimer’s disease, TSEs are

generally not diagnosed until the onset of disease after the appearance of unequivocal clini-

cal signs. As such, identification of the earliest clinical signs of disease may facilitate diag-

nosis. The retina is the most accessible part of the central nervous system, and retinal

pathology in TSE affected animals has been previously reported. Here we describe ante-

mortem changes in retinal function and morphology that are detectable in BSE inoculated

animals several months (up to 11 months) prior to the appearance of any other signs of clini-

cal disease. We also demonstrate that differences in the severity of these clinical signs re-

flect the amount of PrPSc accumulation in the retina and the resulting inflammatory

response of the tissue. These results are the earliest reported clinical signs associated with

TSE infection and provide a basis for understanding the pathology and evaluating

therapeutic interventions.

Introduction
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, protein misfolding
neurodegenerative disorders called transmissible spongiform encephalopathies (TSEs), all of
which are the result of CNS accumulation of proteinase resistant prion protein (PrPSc). Other
TSEs include scrapie in sheep, chronic wasting disease (CWD) in cervids and Creutzfeldt-
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Jakob disease (CJD) in humans. TSEs differ from other protein misfolding neurodegenerative
diseases including Parkinson’s disease and Alzheimer’s disease in that they are transmissible
from one individual to another [1]. Interspecies transmission of TSEs remains an active area of
research [2–5], and may demonstrate that other TSEs could transmit to humans, but transmis-
sion of BSE to humans as variant CJD (vCJD) (reviewed in [6]) has resulted in the death of
over 200 individuals worldwide.

There is a lack of antemortem assessments and objective measures of TSE disease progres-
sion. Though there has been significant effort to detect prions in diagnostic samples (e.g. CSF,
blood, urine, saliva, nasal brushings; [7–16]), there are currently no functional or morphologi-
cal objective measures that could be applied to monitor disease progression or evaluate the ef-
fectiveness of intervention strategies.

We and others have demonstrated that PrPSc accumulates in the retinas of animals infected
with TSEs [1,17–27]. The retina is the most accessible part of the CNS and is amenable to non-
invasive assessment of morphology and function. We have previously demonstrated that
functional changes develop in the retina of cattle inoculated with transmissible mink encepha-
lopathy, a TSE with microscopic features similar to those of BSE [28], months prior to other
clinical signs of disease [24]. Here we describe changes in retinal morphology and function
over time in animals inoculated with two different strains of BSE; classical foodborne BSE,
which transmits to humans as vCJD [6,29,30], and atypical high-type BSE (BSE-H) diagnosed
in the US in 2004 [31]. We demonstrate that antemortem assessment of retinal function and
morphology identifies changes 12 months post-inoculation (PI) with both classical BSE and
BSE-H, which is an average of 11 and 5 months, respectively, before the onset of unequivocal
clinical signs in these animals. Further, we demonstrate strain-specific differences in retinal
function, accumulation of PrPSc in the retina, and the retinal glial response to disease. These re-
sults suggest that the retina has significant potential for the development of antemortem assess-
ments for prion disease and is an excellent experimental model to investigate the relationship
between PrPSc accumulation, neural function, and neuropathology.

Materials and Methods

Ethics Statement
This experiment was carried out in accordance with the Guide for the Care and Use of Labora-
tory Animals (Institute of Laboratory Animal Resources, National Academy of Sciences, Wash-
ington, DC) and the Guide for the Care and Use of Agricultural Animals in Research and
Teaching (Federation of Animal Science Societies, Champaign, IL). The protocol was approved
by the Institutional Animal Care and Use Committee at the National Animal Disease Center
(protocol number: 3985) and Iowa State University (protocol number: 7154).

Animals and Inoculum
Two different inocula of bovine spongiform encephalopathy (BSE) were compared in this
study. Adult Holstein steers (3.8–4.5 years old) were inoculated intracranially with 1 ml of a
10% (wt./vol) brain homogenate as previously described [32]. Twelve animals were inoculated
with classical BSE and nine animals were inoculated with BSE-H. The classical BSE inoculum
was from a case diagnosed in the U.S. in 2003 and the high-type BSE (BSE-H) inoculum a case
diagnosed in the US in 2004 [31]. The Prnp sequence from both source animals was consistent
with previously reported cattle sequences [31]. The Prnp gene of all inoculated animals was se-
quenced. There were no polymorphisms in the coding region of experimental animals that re-
sulted in an amino acid sequence different from the normal cattle sequence. There are two
non-coding polymorphisms in cattle that are associated with PrPC expression levels [33,34]. A
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23-bp deletion within the promoter region removes a binding site for the PR58 repressor pro-
tein, the second is a 12-bp deletion in intron 1 that removes an SP1 transcription factor-
binding site [35]. The presence or absence of these polymorphisms is indicated in in supple-
mentary data (S1 Table). Due to technical, logistical and safety limitations, we were only able
to collect high quality antemortem data from a subset of these animals. The inoculated animals
were observed daily by animal care staff at NADC, and examined regularly by investigators to
determine the onset of clinical disease. Animals were euthanized at the onset of unequivocal
signs of clinical disease, but were not allowed to develop severe, end-stage disease. Upon eutha-
nasia, all animals were confirmed positive by western blot or enzyme immuoassay as directed
(IDEXX HerdChek BSE-Scrapie Antigen ELISA test kit, Westbrook, ME). Control animals for
histopathology included one mock-inoculated animal from this study, one mock-inoculated
animal from a TME to cattle transmission study [36] and three mock-inoculated animals from
a CWD to cattle transmission study [37]. Control animals for OCT were 8 age-matched Hol-
stein cows housed at an offsite dairy.

Electroretinography. Electroretinography was performed prior to inoculation and at
3-month intervals until the animals were euthanized due to the development of clinical disease.
Data from 11 animals inoculated with classical BSE and 6 animals inoculated with BSE-H was
used for this analysis. An EPIC 4000 visual electrodiagnostic testing system (LKC Technolo-
gies, Gaithersburg, MD) with a CMGS-1 Color Mini-Ganzfeld Stimulator (LKC Technologies,
Gaithersburg, MD) was used to capture electroretinograms (ERG). The left eye was tested at
each time point. The animals were dark adapted for 20 minutes, followed by two scotopic re-
cordings (single white flash 0.024 cd●s/m2, single white flash 2.45 cd●s/m2).

Optical Coherence Tomography. Retinal thickness was measured in vivo using optical co-
herence tomography (OCT). Data from four animals inoculated with classical BSE and five ani-
mals inoculated with BSE-H was used for this analysis. A Bioptigen SD-OCT (Bioptigen,
Durham, NC USA) was used to capture linear B scans (6 mm; 1000 A scans/B scan). Scans
were taken from dorsocentral retina. At each time point at least 10 measurements/animal of
retinal thickness were taken from multiple scan frames (using on-screen calipers) to determine
an average thickness measurement for each animal.

Statistics. Prism 6 for Mac (Graph Pad Software) was used for all statistical analysis. Group
differences were analyzed using a non-parametric Mann-Whitney U test.

Western Blot. Approximately 0.5 grams brainstem material was analyzed using the Prio-
nics-Check Western Kit as suggested by the manufacturer with minor modifications as de-
scribed previously [18]. Samples were homogenized at room temperature with
homogenization buffer (10% w/v in Prionics buffer) and digested with proteinase K (PK) for
40 min at 48°C. PK-digestion was stopped according to the manufacturer’s protocol and 1 mg
of homogenate was loaded onto pre-cast sodium dodecyl sulfate (SDS)-12% polyacrylamide gel
electrophoresis (PAGE) gels. SDS-PAGE was performed as described by the manufacturer and
the proteins transferred from the gel to a PVDF membrane with transfer buffer. The mem-
branes were blocked with PVDF blocking buffer and either incubated with monoclonal anti-
body 6H4 (1:10,000 dilution; Prionics AG, Switzerland:) or monoclonal antibody P4 (1:10,000
dilution or 0.1 μg/ml; R-Biopharm AG, Darmstadt, Germany) for 1 hr at room temperature or
overnight at 4°C. A biotinylated sheep anti-mouse secondary antibody (GE Healthcare, Buck-
inghamshire,UK) at 0.05 μg/mL and a streptavidin-horseradish peroxidase (HRP) conjugate
(GE Healthcare, Buckinghamshire, UK) were used according to the manufacturer’s instruc-
tions in conjunction with a chemifluorescent detection system (ECL Plus detection system, GE
Healthcare, Buckinghamshire, UK) and imaged using a multimode scanner.

Immunohistochemistry. Paraffin-embedded tissues were analyzed using immunohistochem-
istry. Slides were stained by an automated immunohistochemical method for detection of PrPSc
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as described previously [32] with slight modifications. Briefly, after deparaffinization and rehy-
dration, tissue sections were autoclaved for 30 minutes in an antigen retrieval solution (DAKO
Target Retrieval Solution, DAKOCorp., Carpinteria, CA) and stained with an indirect, biotin-
free staining system containing an alkaline phosphatase labeled secondary antibody (ultraview
Universal Alkaline Phosphatase Red Detection Kit, Ventana Medical Systems, Inc., Tucson, AZ)
designed for an automated immunostainer (NexES IHCmodule, Ventana Medical Systems, Inc.,
Tucson, AZ). The primary antibodies used were F99/97.6.1 (O’Rourke; Pullman, Washington) at
a concentration of 5 μg/ml, and 12B2 [38] at a concentration of 0.2 μg/ml and were incubated at
37°C for 32 minutes. Slides were counterstained with Gill’s hematoxylin and bluing agent (Ven-
tana Medical Systems, Tucson, AZ) then coverslipped. Immunoreactivity for all other antibodies
was visualized with an EnVision HRP-System as directed (DAKO). Rabbit anti-GFAP (DAKO)
was diluted at 1:7500; rabbit anti Iba-1 (WAKO Chemicals; Richmond, VA) was diluted 1:500,
and rabbit-anti-PKC-alpha (SIGMA Chemical; St. Louis, MO) was diluted 1:7500. Images for
the figures were captured using a Nikon DS camera on a Nikon Eclipse 80imicroscope.

Results
Incubation time for classical BSE and BSE-H is reported here as the time from inoculation to
the time when unequivocal signs of clinical disease were present. Clinical signs of disease in-
cluded abnormalities in gait or stance, moderate to severe ataxia, and hyperreaction to stimuli
such as noise or movement. The average incubation time to onset of unequivocal clinical signs
for cattle inoculated with BSE-H was 17.1 months (+/- 0.2 months), the average incubation
time for cattle inoculated with classical BSE was 22.8 months (+/- 1.5 months). These differ-
ences in incubation time were highly statistically significant (p<0.0001). Upon euthanasia, the
migration pattern of PrPSc on western blots from brainstem homogenates was analyzed to con-
firm that animals inoculated with classical BSE or US BSE-H retained a classical or high-type
migration pattern respectively (Fig. 1).

Changes in retinal function are detectable during disease incubation
Electroretinography measures the retina’s response to flashes of light at various intensities. We
used electroretinography to assess retinal function over the course of incubation with classical
BSE and BSE-H. Baseline values were established from ERGs collected prior to inoculation.
Cattle were assessed with both a low intensity flash of light (-20 dB, or 0.024 cd●s/m2) and a
high intensity flash of light (0 dB, 2.45 cd●s/m2). The b-waves of the resulting electroretino-
grams were analyzed (Tables 1 and 2). In animals inoculated with classical BSE, there was not
any notable change in the b-wave amplitudes under any testing condition. In animals inoculated
with BSE-H there was a decrease in the b-wave amplitude of clinically ill animals (Tables 1
and2), though this decrease did not reach statistical significance. There were, however, signifi-
cant changes in the b-wave implicit times of animals inoculated with both classical BSE and
BSE-H. In clinically ill animals (within several days of necropsy), the b-wave implicit times
were significantly prolonged when compared to the animals’ baseline values (Tables 1 and 2).
To ensure that the prolongation of the b-wave was not due simply to aging, we compared the
animals’ baseline values, collected when they were approximately 4 years of age, to b-wave im-
plicit time values collected when they were approximately one year of age. At 4 years of age,
the average baseline implicit time for-20 dB was approximately 54 milliseconds and 27 milli-
seconds for 0dB. An ERG was also recorded from these same animals at approximately one
year of age (3 years prior to their inoculation with BSE). At this time the b-wave implicit time
for-20 dB was approximately 58 milliseconds, and 29 milliseconds at 0dB, demonstrating vir-
tually no change in the b-wave implicit time for these animals over three years time. Further,
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Fig 1. Western blot migration patterns of BSE-H and classical BSE. Immunoblotting for PrPSc reveals the
three characteristic glycoforms. A proteinase K-digested brain homogenate sample from an animal
inoculated with H-Type BSE (lane 1) compared to a brain sample from an animal inoculated with classical
BSE (lane 2) illustrates the higher molecular weight most noticeable in the BSE- H unglycosylated band. In a
brain sample from a negative control animal (lane 3), the proteinase K pre-treatment destroys all antigenicity.
Lane 4 contains molecular weight markers.

doi:10.1371/journal.pone.0119431.g001
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we compared the baseline results to previously published ERG values from Holstein steers at
approximately 2 years of age [24]. In the non-inoculated animals in that study (at 2 years of
age), the average b-wave implicit time for-20 dB was 62 milliseconds, and 29 milliseconds for
0dB. So, when our comparing 4-year old animals with a different population of 2-year old ani-
mals, we do not see any difference in the implicit time of the b-wave. To determine the time
during the disease course when a prolonged b-wave implicit time was first detectable, we ana-
lyzed ERGs collected from animals at 9, 12 and 15 months post inoculation (MPI). For both
classical BSE and BSE-H, b-wave implicit time values first became significantly prolonged at
12 MPI (Tables 1 and 2).

Changes in retinal morphology are detectable during disease incubation
Optical coherence tomography (OCT) was used to measure retinal thickness in dorsocentral
over the course of incubation with classical BSE and BSE-H. Baseline values were established
from OCT images taken prior to inoculation. The average baseline value for all experimental
animals was 300 μM (+/- 8.3). Retinal thickness measurements from a separate group control
animals included an age-matched mock-inoculated steer with a retinal thickness measurement
of 307 μM, and eight age-matched Holstein cows from an offsite dairy with an average mea-
surement of 293 μM (+/- 5.2). We analyzed OCT images collected approximately 6 months,
12 months and 15 months post inoculation. Retinal thickness values from animals inoculated

Table 1. Changes in the electroretinograms over time in animals inoculated with classical BSE.

Classical BSE -20 dB Amplitude (μV) 0dB Amplitude (μV) -20 dB Implicit Time (milliseconds) 0 dB Implicit Time (milliseconds)

Baseline 11 276.6 (26.4) 693.5 (48.2) 54.9 (2.0) 28.5 (1.3)

9 MPI 11 295.6 (20.7) 790.3 (43.5) 56.2 (2.1) 30.3 (2.4)

12 MPI 11 366.5 (28.1) 821.0 (46.5) 63.2** (2.0) 35.2* (2.0)

15 MPI 11 279.4 (20.7) 691.3 (35.9) 61.3* (3.7) 33.0 (2.5)

Clinical 4 (22.8 MPI) 310.3 (15.1) 796.3 (63.7) 65.0* (2.4) 35.8* (1.9)

B-wave amplitude and implicit time in dark-adapted animals with either dim (-20 dB) or bright (0 dB) flash were analyzed over time. Sample size for each

time point are in italics. Values in parenthesis the standard error of the mean. MPI = months post inculcation.

* = p < 0.05;

** = p< 0.01.

doi:10.1371/journal.pone.0119431.t001

Table 2. Changes in the electroretinograms over time in animals inoculated with US BSE-H.

BSE-H -20 dB Amplitude (μV) 0dB Amplitude (μV) -20 dB Implicit Time (milliseconds) 0 dB Implicit Time (milliseconds)

Baseline 9 234.4 (27.8) 672.4 (39.7) 52.7 (1.6) 25.4 (0.8)

9 MPI 9 250.2 (28.0) 599.4 (58.7) 55.4 (2.3) 29.7(3.5)

12 MPI 6 369.2 (35.6) 815.4 (93.1) 71.3*** (3.7) 41.7* (3.5)

15 MPI 6 216.2 (17.5) 509.9 (38.4) 71.7** (5.4) 48.4***(6.4)

Clinical 3 (17.1 MPI) 118.4 (54.2) 459.3 (109.6) 89.0** (0.8) 76.2** (3.4)

B-wave amplitude and implicit time in dark-adapted animals with either dim (-20 dB) or bright (0 dB) flash were analyzed over time. Sample size for each

time point is in italics. Values in parenthesis are the standard error of the mean. MPI = months post inculcation.

* = p < 0.05;

** = p< 0.01;

*** = p< 0.0001.

doi:10.1371/journal.pone.0119431.t002
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with BSE-H at, 12 and 15 months post inoculation were markedly, but not significantly, de-
creased when compared to baseline values (Table 3). However, at 12 and 15 months post inoc-
ulation, retinal thickness values were significantly decreased in animals inoculated with
classical BSE (Table 3).

Sensitivity and specificity of retinal assessment to detect BSE-
inoculated cattle at 12 months post inoculation
We calculated the 95% CI of the mean values of b-wave implicit time and retinal thickness
from animals at 12 months post inoculation (all values from inoculated animals were pooled),
and applied these criteria to baseline values (negative animals) and individual 12 months post-
inoculation values (known positive animals) to estimate the specificity and sensitivity of our as-
says respectively. Individual animal values are provided in supplementary data (S1 Table). In
this analysis, b-wave implicit time at-20 dB was 94.7% specific (1/19 animals at baseline would
have been a false positive) and 94.7% sensitive (18/19 animals at 12 MPI were above the ‘posi-
tive’ criteria). B-wave implicit time at 0dB was 90% specific and 94.1% sensitive. Retinal thick-
ness measured by OCT was 77.7% specific (4/18 negative animals would have been called
positive) and 88.9% sensitive (8/9 animals at 12 MPI were thinner than the maximum ‘positive’
value). It is notable, that when analyzed as a group, retinas from animals inoculated with BSE-
H were not significantly thinner (Table 3), however, all but one BSE-H inoculated cattle would
have been detected when our criteria were applied to each individual animal’s retinal
thickness measurement.

HE examination of retina
Subtle differences were noted between the retinas from cattle inoculated with BSE-H as com-
pared to those inoculated with classical BSE or sham inoculated controls. BSE-H inoculated an-
imals had increased numbers of nuclei morphologically consistent with those of the outer
nuclear layer present amongst outer segments and had increased numbers of large cells from

Table 3. Changes in retinal thickness over time in animals inoculated with classical BSE and US
BSE-H.

Average Retinal Thickness (μM)
Classical BSE

Average Retinal Thickness
(μM) BSE-H

Baseline 288.4 5 (10.1) 311.6 5 (11.8)

6 MPI ND 296.0 2 (35.0)

12 MPI (compared to baseline) 243.8* 4 (5.0) 272.8 5 (14.7)

15 MPI (compared to baseline) 240.5* 3 (1.4) 264.0 3 (5.2)

Average Retinal Thickness (μM)

Age Matched Control Herd 8 293.1 (5.2)

Pooled 12 MPI 9 (compared to
control herd)

259.9***

Total retinal thickness was measured over time using optical coherence tomography. Animals were

compared to their baseline values in 6, 12 and 15 months post inoculation (MPI), and compared to the

control cohort at 12 MPI. Values in parenthesis the standard error of the mean, values in itallics in are the

sample size, significant changes are indicated by shading.

* = p < 0.05;

** = p< 0.01;

*** = p< 0.0001.

doi:10.1371/journal.pone.0119431.t003
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the inner nuclear layer intermingled in the inner plexiform layer (Fig. 2). In addition, there was
a mild increase in cells with small, oblong intensely basophilic nuclei within the inner
plexiform layer.

PrPSc accumulation in the retina differs between BSE-H and classical
BSE
Accumulation of PrPSc in the retina was assessed with immunohistochemistry (Fig. 3). All
prion infected cattle in this study had PrPSc immunoreactivity in the retina, however, the pat-
tern of deposition was different depending on whether the inoculum source was classical BSE
or BSE-H. In animals inoculated with classical BSE, PrPSc accumulated primarily as multifocal
to coalescing granular to globular deposits in the inner and outer plexiform (synaptic) layers
(Fig. 3B) with retinal ganglion cells only rarely affected. PrPSc accumulation was more extensive
in animals inoculated with BSE-H: both increased in amount and present within more layers of
the retina relative to cattle inoculated with classical BSE. PrPSc-immunoreactivity in inner and
outer plexiform layers was intense and formed uniform, intense bands of immunoreactive de-
posits that extended along the entire length of the retinal sections examined (Fig. 3C). The gan-
glion cells throughout the retinas of BSE-H inoculated cattle contained large globular deposits
immunoreactive for PrPSc. In addition, retinas from BSE-H inoculated cattle contained multifo-
cal globular deposits immunoreactive for PrPSc between cells of the inner and outer nuclear lay-
ers and less frequently amongst outer segments. In addition we examined immunoreactivity for
PrPSc using the 12B2 antibody [38], whose epitope is present in PrPSc in animals with H-type
BSE, but not classical BSE. With this antibody, retinal sections from animals inoculated with
classical BSE were indistinguishable from controls, while all retinal sections from BSE-H inocu-
lated animals had 12B2 immunoreactivity in the inner and outer plexiform layers as well as gan-
glion cells (data not shown). PrPSc-immunoreactivity using either antibody was sufficient for
blinded investigators to sort slides of classical BSE from BSE-H with 100% accuracy.

Disease associated pathology of retinal cells
The b-wave of the electroretinogram is generated by two retinal cell types; bipolar cells and
Müller glia [39]. We used immunohistochemistry to assess any potential differences in these
cell types in retinas from BSE-inoculated animals. Immunoreactivity for the alpha subunit of
protein kinase-C (PKC-alpha) was used to examine the morphology of rod bipolar cells [24].
While we observed some subtle differences between samples, such as what appeared to be an
increase of PKC-alpha immunoreactive processes in the retinas of animals inoculated with
classical BSE, these differences were not sufficient for blinded investigators to sort inoculated
samples from control samples (data not shown). Müller glia are the endogenous glial cells of
the retina that express glial fibrillary acidic protein (GFAP). In the normal, healthy retina,
GFAP is localized to their endfeet in the retina’s inner limiting membrane. Retinal stress causes
the Müller glia to upregulate GFAP, which becomes localized throughout the cell. GFAP-
immunoreactivity in the control animals was localized to the Müller glia endfeet and astrocytes
in the optic fiber layer (Fig. 4A). In the retinas of animals inoculated with classical BSE, there is
a slight increase in GFAP-immunoreactivity in Müller glia endfeet, and the GFAP-immunore-
activity occasionally extended to portions of the cells spanning other layers of the retina
(Fig. 4B). In contrast, GFAP-immunoreactivity in the retinas of animals inoculated with BSE-
H was intense and extended from the Müller glia endfeet in the inner retina, to their apical pro-
cesses in the retina’s outer limiting membrane (Fig. 4C). These differences in GFAP-immuno-
reactivity were sufficient for blinded investigators to sort slides of classical BSE from BSE-H
with 100% accuracy.
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Iba-1-immunoreactivity was used to examine the morphology and prevalence of microglia
in the retinas of animals infected with classical BSE and BSE-H. In sham-inoculated control an-
imals, Iba-1-immunoreactivy showed ramified microglia with many visible processes in the
inner and outer plexiform layers (Fig. 5A). In retinas from animals inoculated with classical
BSE, Iba-1-immunoreactivity showed microglia with a more ameboid-like morphology charac-
teristic of activated microglia (5B). In retinas from animals inoculated with BSE-H, Iba-1-
immunoreactivity showed more numerous ameboid-like microglia than were observed in ani-
mals inoculated with classical BSE (Fig. 5C). These differences in Iba-1-immunoreactivity were
sufficient for blinded investigators to sort slides of classical BSE from BSE-H with
100% accuracy.

Discussion
Based on our observations reported here, changes in retinal function and morphology are the
earliest clinical signs of BSE infection described to date. Optical coherence tomography (OCT)
is a non-invasive imaging method that is widely used in human ophthalmology to generate a
cross-sectional image of the retina in vivo. Here we employed OCT to determine if there was
any change in retinal thickness associated with BSE infection over time. We previously re-
ported retinal thinning detectable using OCT in an animal at terminal stages of BSE infection
[18], and here we demonstrate that retinal thinning is detectable 12 months post inoculation
(MPI) in cattle inoculated with either classical BSE or BSE-H. Our results can be directly relat-
ed to a careful study of the clinical onset of BSE-H in intracranially inoculated cattle by Konold
and colleagues [40]. Based on numerous clinical observations they estimated clinical onset of
signs in 4 animals to be 10, 14, 16 and 16 months post inoculation (MPI), with incubation

Fig 2. Subtle microscopic changes in retinas from BSE-H inoculated animals. There were no consistent differences between retinal sections from sham
inoculated cattle and cattle inoculated with classical BSE (Fig. 2A and 2B). However, sections from animals inoculated with BSE-H (Fig. 2C) had increased
numbers of nuclei present amongst outer segments (asterisks) that were morphologically consistent with those of the outer nuclear layer and had increased
numbers of large cells from the inner nuclear layer intermingled in the inner plexiform layer (arrows). The ages of the animals in the figure are 4.9, 5.9 and 5.5
years in A, B and C respectively. Abbreviations: OFL = optic fiber layer, GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL
= outer plexiform layer; ONL = outer nuclear layer; OS = outer segments. Hematoxylin and Eosin. Scale bars = 50 μM.

doi:10.1371/journal.pone.0119431.g002
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times of 17, 21, 18 and 19 months respectively [40,41]. Our objective and non-invasive mea-
sures of retinal function and retinal thickness would have correctly identified 94.7% and 88.9%
of all inoculated cattle at 12 MPI respectively, though incubation times ranged from 16.8
months to 31 months.

Our previous work has also demonstrated that changes in retinal function are detectable
months prior to other signs of disease in cattle infected with transmissible mink encephalopa-
thy [24]. Similarly, results presented here demonstrate that changes in retinal function as dem-
onstrated by electroretinogram, specifically prolongation of the b-wave implicit time, are
detectable at least 5 months prior to when cattle developed unequivocal signs of disease and
were euthanized. A significantly prolonged b-wave implicit time, without a significant decrease
in b-wave amplitude is rarely observed, and only in individuals that have a mutation that effects
synaptic transmission in the outer plexiform layer [42,43]. Despite their significant difference
in incubation time, inoculation with both BSE-H and classical BSE resulted in a prolonged
b-wave implicit time at 12 months post inoculation. However, the magnitude of the b-wave im-
plicit time prolongation was greater in BSE-H, which had a shorter incubation period. In addi-
tion, though b-wave amplitude was not significantly decreased in animals of either group, the
b-wave amplitude was notably decreased in BSE-H inoculated cattle at the time of onset of clin-
ical disease. Decreased b-wave amplitude in individuals clinically affected with prion disease
has been previously reported in sheep [22,23] and humans [44,45]. Thus, while decreases in
the b-wave amplitude appear to accompany clinical disease, our data suggest that b-wave im-
plicit time is a much more sensitive measure of preclinical changes in the retina associated with
incubation of a TSE.

Fig 3. Accumulation of PrPSc in retinas of cattle inoculated with BSE. Sham inoculated and negative control animals had no PrPSc immunoreactivity
(Fig. 3A). The immunoreactivity in cattle inoculated with classical BSE was limited to the outer and inner plexiform (synaptic) layers (Fig. 3B). BSE-H
inoculated cattle (Fig. 3C) had relatively more intense immunoreactivity in the plexiform layers, the outer limiting membrane at the base of photoreceptor
outer segments, and large retinal ganglion cells. The ages of the animals in the figure are 6.8, 5.9 and 5.5 years in A, B and C respectively. Abbreviations:
OFL = optic fiber layer, GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear
layer; OS = outer segments. Monoclonal antibody 99/97.6.1. Scale bars = 50 μM.

doi:10.1371/journal.pone.0119431.g003
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Though there were only subtle histopathologic differences between retinas from cattle inoc-
ulated with classical BSE and BSE-H, immunohistochemical analysis did demonstrate differ-
ences in accumulation of PrPSc and activation of Müller glia and microglia, with BSE-H having
markedly more PrPSc accumulation, Müller glia and microglia activation. Interestingly, these
pathologic features correlate with the more robust phenotype of the electroretinograms in clin-
ically ill BSE-H cattle. That is, when comparing clinical values from BSE-H to classical BSE in-
oculated animals, b-wave implicit times are longer and their amplitudes are markedly smaller.
The b-wave amplitude can be used as an indirect measure of photoreceptor function, as death
of photoreceptors results in a decrease in the b-wave amplitude. Though cattle inoculated with
BSE-H did have a decreased b-wave amplitude and animals inoculated with classical BSE did
not, we did not observe any major differences in the photoreceptor layer between these two
groups. This may be due to changes in photoreceptor number in BSE-H cattle below our level
of detection, or instead impairment of synaptic communication between photoreceptors and
their post-synaptic cells (the bipolar cells). The b-wave implicit time (time for peak to reach
maximum amplitude) is generated by retinal bipolar cells and Müller glia [39]. Of these two
cell types, we observed changes in only the Müller glia. Both the decrease in b-wave amplitude
and the increase in b-wave implicit time can be explained by synaptic dysfunction in the outer
plexiform layer, the synaptic interface between photoreceptors and bipolar cells. This would be
consistent with accumulation of PrPSc causing synaptic dysfunction (reviewed in [46]), and
correlates with the differences in PrPSc accumulation between classical BSE and BSE-H.

The more robust retinal histologic changes in BSE-H inoculated cattle also correlates with a
shorter incubation time in these animals. It has been shown previously that PrPSc from BSE-H

Fig 4. Müller glia are activated in the retinas of cattle inoculated with BSE. An antibody directed against glial fibrillary acidic protein (GFAP) was used to
label Müller glia in retinal sections. Retinas from sham inoculated and negative control cattle had GFAP-immunoreactivity only in the optic fiber layer
(asterisk), in astrocytes, and endfeet of Müller glia (Fig. 4A). Retinal sections from cattle inoculated with classical BSE had increased immunoreactivity in the
optic fiber layer and in occasional thin processes of Müller glia spanning the inner plexiform layer (arrows; Fig. 4B). Sections from cattle inoculated with BSE-
H (Fig. 4C) had robust immunoreactivity in the optic fiber layer and consistently in Müller glial processes (arrow), which appeared hypertrophied compared to
sections from animals inoculated with classical BSE. The ages of the animals in the figure are 2.7, 6.4 and 5.7 years in A, B and C respectively.
Abbreviations: OFL = optic fiber layer, GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL =
outer nuclear layer; OS = outer segments. Scale bars = 50 μM.

doi:10.1371/journal.pone.0119431.g004
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has a higher stability when compared to classical BSE [47]. Our observation that the higher sta-
bility BSE-H has a shorter incubation time, and accumulates in the soma of retinal ganglion
cells is consistent with similar observations by Ayers et al, who reported shorter incubation
times and intraneuronal accumulation of PrPSc in higher stability prion strains [48]. In addi-
tion, we observed more a robust activation of retinal Müller glia and microglia in retinas from
animals inoculated with BSE-H. Experiments to study the relationship between PrPSc stability,
incubation time and glial activation are ongoing.

As an extension of the central nervous system, the retina may have diagnostic potential for
several protein misfolding neurodegenerative disorders. Recent studies demonstrate that both
retinal function and morphology in patients with Parkinson’s disease are significant predictors
of disease severity and quality of life [49–53]. Changes in the retinal nerve fiber layer measured
by OCT have been reported in patients with Alzheimer’s Disease [54], and measurements of
the choroid (the vascular rich layer of the eye deep to the retina) have shown significant choroi-
dal thinning in AD patients as well [55].

Here we demonstrate that the retina is an important tool to study the pathogenesis of prion
disease. The retina is an isolated structure, and thus accumulation of PrPSc can be precisely
quantified, as compared to the rest of the brain where quantification of regional accumulation
is affected by dissection. Further, different functional assessment approaches can test different
cell populations. The assessments used in this work test photoreceptors, bipolar cells and Müll-
er glia, and our results demonstrate that our functional assessment was sensitive enough to dif-
ferentiate between classical BSE and BSE-H, which at terminal stages have differences in PrPSc

accumulation, Müller glia and microglia activation However, the results presented here are

Fig 5. Activation of microglia in retinas of cattle inoculated with BSE. An antibody directed against Iba-1 was used to label microglia in retinal sections.
Microglia in retinal sections from sham inoculated and negative control cattle had a stratified appearance with processes primarily in the outer plexiform and
inner plexiform layers (Fig. 5A). In sections from cattle inoculated with classical BSE, the microglia appeared to be more amoeboid in morphology (Fig. 5B)
but not more numerous than was observed in negative controls. In contrast, retinal sections from cattle inoculated with BSE-H had more numerous microglia
with an amoeboid morphology (Fig. 5C). The ages of the animals in the figure are 6.8, 5.9 and 5.7 years in A, B and C respectively. Abbreviations: OFL =
optic fiber layer, GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer; OS =
outer segments. Scale bars = 20uM

doi:10.1371/journal.pone.0119431.g005
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from animals inoculated with BSE intracranially. Ongoing studies will determine if similar
changes can be detected in animals inoculated by the oronasal route.

The suitability of retinal assessment for diagnosis of prion disease in animals or humans re-
mains an open question. Unequivocal diagnosis of prion disease depends upon the detection of
misfolded prion protein (PrPSc). Several promising diagnostics for Creutzfeldt-Jakob Disease
(CJD; the most common human prion disease) include amplification of PrPSc from nasal
brushings [16], blood [15] and urine [14]. Detection of PrPSc associated with nasal brushings
appears to be highly sensitive and specific and can detect both sporadic CJD as well has genetic
CJD [16]. Experimentally, PrPSc can be detected prior to clinical illness in blood from ma-
caques infected with BSE (the agent of variant CJD), and in blood samples from a small num-
ber of human CJD patients. PrPSc was detectable in patients with variant CJD and not sporadic
CJD [15], raising the possibility that PrPSc in blood may be specific to vCJD. In a separate
study of human vCJD patients, PrPSc was detected in the urine from 13/14 individuals [14,15].
The latter two studies demonstrate the utility of bodily fluids for detection of vCJD in clinical
and potentially pre-clinical individuals. Though the retinal changes that we describe precede
the clinical phase of illness in cattle, it is not yet known how this may relate clinical disease in
humans. However, our results, taken with retinal imaging studies of individuals with Parkin-
son’s and Alzheimer’s disease, suggest that retinal imaging of CJD patients may prove useful.

The preponderance of evidence demonstrates that the retina is affected by protein misfolding
disorders long thought to be confined to the brain. Thus, the retina holds tremendous potential
for the study of disease pathogenesis, and evaluation of potential therapeutic interventions for
multiple protein misfolding disorders. Transmissible spongiform encephalopathies are an infec-
tious and highly predictable model of protein misfolding neurodegenerative disease. Predictable
incubation times and PrPSc accumulation paired with detectable preclinical morphologic and
functional deficits make the retina an excellent model for future studies to understand the detailed
relationship between accumulation of misfolded protein and specific changes in neural function.
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