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Abstract

Background: Current cancer precision medicine strategies match therapies to static consensus molecular properties of
an individual’s cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant
treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic
evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad
parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be
obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral
heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal
therapy every 45 days. However, the optimization is performed in single 45 day steps (“single-step optimization”).

Results: Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential
outcomes at 5 steps ahead (“multi-step optimization”) or 40 steps ahead (“adaptive long term optimization (ALTO)”) when
recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant
therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible
(“Adaptive long term optimization: serial monotherapy only (ALTO-SMO)”). Simulations utilize populations of 764,000
and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical
presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities.
While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased
by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome
between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-
SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively.

Conclusion: In selected virtual patients incurable by dynamic precision medicine using single-step optimization,
analogous strategies that “think ahead” can deliver long-term survival and cure without any disadvantage for
non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies
feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy.
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Background
A major trend in molecular oncology is the development
of targeted therapies tailored to particular molecular
abnormalities. Tumors are stratified by molecular
characteristics and matched to appropriate therapies.
Personalization has the potential to increase the percent-
age of patients who benefit from therapy, thus increasing
the average benefit and decreasing the cost of develop-
ment [1]. However, personalization is driven by the aver-
age or consensus molecular characteristics of a tumor
cell mixture, and by a static picture of the current mo-
lecular state. In addition, current approaches focus pri-
marily on optimizing the next therapeutic maneuver.
Recently, simulations have shown that dynamic precision
medicine treatment paradigms which take into account
sub-clonal diversity within individual tumors and their
dynamic evolution may produce superior clinical out-
comes [2]. Whereas static personalized therapy has the
potential for short term benefit, and relapse is common,
dynamic precision medicine yields a significantly higher
cure rate. While these approaches are more forward
looking in that they consider future risks, optimization
still focuses on the next therapeutic maneuver.
Genetic instability has been postulated to be funda-

mental to tumor evolution [3]. Mathematical models
have demonstrated that early acquisition of genetic in-
stability increases the efficiency of carcinogenesis, mak-
ing it more probable that clinically apparent tumors will
be genetically unstable [4–6]. These models predicted a
high level of mutational burden and associated subclonal
structure in tumors. Moreover, the parallel evolution of
multiple subclones featured in the models led to an ex-
plicit prediction of divergent and convergent evolution
as an expected feature of tumors, insofar as it was stated
that different subclones would have partially overlapping
sets of driver genes or alterations [7]. These predictions
were subsequently verified by seminal experimental ob-
servations including sub-clonal structure and phylogen-
etic evolution in leukemias [8–10], divergence between
the molecular characteristics of primary and metastatic
lesions in solid tumors [11, 12], molecular variation and
convergent evolution within different spatial locations
within a single renal cell cancer lesion [13], and a high
burden of approximately 20,000-30,000 mutations per
solid tumor [14], including approximately 50-100 non-
synonymous clonal mutations within exons [15, 16].
Even greater diversity would presumably be revealed by
deeper sequencing [17].
The molecular diversity and genetic instability imply

the possibility of pre-existing and acquired drug resist-
ance, respectively, that can be selected for by therapy
[18]. For example, multiple mechanisms of heritable
(“heritable” herein refers to stable genetic and or epigen-
etic changes of somatic cells, which are passed on to

daughter cells) resistance have been documented for er-
lotinib and gefitinib [19, 20], and the sensitive sub-clone
may also persist, leading to rebound if therapy is with-
drawn [21]. Similarly, a variety of resistance pathways
are known for crizotinib, and more than one can co-
exist within the same patient [22, 23]. In chronic
myeloid leukemia (CML), resistance is generally due to
mutations in the single fusion gene that drives the ma-
lignancy, and combinations may be useful to delay the
emergence of multiple resistance [24, 25].
Within a single heritable state, non-genetic mecha-

nisms of resistance are already hard-wired within signal-
ing networks. Examples include feedback resistance to
vemurafenib in BRAF mutant colorectal cancer [26, 27],
and feedback upregulation of tyrosine kinase receptors
in response to therapy with phosphatidyl inositol-3-
kinase inhibitors [28]. Because of these rapid non-
heritable resistance mechanisms, combination therapy
may be required merely to effectively treat a single gen-
etic or epigenetic heritable somatic state.
Current precision medicine for cancer matches the

consensus molecular pattern of a tumor to single agent
or combination therapy, and continues treatment until
tumor worsening or relapse. At that time, the process of
evaluating the tumor’s molecular characteristics and
matching to a new therapy is repeated. This approach
represents a great advance over previous non-selective
approaches. Yet the complicated dynamics of resistance
suggests the additional need for direct, explicit consider-
ation of intratumoral heterogeneity and dynamics.
We have developed methods for comprehensive com-

parisons of complex cancer treatment strategies for
metastatic cancer. A strategy is not a specific treatment
sequence, but rather a data-driven method for planning
treatment sequences. A strategy may suggest which ther-
apies to utilize at treatment initiation, when to switch
therapies, when to use high dose monotherapy, and
when to use combinations. Strategies individualize treat-
ment sequences based on both static and dynamic
features. The current dominant precision medicine para-
digm is an example of a strategy, but it is not the only
possible one.
In previous work, we compared the current personal-

ized medicine strategy to five other dynamic precision
medicine strategies that considered sub-clonal hetero-
geneity and evolutionary dynamics and predicted future
states 45 days after treatment initiation, in the setting of
metastatic cancer [2]. A situation was simulated in
which two non-cross resistant drugs are available for
treatment. These non-cross resistant drugs are intended
for different subclones with different drivers and/or
alterations, and may work on different pathways. (Oper-
ationally, we define “non-cross resistant” drugs as drugs
for which no single molecular alteration is known which
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will simultaneously confer resistance to both agents.
Knowledge of presence or absence of cross resistance
may come from in vitro forward mutation assays or
from clinical data. “Non cross resistant” does not simply
mean that the drugs work by a different mechanism, as
often drugs working by different mechanisms may still
be subject to a common mechanism of resistance. For
example, molecular alterations to the final common
pathway for apoptosis may lead to resistance to a variety
of agents, and upregulation of small molecule efflux
transporters may also confer simultaneous resistance to
multiple agents). Each “drug” may really be a combin-
ation if multiple drugs are needed to knock out a single
pathway. However, we will subsequently refer to these
single agents or combinations as “drug 1” and “drug 2”.
Every 45 days, an optimal treatment was selected for the
next 45 days, where available options were either full
dose drug 1, full dose drug 2, or simultaneous combina-
tions of both drugs at reduced dose due to enhanced
toxicity associated with simultaneous administration
(such a constraint is common but not universal for all
drug combinations, but was chosen as the most realistic
scenario for a generic simulation). Thus, treatment could
be adaptively adjusted every 45 days. (A 45 day interval
was chosen as a rounded number approximating every
six weeks. Oncology patients typically receive therapy
every 3 weeks with the break in between to allow the
bone marrow and intestines to recover from typical tox-
icities, and are thus returning to the clinic every 3 weeks.
In clinical trials, tumor burden is evaluated by computed
tomography in intervals of every six weeks or more.
Thus, approximately every six weeks was chosen as the
interval for assessment to coincide with other clinical
activities. The effect of the interval between adaptive
treatment adjustments is an interesting area for future
research). The optimal treatment for the next 45 days
was selected in three stages. In the first stage, an evolu-
tionary model was employed using patient input data
(Methods) to estimate which treatment option would be
predicted to give the fewest number of total surviving
tumor cells (summed over all lesions) at the next 45 day
time point. In the second stage, the evolutionary model
was employed to estimate which treatment option would
give the lowest probability of forming a single cell which
was simultaneously resistant to both available therapies,
and therefore “incurable”. The treatment recommenda-
tions emerging from stages 1 and 2 would typically
differ. Hence, a third stage would be applied in which a
“strategy”, ie a set of prespecified rules, would be applied
to prioritize between the recommendations of the first
two stages, leading to a final recommendation for the
next 45 day treatment period.
The simplest dynamic strategy was strategy 1, in which

the treatment was chosen for each treatment step that

was predicted to minimize the number of cancer cells
remaining at the end of the treatment step. Strategy 2.1
began to prioritize prevention of multiple resistance.
The strategy selected the treatment that would minimize
the risk of formation of doubly resistant cells, unless the
patient had disease visible on computed tomography
(represented in the simulation as 109 or more cells), in
which case the strategy selected treatment which would
minimize the total cell number. The most successful
strategy, however, was termed “strategy 2.2”, and it
amounts to more aggressive prevention of multiple re-
sistance than strategy 2.1. In essence, the strategy selects
the treatment which minimizes the probability of form-
ing a doubly resistant cell, unless the patient is in
imminent danger of death, severe injury, or severe dis-
comfort from the total tumor burden, in which case the
treatment is selected which minimizes the tumor bur-
den. In the simulation, each patient started with a bur-
den of 109 cells (a single 1 cm3 lesion), and only if the
total cell number increased to 1011 or more cells would
strategy 2.2 choose the treatment that focused on min-
imizing the total cell number. In real applications, the
treating physician could apply her/his judgement about
whether the patient was in immediate danger. The simu-
lation also included strategy 0, the current precision
medicine strategy, which was to apply the therapy which
was most effective for the largest clone and to con-
tinue as long as the cancer was not worsening, re-
peating the process at that time. Two other dynamic
strategies were evaluated: a complete listing of the
strategies and definitions are given in Additional file
1: Table S1, Supplementary Results.
The simulations were performed over a large param-

eter space based on a broad survey of clinical experience
and experimental literature, and represent a sensitivity
analysis over the range of known realistic tumor states
[29–38]. Each virtual patient represented a unique par-
ameter set of net growth rates, drug sensitivities, initial
sub-populations, and genetic/epigenetic transition rates
between the heritable states. Three million parameter
configurations were considered based on the literature
survey and clinical experience, and the virtual patients
represent a thorough sampling of possible oncology sce-
narios. The comprehensive sensitivity analysis over a
very large number of virtual patients with characteristics
based on experimental and clinical data differentiates
this work and the current study from other efforts in
this field, in which a small number of experimental data
points are assumed to be generalizable when construct-
ing models. Lack of generalizability is a major problem
with both theoretical and experimental studies in oncol-
ogy [7]. In this case, a variety of sources were used to
ensure that the parameter ranges were realistic as well
as sufficiently broad to encompass all likely oncology
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scenarios. These included preclinical and clinical litera-
ture as well as experience of one of us in oncology
patient care and clinical research, comprising clinical
studies of more than two dozen experimental oncology
agents in most major tumor types and thousands of
patients over several decades. Details of parameter selec-
tion are given in Methods.
Dynamic precision medicine strategies dramatically

improved patient outcomes compared to the current
personalized medicine strategy. Mean and median sur-
vival times were doubled and cure rates improved from
less than 1 % to 15-20 %. For comparison, a new thera-
peutic agent is generally approvable for marketing by
national health authorities if it improves survival times
by 25 % with or without increased cure rates. The results
were driven by 1/3 of the virtual patients who had sub-
stantial benefits from dynamic precision medicine strat-
egies. The patients who benefited spanned most of
possible tumor and drug characteristics, except they all
had some level of pre-existing heterogeneity or genetic
instability. In comparison, a new therapeutic agent is
typically limited to one or a small number of clinical sce-
narios. Thus, the enormous current efforts directed at
discovery and development of new agents might be com-
plemented by efforts to use these agents optimally.
Some strategies were more effective than others based on

underlying dynamics. Thus both therapies and the strat-
egies used for planning them may require individualization.
The current personalized medicine strategy was not opti-
mal for any of the 3 million virtual patients, representing a
comprehensive survey of tumor and therapy characteristics.
We have pointed out that complicated dynamics also

calls for long range planning, not merely single step re-
active measures, drawing an analogy to optimal chess
play [39, 40]. In a comprehensive editorial, the editor-in-
chief of Nature Reviews Clinical Oncology independently
echoed our analogy to chess: “World class players win
by thinking at least 15 steps ahead of their next move,
and by predicting their opponent’s tactics well in ad-
vance. It seems that what we are doing in the fight
against cancer is more a one-step reactive approach to
its next move. No wonder we feel like we are losing this
game!” [41]. Herein we comprehensively evaluate the
benefits of long range planning, by directly simulating
thinking 5-40 steps ahead.
While our previous work hinted at the value of thinking

ahead, in that therapeutic maneuvers that prevented fu-
ture resistance were often the optimal choice even when
they did not provide optimal immediate reduction of
tumor burden, optimization within each 45 day interval
was based on projected outcomes at the end of that single
interval, termed single-step optimization, single-step strat-
egies, or single-step heuristics (Fig. 1). The term “heuristic”
refers to a strategy which in part employs qualitative

reasoning or clinical intuition, as in strategy 2.2 which
considers the clinically familiar concepts of reduction of
total disease burden and prevention of drug resistance. In
this work, we consider the same strategies, but we use out-
comes 5 intervals in the future to determine the optimal
therapy for the each 45 day interval as the first step of a
hypothetical 5 interval sequence, which we term multi-
step optimization, multi-step strategies, or multi-step heu-
ristics (Fig. 1). The 5 step treatment sequence may in
principle be reevaluated based on clinical results after step
1 if they diverge from predicted results. Finally, we consid-
ered adaptive long-term optimization (ALTO), which ex-
amines potential outcomes 40 steps ahead in 45-day
increments (a 5 year time span, or the length of the simu-
lation) in determining each 45 day treatment selection as
the first step in a 40 step sequence (Fig. 1). The decision
tree of possible 40 step treatment sequences required for
this exercise is very large, and unpromising branches must
be pruned (see Methods). For ALTO, it is not computa-
tionally feasible to directly compute either overall survival
or the probability of forming a multiply resistant cell over
the large number of pathways in the decision tree even
after pruning. Thus instead of the heuristic strategies from
[2], we utilize a mathematical approximation to survival to
more rapidly rank the overall treatment sequences (see
Methods). In the main text, we focus primarily on single-
step and multi-step versions of strategy 2.2, and ALTO, in
addition to “adaptive long term optimization: serial mono-
therapy only (ALTO-SMO)” which applies the restrictive
assumption that simultaneous combinations are impos-
sible, in order to determine the effectiveness of monother-
apy sequences if they are applied with frequent adaptation.
A description of the other strategies, and data on their
single-step and multi-step versions, is given in Additional
file 1: Supplementary Results.
Finally, we also scale up to three drugs/combinations.

Given the likely diversity in a population of tumor cells,
a minimum of three non-cross resistant therapies (each
single agents or combinations) will likely be required for
cure. The model includes 8 heritable states (a 2 × 2 × 2
table of sensitivity versus resistance), and a higher di-
mensional parameter space. Highly parallel computing
and a more focused parameter search are needed to span
possible drug and tumor characteristics.
Our results demonstrate that long range planning of-

fers highly significant advantages to selected patients,
without any disadvantage for the others.

Results
In this section, we will report on two results:

1. The effectiveness of multi-step heuristics 2.2 and
ALTO when compared with single-step heuristics
2.2 and the current personalized medicine strategy,
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strategy 0. We will also compare ALTO-SMO to
single-step heuristics which allows combinations.
Note that because the 3 drug simulation contains
more states and allows doubly resistant cells at time
zero, results from it cannot be directly compared to
results from the two drug simulation.

2. Examples of strategies from multi-step heuristic 2.2
and ALTO which achieved cures in patients who
were incurable by single step heuristic 2.2.

Effectiveness of multi-step heuristics and ALTO when
compared with single-step heuristics and current
personalized medicine
Table 1 shows the performance of single-step and multi-
step versions of strategy 2.2, as well as that of ALTO,
ALTO-SMO, and the current precision medicine strat-
egy 0 (in strategy 0 the patient is treated with the best
therapy for the largest subclone and this treatment is
maintained until the tumor relapses or worsens, where-
upon the process is repeated). The metrics reflect statis-
tics across a population of approximately 760,000 virtual
patients in the 2 drug case and 1.7 million virtual pa-
tients in the 3 drug case. Each virtual patient represents
a unique set of parameters including number of cells for
each type of subclone, growth rates, phenotypic transi-
tion rates between drug sensitivity and resistance, and
drug sensitivity properties of these states. Like the popu-
lation of virtual patients in [2], the population represents
a comprehensive pan-oncology survey of reasonable par-
ameter values, with the exception that the simulations in
this work are restricted to “curable” patients for whom
the available drugs have the ability to produce a negative
growth rate in sensitive cells. In contrast, in [2] the
drugs were required only to be able to slow the growth
of the tumor by 25 % or more. In [2], continuous vari-
ation of the dose of drugs 1 and 2 was permitted, when
they were given in simultaneous combination, subject to
a cap on the sum of the doses equal to the permitted
monotherapy dose. In this work, only a single dosing
paradigm is allowed for simultaneous combination: half-
dose of each drug for binary combinations, and one-
third dose for triple combinations. The 2 drug simula-
tion contains sensitive and resistance states to drug 1
and 2, amounting to a 2 × 2 table of phenotypic states,
but doubly resistant states are not permitted at time
zero. The 3 drug simulation contains a 2 × 2 × 2 table
of phenotypic states corresponding to sensitivity and
resistance to drugs 1, 2, and 3, and triply resistant
states are not permitted at time zero. Additional de-
tails of the simulations are given below in conjunction
with examples and in methods and Additional file 1:
Supplementary methods.
The performance statistics in Table 1 include median

survival times, percentage of virtual patients surviving

Fig. 1 Example of single-step heuristics, multi-step heuristics, and
global optimization on a decision tree. The example tree is spanned
by 4-step treatment sequences with only two possible dosage
combinations (full drug 1 dosage (1, 0) and full drug 2 dosage (0, 1)) in
each step. Each node represents a population structure and the two
edges emitting from each internal node represent the two possible
treatments following the observed population structure. A path
represents a treatment sequence. The treatment sequences traversed
by three strategies are marked with distinct colors: green – one-step
heuristic, red – two-step heuristic, blue – global optimization algorithm.
The paths with bold colored lines are the treatment sequences
selected by the strategies. A one-step heuristic chooses one of the two
branching edges in each time step. A two-step heuristic chooses one
of the four branching paths of length 2 in every two steps. Global
optimization keeps the two best paths of length 2 at step 2, tracks the
subsequent 4 paths for each earlier path and chooses the optimal one
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for 5 years, and percentage of patients cured. Survival
time is defined as the time the tumor burden is main-
tained at less than 1013 cells. In agreement with [2], we
find dynamic precision strategies are significantly super-
ior to the current precision medicine strategy 0 in all pa-
rameters. Multi-step heuristics and ALTO do not show a
significant median survival benefit relative to single-step
strategies across the virtual populations, and their sur-
vival curves look very similar (Figs. 2 and 3).
In contrast, when looking at cure rates, where cure is

defined as elimination of all tumor cells. we find that
planning with a time horizon up to 5 years offers signifi-
cant benefits (Table 1, Figs. 4 and 5). In the two drug
system, the single- and multi-step heuristics 2.2 offer ap-
proximately a 30 % cure rate in this curable population,
whereas ALTO with a five year planning period increases
the cure rate to 37 %. Similarly in the three drug system,
the single- and multi-step heuristics provide an approxi-
mately 18 % cure rate, compared with 25 % using ALTO
(Table 1, Figs. 4 and 5). The cure rate is substantially
higher for all dynamic precision medicine approaches
than for the current precision medicine strategy. The re-
sults are similar for other dynamic precision medicine
strategies (Additional file 1: Table S2, Supplementary Re-
sults). An increased cure rate is a highly clinically signifi-
cant outcome.
In light of the importance of combinations [42], we

asked whether ALTO could be useful in a setting where
only sequential monotherapy was allowed. We found
(Table 1, Additional file 1: Table S2, Table 3, and
Additional file 1: Table S4, Supplementary Results) that
the ALTO-SMO strategy gave overall comparable per-
formance to single- and multi-step heuristics that
allowed combinations. In the two drug system, ALTO-
SMO gave shorter median survival but higher cure rates.
We note that the mean survival for both ALTO-SMO

and ALTO will be underestimated due to censoring of

these additional cured patients when the simulation is
truncated at 5 years. This suggests that long range plan-
ning may be at least equally important as combinations
in the treatment of cancer. The best results occur when
long range planning, combination therapy, and high
dose monotherapy are all utilized.
It is instructive to look at not just average performance

but performance in individual patients, especially given
that precision medicine involves customization of ther-
apy. In oncology clinical trials, a minimally clinically
significant benefit is often defined as a 25 % relative sur-
vival improvement with a minimum 60-day absolute im-
provement. Using this criterion, Table 2 lists the counts
of virtual patients where single-step heuristic 2.2 is
significantly superior to its multi-step counterpart or
vice versa. There are far more significantly superior
cases of multi-step 2.2 than for single-step counterparts.
This is equally true for the other dynamic precision
medicine strategies (Additional file 1: Table S3). Thus, a
subset of patients can receive significant additional bene-
fit from multi-step heuristics compared to single-step
heuristics, while there is little downside to the multistep
heuristics. By looking several moves ahead, a multi-step
heuristic can overcome the myopic limitation of a
single-step heuristic, resulting in highly significant indi-
vidual benefits in selected cases.
A clinically superior outcome must provide at least a

25 % relative improvement and 2 month absolute im-
provement in survival relative to its comparator strategy.
1. Note that because the 3 drug simulation contains
more states and allows doubly resistant cells at time
zero, results from it cannot be directly compared to
results from the two drug simulation.
A similar analysis can be performed comparing

ALTO to all the other strategies including single-step
and multi-step heuristics, and is shown in Table 3
featuring a comparison to strategies 0 and 2.2, and in

Table 1 Comparison of treatment outcomes for 5 strategies

Strategy Median 2 Median 3 5 yr 2 5 yr 3 Cure 2 Cure 3

0: Current personalized medicine 585 720 35.8 29.6 23.0 10.8

Single-step strategy 2.2 1170 1080 47.3 40.5 30.1 17.6

Multistep strategy 2.2 1215 1080 47.5 41.5 30.1 18.5

ALTO-SMO 855 1035 44.7 41.8 34.3 17.9

ALTO 1260 1080 47.5 43.2 36.8 25.4

Strategy 0 is the current personalized medicine strategy: treat with the best drug for the largest clone and continue to treat until tumor worsening or relapse,
then rebiopsy and repeat. Strategy 2.2: select/adapt treatment every 45 days using evolutionary dynamic model to minimize the likelihood of forming a cell
simultaneously resistant to all the therapies at a future reference timepoint, unless the estimated tumor burden is 1011 cells or more. Single-step strategy 2.2: future
reference timepoint for selecting treatments is 45 days, corresponding to the interval between treatment adaptations. Multistep strategy 2.2: future reference timepoint
for selecting treatments is 225 days, or 5 times the interval between treatment adaptations (“thinking 5 steps ahead”). ALTO: Adaptive long-term optimization. ALTO-
SMO: Adaptive long term optimization-serial monotherapy only. Median 2: median survival days for two-drug cases. Median 3: median survival days for three-drug cases.
5 yr 2: percentage of two-drug cases with more than 5-year survival time. 5 yr 3: percentage of three-drug cases with more than 5-year survival time. Cure 2: percentage
of two-drug cured cases. Cure 3: percentage of three-drug cured cases. Survival is defined as time before tumor grows to 1013 cells. This number is intended to represent
the sum total of the cell numbers in a very large number of metastatic lesions, since most patients succumb to widespread metastatic disease. Cure is defined as total
elimination of disease. Note that because the 3 drug simulation contains more states and allows doubly resistant cells at time zero, results from it cannot be directly
compared to results from the two drug simulation
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Additional file 1: Table S4, Supplementary Results.
Here we see that when viewed at the individual patient
level, ALTO over a five year course is superior to both
single-step and multi-step heuristics, and also to
ALTO-SMO. We note that all are markedly superior to
the current personalized medicine strategy, strategy 0.
Strategy 0 is the current personalized medicine strat-

egy: treat with the best drug for the largest clone and
continue to treat until tumor worsening or relapse,
then rebiopsy and repeat. Strategy 2.2: select/adapt
treatment every 45 days using evolutionary dynamic
model to minimize the likelihood of forming a cell sim-
ultaneously resistant to all the therapies at a future ref-
erence timepoint, unless the estimated tumor burden
is 1011 cells or more. Single-step strategy 2.2: future
reference timepoint for selecting treatments is 45 days,
corresponding to the interval between treatment adap-
tations. Multistep strategy 2.2: future reference time-
point for selecting treatments is 225 days, or 5 times

the interval between treatment adaptations (“thinking
5 steps ahead”). ALTO: Adaptive long-term optimization.
ALTO-SMO: Adaptive long term optimization-serial
monotherapy only. Inferior 2: the number of two-drug
cases where the ALTO strategy is clinically inferior to
each selected strategy. Superior 2: the number of two-
drug cases where the ALTO strategy is clinically super-
ior to each selected strategy. Inferior 3: the number of
three-drug cases where the ALTO strategy is clinically
inferior to each selected strategy. Superior : the number
of three-drug cases where the ALTO strategy is clinic-
ally superior to each selected strategy. A clinically su-
perior outcome must provide at least a 25 % relative
improvement and 2 month absolute improvement in
survival relative to its comparator strategy. Note that
because the 3 drug simulation contains more states and
allows doubly resistant cells at time zero, results from it
cannot be directly compared to results from the two
drug simulation.

Fig. 2 Kaplan-Meier survival curves of 5 treatment strategies from simulations for 2-drug cases. The 5 treatment strategies include: (1) strategy 0,
the current personalized medicine strategy, (2) single-step strategy 2.2, (3) multi-step strategy 2.2, (4) ALTO-SMO and (5) ALTO. Other than strategy
0, the curves are largely overlapping
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Examples of cases where multi-step heuristics or ALTO
achieved highly significant benefit
In this section, we present three examples of the value
of long range planning: one case in which a multi-step
heuristic outperforms the corresponding single-step
heuristic, and two cases in which ALTO outperforms a
multi-step heuristic, one in a two drug system and one
in a three drug system. In order to clarify the examples,
we will briefly review the evolutionary model for two
non-cross resistant drugs (or drug combinations), illus-
trated in Fig. 6. More details of the model are given in
the methods section. Four phenotypic states are illus-
trated in Fig. 6, corresponding to a 2 × 2 table of sensi-
tivity and resistance to the 2 drugs. S cells are sensitive
to both drugs 1 and drug 2. R1 cells are resistant to drug
1 and sensitive to drug 2. R2 cells are resistant to drug 2
and sensitive to drug 1. R1-2 cells are resistant to both
available drugs/drug combinations and hence considered
“incurable” with available drugs. The patient presents
with a mixture of these subclones which evolves over

time. We do not allow “incurable” cells at diagnosis
since this state is not rescuable by any strategic manipu-
lation of the available drugs. The arrows indicate somat-
ically heritable transitions between the phenotypic states
by genetic or stable epigenetic mechanisms, and the
rates may differ for different transitions. All cells are
growing exponentially, but their growth can be inhibited
or reversed by the drugs in a dose dependent manner
according to their drug sensitivities. At each 45 day
timepoint, the physician utilizes the evolutionary model
and a strategy, as described in the introduction, to
choose an optimal therapy, which may consist of full
dose drug 1, full dose drug 2, or a 50-50 reduced dose
mix of the two. In the three drug case, we have 8 pheno-
typic states representing a 2 × 2 × 2 matrix of states of
sensitivity and resistance to the 3 non-cross resistant
drugs, with analogous nomenclature and analogous transi-
tions between the states. Incurable triply resistant R1-2-3

cells are not allowed at diagnosis. At each 45 day time-
point, the physician may choose one of 7 options: full

Fig. 3 Kaplan-Meier survival curves of 5 treatment strategies from simulations. for 3-drug cases. The 5 treatment strategies include: (1) strategy 0,
the current personalized medicine strategy, (2) single-step strategy 2.2, (3) multi-step strategy 2.2, (4) ALTO-SMO and (5) ALTO. Other than strategy
0, the curves are largely overlapping
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doses of drugs 1, 2, or 3; 50-50 reduced dose mixes of the
1-2, 1-3, or 2-3 combinations, or a 33-33-33 reduced dose
mix of drugs 1, 2, and 3.
The three examples illustrating the potential value of

long range planning are shown in the three columns of
Fig. 7. Each patient presents with an initial total popula-
tion of 109 cells, representing a 1 cm3 lesion. Each
example applies to a particular virtual patient with a par-
ticular population of subclones, drug sensitivities, and
rates of genetic and epigenetic evolution.
A drastic outcome difference between single-step and

multi-step strategies of the same heuristic is illustrated
in an example in the left column of the Fig. 7. In this ex-
ample, drug 2 is far more effective than drug 1 on sensi-
tive subclones (sensitivities 0.8 and 150 for drugs 1 and
2 respectively). Yet a minority initial R2 population (5 ×
106) and a high transition rate to drug 1 resistance
(4.5 × 10−5) cause the patient to be vulnerable to develop-
ment of an incurable R1-2 cell from an R2 precursor if the
R2 subpopulation is not prioritized for therapy. Single-step
strategy 1 first administers the two-drug combination to
minimize the total population. The sensitive and singly-
resistant subclones are nearly eradicated, but the R1-2

population emerges from the initial R2 subclone. The pa-
tient dies in the second treatment period from R1-2
growth.
In contrast, multi-step strategy 1 first administers a full

dosage of a less effective drug 1 to more rapidly control
the R2 population. The total population at the end of
period 1 far exceeds the corresponding total population
for single-step strategy 1, which begins with a two-drug
combination. However, this larger population is dominated
by R1 and thus can be eliminated by drug 2 in the subse-
quent periods. Thus, application of multi-step strategy 1
results in cure despite an initial move that appeared to be
inferior. The example illustrates the principle that singly
resistant subclones can be very dangerous if they are able
to rapidly evolve multiple resistance. Marked variations in
resistance acquisition rates between subclones are to be
expected due to differing degrees of genetic instability
conferred by different genetic instability mutations [29]
and differing numbers of ways to acquire the resistance
phenotype [2]. Differing profiles of variability from differ-
ent genetic instability mutations were predicted to exist
within different cells of the same individual cancer [4] and
this has recently been confirmed in lung cancer [43, 44].

Strategy 0 Single step 2.2 Multistep 2.2 ALTO-SMO ALTO

Two-drug cases

F
ra

ct
io

n 
cu

re
d

Fig. 4 Cure rates for 5 treatment strategies from simulations for 2-drug cases. The 5 treatment strategies include: (1) strategy 0, the current personalized
medicine strategy, (2) single-step strategy 2.2, (3) multistep strategy 2.2, (4) ALTO-SMO, and (5) ALTO. ALTO significantly enhances the cure rate
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In the second example, we compare ALTO to multi-
step heuristic 2.2 in a two drug system (middle column
of Fig. 7). In this example, drug 2 is more effective than
drug 1 on sensitive subclones (sensitivities 0.06 and 0.23
for drugs 1 and 2 respectively), and the transition rate of
acquiring drug 1 resistance (4.6 × 10−5) is higher than
the rate of acquiring drug 2 resistance (10−7). The initial
tumor is heterogeneous, containing 1 × 109 S cells, 5 ×
104R1 cells, and 5 × 102R2 cells. Multistep strategy 2.2
minimizes the risk of R1-2 emergence when the total
population < 1011. Initially R2 represents a higher risk
than R1 due its much more rapid rate of acquiring
resistance to drug 1 and becoming an incurable doubly
resistant cell. Multistep strategy 2.2 thus allocates more
dosages to curb the R2 population. By the end of the
first episode (5 treatment periods or 225 days), strategy
2.2 yields a low R2 population (11) but a high R1

population (4.1 × 105). The risk from the high R1 popu-
lation is no longer negligible, hence strategy 2.2 admin-
isters several two-drug combinations in the following
episode. Subsequently, the doctor is busy switching
treatments to put down one subclone but elevate an-
other. Eventually the R2 population reaches a critical
value, R1-2 cells arise from R2 and the patient dies in
1350 days.
In contrast, ALTO adopts a different strategy. Initially

it allocates more dosages to control the R2 population.
By 270 days R2 is eliminated while R1 rises to 9 × 105. It
then administers a full drug 2 dosage for several periods
to lower the R1 population. Eventually all subpopulations
are eradicated and the patient is cured. A reduction in
tumor diversity by fully eliminating a single sub-
population may be critical in this example.
The final example (right hand column of Fig. 7) com-

pares ALTO with multi-step strategy 2.2 in a three drug
system. In this example, drug 1 has a stronger effect on
sensitive cells (sensitivity 0.28) than drugs 2 and 3 (sen-
sitivities 0.08). Initially there are 1 × 109, 5 × 104R1 and
R2 cells and 5 × 106R3 cells. The transition rates of ac-
quiring resistance to drugs 1 to 3 are 10−11, 10−3 and
10−5 respectively.

Strategy 0 Single step 2.2 Multistep 2.2 ALTO-SMO ALTO

Three-drug cases
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Fig. 5 Cure rates for 5 treatment strategies from simulations for 3-drug cases. The 5 treatment strategies include: (1) strategy 0, the current personalized
medicine strategy, (2) single-step strategy 2.2, (3) multistep strategy 2.2, (4) ALTO-SMO, and (5) ALTO. ALTO significantly enhances the cure rate

Table 2 Cases where multistep strategy 2.2 is clinically superior
to single-step strategy 2.2 and vice versa

Number of drugs Multistep > Single-step Single-step > Multistep

2 6199 (99.8 %) 13 (0.2 %)

3 18909 (99.99 %) 2 (0.01 %)
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Multi-step strategy 2.2 minimizes the risk of emer-
gence of incurable multiply resistant cells. R1 cells carry
greater multiple resistance risk than R2 and R3 cells
with the above parameters as the latter have a slow rate
of R1 resistance acquisition. Multistep strategy 2.2 ini-
tially administers a full dosage of drug 2 in the first
period, followed by full dosage of drug 3 in the next
two periods, both of which reduce the R1 population.
In the fourth period, strategy 2.2 administers a three-
drug combination to reduce subpopulations with non-
negligible sizes (S, R2, R3, R2-3). At the end of period 5,
all the subpopulation sizes following the multistep
strategy are smaller than they would have been follow-
ing the single-step strategy (not shown). However, the
reduced populations only slightly delay emergence of
the multiply resistant subclones. The survival time ex-
tends from 900 days with single-step strategy 2.2 to
945 days with multistep strategy 2.2.

ALTO has the same dosage combinations in the first
three periods as multistep strategy 2.2. In contrast to
multi-step strategy 2.2, ALTO administers a third con-
secutive full dosage of drug 3 in period 4. This treat-
ment substantially increases R3 and R2-3 populations,
yet reduces the R1-2 subpopulation from 40 to 10. This
apparently inferior move has important consequences,
as R1-2 is successfully controlled in the long term by
ALTO yet steadily increases under multistep strategy
2.2. As we saw earlier, R1 cells and their derivatives are
more dangerous in this virtual patient due to the more
rapid ability to acquire resistance to drugs 2 and 3. A
highly complex series of maneuvers eventually results
in cure. Visual inspection of the diagram suggests that
the multistep strategy 2.2 recommendations have a cer-
tain regular periodicity which the tumor eventually
overcomes, whereas ALTO has a more complex recom-
mendation. Both strategies include highly complex
adaptive patterns of interleaved monotherapy and com-
bination periods.

Discussion
Prior work [2] has shown, within a single-step optimization
paradigm, that dynamic precision medicine strategies
explicitly considering intratumoral heterogeneity and evolu-
tionary dynamics can in principle confer dramatic improve-
ments in mean and median survival as well as greatly
enhanced cure rates for metastatic cancer patients.
Yet, even the dynamic precision medicine strategies of

our prior work are myopic in that they are single-step
heuristics with an explicit planning horizon of 45 days.
In this paper, we have examined treatment strategy hori-
zons of up to five years, in up to 40 individual 45-day
maneuvers, unprecedented to our knowledge. The strat-
egies have been examined for a wide variety of condi-
tions comprehensively surveying all potentially curable
initial conditions which appear to be consistent with the
literature and clinical experience.
We have shown that longer term planning leads to add-

itional improvements in outcome, which, while small on
average, are of great importance for a subset of individual
patients. In particular, there is a significant increase in cure
rate, an outcome highly valued by patients. The popularity
of high dose chemotherapy protocols with bone marrow
transplantation demonstrates that patients will actually
risk mortality from therapies in order to enhance their

Table 3 Cases where ALTO is clinically superior or inferior to each indicated strategy

Strategy Inferior 2 Superior 2 Inferior 3 Superior 3

Strategy 0 (Current precision medicine) 5 (0.003 %) 176718 (99.997 %) 1808 (0.2 %) 898155 (99.8 %)

Single step strategy 2.2 5 (0.08 %) 6378 (99.92 %) 5631 (14.5 %) 33093 (85.5 %)

Multi-step strategy 2.2 5 (2.7 %) 179 (97.3 %) 6247 (33.1 %) 12608 (66.9 %)

ALTO-SMO 5 (0.02 %) 32621 (99.98 %) 6313 (10.4 %) 54374 (89.6 %)

S

R1

R2

R1-2

Fig. 6 A minimal population dynamic model for a 2 drug system
with four phenotypic states. S = sensitive cells. R1 = cells resistant to
drug 1 and sensitive to drug 2. R2 = cells resistant to drug 2 and
sensitive to drug 1. R1-2 = cells resistant to both drugs. Arrows
indicate reversible genetic or epigenetic transitions between
phenotypic states. Each phenotypic state may represent a cluster
of related genotypes. Reproduced from [40] with permission
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chance of a cure. However, applying long range planning
to current therapies does not appear to be associated with
any downside risk based on the results of this study. The
average benefit of long-term planning is likely underesti-
mated in the study in that survival of cured patients is
truncated at 5 years (the length of the simulation). The
relative frequency of different parameter combinations,
representing different virtual patients, is unknown, and
thus all parameter combinations were weighted equally.
Thus, the magnitude of benefit observed in this study may
differ from the benefit observed in a real population. The
lack of downside risk does robustly indicate a net benefit,
however. Further work is needed to identify the subset of
patients who benefit from long range planning, increasing
the average benefit further according to the principles of
precision medicine.
The advantage of thinking ahead is also evident from

the comparison of numbers of cases where one method
is significantly better than another, in which a 5 year
strategic planning horizon outperforms a 225 day plan-
ning horizon, which in turn outperforms the original
45 day horizon. Long term outcomes appear to be more
likely with long term planning.
These findings have significant implications for the fu-

ture of clinical research as well. Whereas computational
experts have long known that “greedy algorithms” which

seek short term gains are inferior optimization tools to
those with longer time horizons [45], we find the in-
creasing use of short term endpoints such as tumor
shrinkage to adaptively govern randomization of pa-
tients in master protocols that match multiple therap-
ies to multiple biomarker-defined patient subsets
simultaneously [46, 47]. Master protocols are an im-
portant step forward in that they are a highly efficient
way to match biomarker defined subset to therapies.
Such matching is essential, as one cannot play chess
without first learning the rules. However, short term
endpoints may not always correlate with long term
benefits, and we prefer master protocols which govern
adaptations based on longer term outcomes or on
short term endpoints that have been extensively vali-
dated as correlating with these endpoints. The work
discussed herein provides biological reasons why
adapting based on short term responses of the largest
subclone, leading to tumor shrinkage, may be mis-
leading in some instances.
In the current study, in which complete information is

assumed, the long term strategies are executed as de-
signed for their full planning horizon. In real applica-
tions with incomplete information, the long-term
strategies would be updated every 45 days based on a
comparison of predictions and results, allowing the

Fig. 7 Treatment sequences for example cases with a significant outcome difference based on strategy horizon. Left: single-step vs. multi-step
strategy 1 for 2 drugs. Middle: multi-step strategy 2.2 vs. global optimization for 2 drugs. Right: multi-step strategy 2.2 vs. global optimization for 3
drugs. In each example, the dosage sequences and population dynamics of two strategies are demonstrated in the top and bottom rows. Horizontal
axes denote time, and vertical axes denote the population size in log scale. The dosage combination in each period is displayed by color bars on the
top. The height of each color bar is proportional to the dosage of each drug. Blue: drug 1, green: drug 2, yellow: drug 3. The temporal response of each
subpopulation size is displayed as a curve according to the legends by each figure
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system to “learn” based on progressive Bayesian updates
to probability distributions of parameter values.
The superiority of ALTO, which of necessity must rely

on a mathematical approximation, to heuristic ap-
proaches which incorporate clinical and biological intu-
ition into the computational framework, raises complex
issues. In this simulation, complete information about
parameters, a completely accurate evolutionary model,
and frequent access to tissues are assumed, and yet it is
well known that these elements will not be available in
real situations. In the face of these obstacles, it would be
premature to assume that a purely theoretical approach
could fully supplant biological and clinical intuition. Re-
gardless of the computational approach used, its recom-
mendations need to both inform and be informed by
biological and clinical principles. The development and
testing of heuristic algorithms against experiment al-
lows this to occur, and therefore heuristic algorithms
may have an important role. Further research is needed
to develop methods which can plan further ahead and
still be intuitive.
From a translational perspective, efforts should be made

to collect patient materials from rapid autopsy to work
backwards from long time horizons [2]. Moreover, trans-
lating these ideas in real clinical situations optimally will
require improvements in other technologies as the ap-
proach ideally demands serial sampling of tumors followed
by detection, isolation, and molecular and phenotypic ana-
lysis of rare sub-clones to determine their growth rates,
drug sensitivities, and heritable phenotypic transition
rates. Relevant technologies include immortalization of
patient materials [48, 49], circulating tumor cells [50],
plasma DNA analysis [51], specific imaging probes [52],
single cell sequencing [53], and duplex DNA sequencing
for identifying rare sub-clones [54]. However, each of these
have limitations and therefore it is anticipated that some
key model parameters will not be directly measurable in
given individuals and need to be simulated as probability
distributions based on population data [40]. We envision
that the initial probability distributions of parameter
values would be provided from population databases, and
iteratively refined in a Bayesian fashion in individual pa-
tients based on subsequent observations in that individual.
The resulting optimal strategies must incorporate a prob-
abilistic analysis of possible outcomes.
The need to comprehensively evaluate multiple pa-

rameters as probability distributions limits the feasible
complexity of the core model, as the computational
complexity expands exponentially with the number of
unmeasured model parameters. More complex and
“realistic” models will result in increasing challenges to
measure the relevant parameters in patients.
The simplicity of the core model analyzed herein is

therefore essential. We also note that the current

precision medicine paradigm,with its static matching ap-
proach, has produced meaningful patient benefits, and
we believe that a first order approximation to precision
medicine incorporating dynamics can be similarly bene-
ficial without representing all the known and unknown
features of cancer.
The core model does not explicitly account for numer-

ous complexities of real cancers and cancer therapy, in-
cluding inhomogeneous biodistribution of therapies into
tumor tissue, the distinction between driver and passen-
ger mutations, non-heritable adaptations, tumor cell
dormancy, competitive and cooperative interactions be-
tween sub-clones, and interactions with the host stroma
and immune system [55–59]. However, in actual applica-
tion, the model should be linked with knowledge sources
such as measurements on ex vivo tumor tissues, cell line
banks, population molecular and clinical data, theoret-
ical pathway and network knowledge, and functional
genetic screens [11, 60–62]. These sources should be
linked to the core model in a modular fashion to inform
the probability distribution of parameters based on la-
boratory or population data, and this is an important
challenge for future research [2, 40].
For example, the drug sensitivity phenotype of a herit-

able state will not have a single fixed value, but rather a
probability distribution based on such factors as in-
homogeneous biodistribution of the therapy into tumor
tissue, spatial heterogeneity of the tumor microenviron-
ment, tumor dormancy, and non-heritable adaptations.
We hypothesize that non-heritable adaptations will oper-
ate on a faster time scale than genetic evolution, and the
former will be responsible for primary resistance and
early relapse, whereas the latter will govern late relapses.
If this hypothesis is correct, multiscale integrated models
of non-heritable adaptations and genetic evolution could
be more readily developed in selected instances by sep-
arating them on the basis of timescale. We further
hypothesize that the available non-genetic adaptations
and their fitness costs will ultimately depend on the gen-
etic endowment of a cell, such that a genetic alteration
may lower the fitness cost of initial non-genetic resist-
ance in some cases. Further, each phenotypic state actu-
ally represents many underlying heritable states as well,
and the transition rates between phenotypic states will
be the sum of rate constants from many individual tran-
sition mechanisms [2], for example the multiple mecha-
nisms of resistance development to epidermal growth
factor receptor tyrosine kinase inhibitors in lung cancer
[63]. Finally, cooperative and competitive interactions
between subclones are readily added to the core model
itself by replacing the scalar net growth rate with a net
growth rate matrix with cross terms. In all of these
cases, the additional complexity would be added to the
core model and/or linked models only if supported by
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experimental data as well as clinical data in relevant
populations, and the ability to measure the resulting pa-
rameters in the majority of individual patients would be
preferred.
Our model defines “states” in terms of drug efficacy,

and each such state includes multiple molecular configu-
rations. There are mathematical models that capture re-
fined states of molecular alterations, for example
multistage mechanisms such as increase or decrease of
copy numbers of cancer-related genes [64–66]. Such
models can provide a more precise description of spe-
cific mechanisms, yet substantial expansion of model
complexity also makes parameter estimation, treatment
optimization, and large-scale simulations much less
tractable. If there is a monotonic relation between
copy numbers and drug resistance, and state transi-
tions are relatively homogeneous (e.g., the transition
probabilities from 2 to 3 copies and from 3 to 4 cop-
ies are in the same scale), then our model is a rea-
sonable approximation.
The approach herein also relies on a continuous

approximation rather than a stochastic simulation ap-
proach. Given the large number of treatment sequences
to be evaluated and the desire to add additional com-
plexities, the computational cost of stochastic simulation
may be prohibitive. While a continuous approximation
may not delineate the variability in outcomes under
identical conditions, it has been shown to accurately
predict the average outcomes in the case of genetic evo-
lution of drug resistance [67].
Several authors have argued for the importance of

combination therapy in addressing the complicated and
dynamic nature of cancer [42, 68–71]. Moreover, com-
bination therapy has been highly successful against the
human immunodeficiency virus [72], which has a uni-
formly rapid rate of evolution but a much less complex
genome than a eukaryotic cell.
We agree with several key conclusions from these au-

thors. Combinations are an essential component of suc-
cessful cancer therapy in our view. When it is possible
to give the desired combinations in full dose, this is
likely to be superior. Sequential monotherapy by the
current personalized medicine strategy is clearly prob-
lematic. A sufficient number of non-cross-resistant
agents or combinations are required to deal effectively
with the diversity and dynamic nature of cancer. How-
ever, our work also differs in several important respects,
and ultimately leads to a much more complex recom-
mendation involving rapidly interleaved pulses of full
dose monotherapy and combinations specifically tailored
to individual population structure and dynamics.
First, we consider the frequent need for dose reduction

in combination due to toxicity. Occasionally dose reduc-
tion is not necessary but often it is, and in general if we

want to select the combinations for optimal therapeutic
effect we will not always be able to simultaneously select
for non-additive toxicities. The need for dose reduction
in combination therapy creates strategic dilemmas. The
genetic complexity of cancer, far exceeding that of the
human immunodeficiency virus (HIV) due to the larger
number of genes, exacerbates these dilemmas. We note
that each genetically or epigenetically distinct sub-clone
likely requires a combination for its eradication due to
non-heritable resistance mechanisms such as feedback
loops. A cancer with multiple heritably distinct sub-
clones would likely require combinations of combina-
tions, and these higher order combinations would likely
not be feasible to administer simultaneously at meaning-
ful dosages. (In our formulation, “monotherapy” may
mean a lower order synergistic combination directed
against a single subclone). In addition to reduced phar-
macodynamic effect, lower dosages may impair biodistri-
bution into the tumor space [73].
Second, in contrast to previous authors, we allow

each subclone to have different baseline rates of genetic
change, and vary the overall transition rates for each
subclone independently over 8 orders of magnitude,
taking into account the possibilities of multiple and
differing genetic instability mutations in different sub-
clones and of heritable change by epigenetic mecha-
nisms [4, 29, 44], in addition to the varying number of
loci associated with different phenotypic changes which
are common to our model and that of Bozic et al. [42].
Thirdly, we consider a much larger number of initial
conditions across the parameters in general, compre-
hensively exploring parameter space relevant to oncol-
ogy. Finally, instead of simply comparing long term
monotherapy to combinations according to the current
personalized medicine paradigm, we consider a very
large number of complex treatment sequences. (“mono-
therapy” meaning single or combination treatment
against a single heritably distinct subclone).
Accordingly, our recommendation for the role of

combinations depends on the initial conditions and
dynamics of each individual patient as well as the ability
to deliver the relevant therapies in combination at full
dosage, and their dose-response curves, synergy, and
antagonism. Elaborate interleaved sequences of combi-
nations and monotherapy are shown to be optimal in
some cases. In other cases, part of the optimal treat-
ment sequence involved rapid reduction in tumor diver-
sity via sequential focused elimination of sub-clones
using pulses of high dose “monotherapy”. Sequential re-
duction of tumor diversity narrowed the cancer’s op-
tions, backing it into a corner. Increased diversity has
been shown to be associated with increased risk of
tumor progression [74]. Diversity of therapy is maxi-
mized with complex patterns involving a large number
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of therapies, even when simultaneous administration of
higher order combinations is not possible, by rapid
interleaving sequences reassessed every 45 days.
Other authors have pointed out that high intensity

therapy with the intent of complete tumor eradication
may maximize selection pressure for resistance devel-
opment. [75, 76] and recommend less intensive ther-
apy. We find this concern particularly appropriate in
the case of the current personalized medicine strategy
that maintains a constant therapy as long as the patient
is benefiting, where benefit is defined as lack of clear
tumor worsening. This produces a smooth, predictable
fitness landscape on which evolution to resistance is
straightforward. In contrast, the complex and varied
sequences of therapies discussed both in [75] and
herein create unpredictable fitness landscapes. Evolu-
tion on jagged, unpredictable fitness landscapes is far
more difficult [77].
In the current work, we have also shown equivalent

results in a system of three non-cross-resistant agents,
and the lessons for therapeutic strategies appear to be
similar to the two drug case in that similar dynamic pre-
cision medicine strategies were optimal in both cases.
However, absolute survival times of the two and three
drug simulations cannot be directly compared since in
the three drug simulation, in contrast to the two drug
simulation, doubly resistance cells were permitted at
time zero. Furthermore, in the three drug case the can-
cer was given additional genetic complexity (8 states ra-
ther than 4) to allow it to escape three drugs. This
illustrates the point that the number of drugs required
to confer clinical benefit or cure depends on the under-
lying genetic complexity of the cancer. This complexity
is likely to be very high given current theoretical and ex-
perimental knowledge.
The best multi-step heuristic in both two and three

drug systems, strategy 2.2, attempts principally to pre-
vent the development of multiple resistance unless the
tumor burden is large enough to be immediately threat-
ening. The importance of preventing multiple resistance
recalls the earlier work of Goldie and Coldman [68], and
confirms both our earlier work [2] and the more recent
study by Bozic et al [42].

Conclusions
Therapy planning with a long strategy horizon provides
significant benefits and previously unrealized cures to
selected patients. Optimal strategies incorporate both
combinations and high dose “monotherapy”. Similar
principles apply in both two and three drug cases. These
results have significant implications for future precision
medicine paradigms as well as clinical and translational
research methods.

Methods
The work herein utilized a population dynamic model
of tumor growth (Fig. 6 and Additional file 1:
Supplementary Methods) and a formalization of the
current personalized medicine strategy and 5 dynamic
precision medicine strategies as single-step heuristics
(Additional file 1: Table S1) [2]. The strategies, which
were updated every 45 days, used an evolutionary
model to predict the future state at the end of the 45-
day interval, choosing the treatment which was pre-
dicted to either minimize the total cell number or the
likelihood of forming a doubly resistant cell. The strat-
egies differed in how they used the data to prioritize
among these two goals.
The evolutionary model (Fig. 6) was a focused minimal

model with two non-cross resistant targeted “drugs”
(may be combinations) each optimal for a particular sub-
set of heritable somatic variant states. Each heritable
state corresponded to a different resistance profile due
either to explicit resistance mutations among the “pas-
senger mutations” or to a partially overlapping set of
oncogenic mutations, leading to differing pathway addic-
tions [7, 13]. There were 4 phenotypic states represent-
ing 2 × 2 possibilities of sensitivity and resistance to the
two agents/combinations in the two drug simulations
and 8 phenotypic states representing 2 × 2 × 2 possi-
bilities in the three drug case. The model featured ex-
ponential growth and first order heritable transitions
between the states, as well as dose dependent reduc-
tion in net growth rate by drugs. Virtual patients had
an evolving mixture of cells rather than a single con-
sensus clone.
The model assumed that non-cross resistant therapies

could be identified to address the different heritable
states with the exception of one “incurable” multiply re-
sistant state which was assumed to not be pre-existing.
Each therapy may itself be a single agent or combination
but is directed at a single heritable somatic state. Im-
portantly, if multiple drugs were given in combination,
the dose was reduced due to toxicity, which is often the
case in actual practice. If full doses of all agents can be
given simultaneously, simultaneous combinations are
optimal [42], but when that is not the case a more com-
plex strategic dilemma occurs.
Resistance to the two (or three) non-cross resistant

therapies is assumed to be acquired stepwise. If resist-
ance to all therapies utilized can occur in a single step,
therapy is unlikely to be effective regardless of strategy
[42], and therefore these scenarios are of less interest for
the present work.
The central equation expressing these points is given

below. The instantaneous accrual rate of each subpopu-
lation is the intrinsic net growth rate plus the heritable
transition rates to it from other subpopulations, minus
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the drug-induced cell death rate. Given K cell types and
D non-cross resistant drugs (each of which may in fact
be a combination directed at a single heritable somatic
state), their population dynamics can be concisely
expressed as a vector differential equation:

dX
dt

¼ I þ Tð Þg0 − diag Sa dð Þ½ �U X tð Þ − 1ð ÞX tð Þ ð1Þ

where a K × 1 vector X(t) denotes the size of each sub-
population, g0 denotes their intrinsic growth rate (the
model may be easily generalized to allow different
growth rates for different phenotypic states), I is a K × K
identity matrix, and T a K × K heritable transition rate
matrix. A D × 1 vector d(t) denotes the normalized dos-
age of each non-cross resistant drug where the sum over
all drugs equals to one. Requiring the normalized sum of
the dosages to equal 1 expresses the need for dose re-
duction in combination, but in a real application the
allowed dosage combinations would be taken from
Phase 1 clinical studies. A K ×D matrix Sa denotes the
sensitivity of each drug on each cell type. The current
study is based on the drugs enhancing the death rate of
cell populations, but the model may be easily generalized
to include drugs which slow the growth rate instead.
U(X(t) − 1) is a component-wise step function. It sets the
growth rate to zero when the subpopulation size is
below a single cell, preventing exponential growth from
a negligible subpopulation.
Additional details are provided in Additional file 1:

Supplementary Methods.

Experimental basis of parameter selection
Each virtual patient represented a unique parameter set
of net growth rates, drug sensitivities, initial sub-
populations, and genetic/epigenetic transition rates be-
tween the heritable states. A large number of parameter
configurations (approximately 760,000 for the two drugs
cases and 1.7 million for the three drug cases) were con-
sidered based on a comprehensive review of the clinical
and experimental literature, and the virtual patients rep-
resent a thorough sampling of possible oncology scenar-
ios, limiting to “curable” cases where both drugs are
capable of producing net negative growth rates for their
respective populations when given at full dose. The com-
prehensive sensitivity analysis over a very large number
of virtual patients differentiates this work and the
current study from other efforts in this field. A variety of
sources were used to ensure that the parameter ranges
were realistic as well as sufficiently broad to encompass
all likely oncology scenarios. These included preclinical
and clinical literature as well as experience of one of us
in oncology patient care and clinical research, compris-
ing several dozen experimental oncology therapeutics in

most major tumor types and thousands of patients over
several decades.
For example, the most rapid tumor growth rates were

informed both by the preclinical studies of fully cycling
cells [30, 31] and clinical observations of a Burkitt’s
lymphoma patient. The slowest tumor growth rates were
derived from observations of 8000 men in a clinical re-
search study of bicalutamide adjuvant therapy of pros-
tate cancer [32] led by one of us, and are also in accord
with growth rates observed in a study of localized pan-
creatic cancer [33].
The phenotypic transition rates were varied over 8 or-

ders of magnitude from 10-11 to 10-3. The lowest rate as-
sumes the low rate of genetic change measured
preclinically in stem cells [34], and that only one single
base in the genome governs the phenotype and must be
mutated for a transition to be observed. It is in accord
with observed mutation burdens in retinoblastoma [35].
The highest transition rates incorporate maximal in-
creases in genetic instability for point mutations that
have been observed preclinically [29, 36], the likelihood
that a single amino acid change will alter protein func-
tion [37], and the possibility of multiple sites in the gen-
ome, alteration of which can lead to the phenotype. It is
also sufficient to account for a scenario in which 10 in-
dependent resistance mechanisms exist and the cells
additionally have a severe chromosomal instability defect
[38]. This broad range of phenotypic transition rates is
also compatible with the broad range of transition rates
that fit a locally advanced pancreatic cancer dataset [33].
We note that the results reported in Beckman,

Schemmann, and Yeang [2] concerning benefit of dy-
namic precision medicine strategies have been shown
to apply throughout this very broad parameter space. That
is, patients who benefitted from dynamic precision ther-
apy do not cluster in a localized region of this space.
Additional detail on parameter selection is provided in

the Additional file 1 to [2].

Multi-step extensions of heuristics
The strategies in Table 1 are single-step heuristics that
propose dosages for the next treatment period only.
They are myopic in that treatment sequences that are
beneficial in the long run but suffer from short-term
losses will be excluded. In this work, strategies 1-3 were
extended to design treatment sequences of multiple pe-
riods. Designing a treatment sequence with a fixed num-
ber n of look-ahead periods can be viewed as traversing
a decision tree illustrated in Fig. 1. Each node denotes
the population structure at the beginning of a treatment
period, and the 2D − 1 links emanating from this node
denote the possible dosage combinations administered
during the subsequent period (where D is the number of
non-cross resistant drugs or drug combinations). The
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root encapsulates the initial population structure, and
terminal (leaf ) nodes denote the states where either their
depths reach the look- ahead period n, the patient is
cured (each subpopulation size < 1) or the patient dies
(total population size exceeds the mortal threshold 1013).
All possible n-step treatment sequences are represented
as paths of length n in the decision tree.
Multistep extension of heuristic treatment strategies is

realized by a branch-and-bound algorithm on decision
trees [78]. At the beginning of each of the n treatment
periods, a decision tree of subsequent possible n-step
treatment sequences is generated. The algorithm tra-
verses all paths along the decision tree and selects the
one whose terminal population structure either vanishes
(each subpopulation has < 1 cell) or satisfies the criteria
stipulated by the heuristic strategy. To reduce unneces-
sary search a subpath is discarded when the population
structure of an intermediate node exceeds the bounds of
both total cell number and multiply resistant cell num-
ber established from previously traversed sequences at
the same node depth. A detailed description of the algo-
rithm is reported in Additional file 1: Supplementary
Methods.

Adaptive long-term optimization (ALTO) over treatment
sequences
Long range optimization of treatment sequences is chal-
lenging. One has to construct the treatment decision tree
with a depth equal to patients’ life spans or the maximum
monitoring time, and find either the longest path or the
path leading to cure. With 45-day treatment periods and a
5 year strategy horizon, employing fixed dosage combina-
tions, there are 340 = 1.2 × 1019 paths for two-drug cases
and 740 = 6.4 × 1033 paths for three-drug cases. Exhaustive
evaluation is clearly intractable.
Two approximations are utilized. The first is a branch-

and-bound method for pruning the tree. The survival
corresponding to the population structure in each node
of the tree is bounded from the top and the bottom. The
upper bound of survival is given by the population dy-
namic model with full dosages of all drugs simultan-
eously. The lower bound of survival is that associated
with the best available allowed static treatment sequence
(taking toxicity into account) for the whole 5 year
period without adaptation, as determined by the popula-
tion dynamic model. A sub-path in the decision tree is
inferior to a previously traversed sub-path if its upper
survival bound is less than the lower survival bound of
the previously traversed sequence. Inferior sequences
are discarded.
The second approximation is building the tree from

sub-trees of shorter length. The paths within a sub-tree
are ranked by the geometric mean of their upper and
lower survival bounds, and a limited number of top-

ranking sub-paths are retained prior to building out the
next incremental portion of the tree.
Both of these approximations are described and justified

in detail in Additional file 1: Supplementary Methods.

Simulation setup
The population dynamic model in Fig. 6 consists of 9
and 17 free parameters for two-drug and three-drug
cases respectively, including the intrinsic growth rate,
initial subpopulations, drug sensitivity ratios and herit-
able transition rates. Each parameter was varied over 7
possible values. The ranges of values were chosen to en-
compass the entire range of likely values over solid and
liquid tumors based on experimental and clinical data
[2]. To reduce the number of parameter configurations
we applied filtering criteria to rule out the cases where
the patient is cured or dies regardless of treatment strat-
egies employed, and required, for this study of long
range planning, that the patient be “potentially curable”,
ie both drugs have the ability at full dose to cause pro-
gressive reduction of sensitive sub-opulations rather
than merely slowing growth. 764104 and 1723116 par-
ameter configurations passed these filters for two-drug
and three-drug cases. For each parameter configuration,
we implemented 11 treatment strategies, simulated their
population dynamics, and calculated survival times
under those regimens, where death is defined to occur
when the total cell population exceeds 1013 from an ini-
tial population of 109. Treatment strategies include the
aforementioned five single-step strategies (Additional file
1: Table S1), four multistep extensions (strategy 0 ex-
cluded), and ALTO algorithms for all valid dosage com-
binations and for mono therapies alone (ALTO-SMO).
The survival time of a patient cured before 1800 days
was reported as 1845 days. Parallel processing utilized
23 Hewlett Packard (HP) DL360 G7 servers containing
dual Intel(R) Xeon(R) central processing units (CPUs)
E5520 with 2.27 gigaherz (GHz) and 24 gigabytes (GB)
main memory. The total running time was 20 h for two-
drug cases and 10 days for three-drug cases. Detailed
descriptions of the simulation setup are reported in
Additional file 1: Supplementary Methods.

Reviewers’ comments
Reviewer Report 1: Wendy Cornell, Principal Research
Staff Member, IBM Watson Research Labs
Reviewer comments:
Reviewer summary –
The authors describe computer simulation studies of

novel personalized and precise treatment strategies for
cancer patients which build on and extend the initial
strategy presented in their 2012 PNAS paper. Their
strategy is provocative and challenges the current best
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practices which focus on the dominant clone and take a
reactive approach to switching therapies. In contrast, the
2012 PNAS paper described a strategy which considers
the best treatment at each step (45 day treatment
period) to address the major threat, be it drug-resistant
clone or overall tumor burden. The strategy anticipates
and treats drug resistant clones, even when they do not
represent the major clone in the tumor and are below
detection level, before they can acquire resistance to
a second drug. The model incorporates features such
as intratumoral heterogeneity and evolutionary dy-
namics to represent the size and composition of the
evolving tumor.
In this current manuscript the authors have added ap-

propriate complexity to the strategy by thinking multiple
steps ahead, much like a chess player, with both 5-step
and 40-step (long term) approaches considered. This ap-
proach then leverages the vast amount of molecular and
clinical knowledge which has been acquired over de-
cades of cancer research. The simulations are carried
out on a very large set of virtual patients whose charac-
teristics fall into ranges drawn from literature data and
the clinical experience of one of the authors. Results are
compared for different versions of the strategy and
improvements seen in cure rates. This new approach is
well aligned with the call for improved personalized
medicine and with recent advances in deep sequencing.
The strategy is far from ready for clinical adoption, but
the models and results motivate and provide a solid
foundation for future clinical and translational research
to identify best application of the existing mechanism-
based cancer drugs. In summary, the work is highly ori-
ginal and significant and the virtual patients are modeled
with valid characteristics. The details of valid clinical
application should be explored and demonstrated in
follow-up studies.”
Author response: We thank Dr. Cornell for these

comments.
Reviewer recommendations to authors –
Major
The authors leverage literature data as well as their

own significant clinical experience to select relevant
parameter ranges for the simulations and note that it
differentiates their work from others in the field. At
the point this claim is made in the text a few refer-
ences should be added.
Author response: We have moved appropriate refer-

ences from the methods regarding such parameters as
transition rates. Some of the clinical information is from
clinical experience treating patients and from leading
clinical studies, however, and is not publicly available.
Reviewer comment: Are the simulation inputs or re-

sults weighted according to relative frequencies of dif-
ferent parameter combinations? If not, then although

the results are meaningful, it should be clarified that
they do not suggest population outcomes for this set
of virtual patients.
Author response: we agree with this comment and

have qualified the conclusions appropriately. The relative
frequency of different parameter combinations is un-
known. Importantly, since few patients appear to be
harmed by the proposed approach, the conclusion that
the approach represents a net improvement in cure rate
is probably robust. However, exact quantification of the
magnitude of the effect is confounded by the issue raised
in this comment.
Reviewer comment: How would the design of future

clinical trials be impacted by the adoption of such alter-
native treatment strategies since there is no single strat-
egy to test but rather many different individualized
strategies?
Author response: We see the approval of individual

agents still requiring traditional trials, but these agents
could then be tested post-approval in settings where their
intended target is not the majority subclone. We also see
the possibility of randomized trials where the same
agents are utilized according to conventional precision
medicine vs dynamic precision medicine, a higher order
comparison independent of any individual therapy
sequence.
Reviewer comment: A fundamental concept promoted

by the authors is that the best drug at a given stage is
often not the best one for fighting the main clone popu-
lation in the tumor, but rather one which is not quite as
effective against the major clone but which is very effect-
ive against a minor clone population which is drug re-
sistant. Since the population of the drug resistant clone
is often below the detection level, how is it determined
which drug is relevant to treat a pre-existing or later
evolving resistant clone?
Author response: Complete translation of these con-

cepts certainly relies on optimal technologies for sub-
clone detection and repeat access, which are emerging
but are not yet optimized for solid tumors. However,
we also propose formulating strategies based on in-
complete data by probability weighted optimization.
Based on population data and increasing molecular
knowledge, we believe it will eventually be possible to
define probability distributions for the existence of
these states in populations that can be used for prob-
ability based optimization when information is miss-
ing. Repeated individual data over time will allow
progressive refinement of probability based models in
individual patients using Bayesian techniques.
Reviewer comment: Minor
The 3-drug results are interesting and relevant to real

world scenarios, but they are confusing when presented
side-by-side in Tables 2 and 3 with the 2-drug results.

Yeang and Beckman Biology Direct  (2016) 11:56 Page 18 of 25



The caveat that the two sets of results cannot be com-
pared currently appears near the end of the Results sec-
tion. Moving that caveat to appear sooner in the main
text is recommended. The 3-drug results could even be
moved to Additional file 1 to simplify the analysis since
it is already very complicated. If the 3-drug results are
left in the main text and in Tables 2 and 3, then the
addition of a footnote to each table explaining why com-
parison is inappropriate is recommended.
Author response: We have made the caveat concerning

not being able to directly compare 2 and 3 drug simula-
tions more prominent in the text and footnotes of Tables
1, 2 and 3. For the former Figs. 2 and 3, we have made
separate figures for 2-drug and 3-drug cases (now Figs.
2,3,4 and 5). Extension to three drugs is important in
that this level of complexity and likely higher will be re-
quired to deal with the diversity of tumors.
Reviewer comment: Also, the addition of percentage

values to Tables 2 and 3 in parentheses following the
raw numbers is recommended.
Author response: We have made the change requested.
Reviewer comment: The rationale for selecting a

45 day time period should be explained.
Author response: We have added an explanation. In a

clinical trial, cancer patients often get a total estimate of
tumor burden by computed tomography every 6 weeks.
Thus, if a new therapy is started, its success is first
judged after six weeks. In addition cancer treatments are
often given in three week cycles which allow for recovery
of the bone marrow and intestines from common toxic-
ities, so that the patients are returning to be seen at three
week intervals. Therefore, we simulated a situation with
a new therapeutic decision every six weeks to coincide
with the current schedule of other clinical activities. We
rounded 6 weeks = 42 days to 45 days. The influence of
the length of this period on our results is an interesting
topic for future research.
Reviewer comment: Many permutations are consid-

ered in this study and the nomenclature can be hard to
follow. This reviewer had particular trouble remember-
ing the differences between “global optimization” and
“global monotherapy.” She suggests adapting the nomen-
clature to make the consistencies and distinctions be-
tween the different model features (single vs 2 or 3
drugs, single vs multi step planning, 5 vs 40(complete)
steps) more explicit and clear.
Author response: Per the suggestions from Dr. Cornell

and other reviewers below, we have changed the terms
“global optimization” to “adaptive long-term optimization
(ALTO)” and “global monotherapy” to “adaptive long term
optimization: serial monotherapy only (ALTO-SMO)”. We
hope these terms are more intuitive and that the acronyms
are helpful in aiding recall.
Reviewer comment:

Addition of a figure showing the data and selected
treatment for each time period for one or more exam-
ples would be very helpful.
Author response: We engaged in further discussion

with Dr. Cornell for clarification of her request. She
agreed that Fig. 5 (now Fig. 7) already serves this
purpose.

Reviewer report 2: Marek Kimmel, Rice University
Reviewer summary –
I find this paper very interesting and important.

Without an attempt to re-state the abstract, the authors
show that while multi-step and global optimization of
cancer strategies provide no significant average survival
benefit, cure rates are significantly increased by global
optimization. I think that the paper is very well-written
and it is essentially suitable for publication in Biology
Direct.
Author response: we thank Dr. Kimmel for recognizing

the importance of the paper.
Reviewer recommendations to authors –
I find this paper very interesting and important.

Without an attempt to re-state the abstract, the authors
show that while multi-step and global optimization of
cancer strategies provide no significant average survival
benefit, cure rates are significantly increased by global
optimization. I think that the paper is very well-written
and it is essentially suitable for publication in Biology
Direct. I list several items, which may be considered in
a revision.
Line 121. “A situation was simulated in which two

non-cross resistant drugs are available for treatment.” I
would like to learn the authors’ opinion concerning how
it can be determined that two anti-cancer drugs are
non-cross resistant. I think this point is important, since
it is conceivable that some types of resistance will not be
limited to a single agent.
Author response: Operationally, it means that no sin-

gle molecular alteration conferring resistance to both
agents simultaneously is known. Mechanisms of multiple
resistance are known to exist for many classes of drugs,
including those that work by different mechanisms. Like
many features of this approach, increasing oncology
knowledge will benefit this aspect. In vitro, one can treat
with very high dose combinations and look for emergence
of resistance in a forward mutation assay. It will not be
easy to find truly non-cross resistant drugs. We have
added some language to the introduction concerning
these points.
Reviewer comment: Line 150. “In the simulation, each

patient started with a burden of 109 cells (a single 1 cm3
lesion), and only if the total cell number increased to
1011 or more cells would strategy 2.2 choose the treat-
ment that focused on minimizing the total cell number.”
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What will change in the conclusions of the paper if these
numbers were varied, due to geometry of tumor, or
other considerations?
Author response: In Beckman, Schemmann and Yeang

[2], a related strategy with a threshold of 1010 was evalu-
ated the conclusions were similar. In the few cases where
one threshold was better than another, the higher thresh-
old was generally better. In real applications, total tumor
reduction may be required for a variety of reasons, in-
cluding local geometry as Dr. Kimmel points out. The
best judge of this, as we have stated in this and other
publications, will be the physician. The key to the strat-
egy is that total tumor reduction is prioritized only when
it is absolutely required. This is a very good point and
suggestion for our future research.
Reviewer comment: Line 289. “Survival time is defined

as the time the tumor burden is maintained at less than
1013 cells.” This may be realistic in the cancers in which
it is the primary tumor that kills the patient. However in
many cancers, these are metastases that lead to terminal
disease. Could you clarify this point?
Author response: We regret that this critical point was

not clear in the article. Actually we were not thinking of
a single tumor killing the patient. Our approach is specif-
ically designed for patients suffering from metastatic dis-
ease. By “tumor burden”, we mean total tumor burden
across many lesions, uncountable widely spread metasta-
ses. A single lesion would have difficulty growing to
1013cells and still maintain a blood supply. Our experi-
ence agrees with Dr. Kimmel. Most patients will succumb
to metastases, not a single large lesion. We have clarified
that the approach is for patients suffering from meta-
static disease, and that the number of tumor cells repre-
sents the total over all lesions.
Reviewer comment: Line 309. “In the two drug system,

global monotherapy gave shorter median survival but
higher cure rates.” This does not appear clear to me.
What is the relationship between these two measures of
outcome?”
Author response: The median reflects the 50 % point

and may not correlate with cure rates when cures are less
than 50 %. In global monotherapy, the lower median
compared to global optimization (ALTO) must reflect in-
ferior performance of global monotherapy (ALTO-SMO)
compared to global optimization for some patients within
the lower half of outcomes. Cure rates reflect the upper
portion of the distribution of outcomes. Global monother-
apy (ALTO-SMO), on the whole, performs surprisingly well,
indicating that long range planning is as important as the
simultaneous delivery of combinations. However, the most
optimal approach is global optimization (ALTO) which in-
corporates long range planning and strategic use of both
high dose monotherapy and simultaneous combinations as
needed.

Reviewer report 3: Andrzej Swierniak, Silesian University
of Technology
Reviewer summary –
“The manuscript is devoted to hot problems related to

personalized anticancer therapy. The authors present
outcome of the so called dynamic precision treatment
strategies which take into account cancer evolution and
intratumor heterogeneity. Using simulations on the pop-
ulations of virtual patients the outcomes are compared
for dynamic strategies in which optimization is per-
formed in single 45 day step, 5 steps ahead and 40 steps
ahead and two or three drugs are used. I believe that the
topic and the results are of interest and worth publish-
ing. The paper is clearly written and I accept the quality
of language as well as in the presentation style. However
I see a number of major and minor problems which
should be overcome before the manuscript is accepted
for publication.”
Reviewer recommendations to authors –
The paper is interesting, and contains original and

clearly presented results. Nevertheless there are some
problems that should be addressed before acceptance of
the manuscript for publication.
Author response: We thank Dr. Swierniak for recogniz-

ing the originality of the findings, as well as for his
insightful and detailed analysis which provides import-
ant ideas for further research. We wish to make some
general comments concerning Dr. Swierniak’s advice. The
first point is that the primary purpose of this paper is to
evaluate long term planning as an added feature in can-
cer therapy directed by evolutionary dynamics. As we
state in our earlier paper [2] and the current one, the
general principles we illustrate here should be applicable
to any model based on evolutionary dynamics. While
finding a complete evolutionary dynamic model of cancer
is of great interest in general and for our own future re-
search, it is not the focus of this paper. Secondly, as we
have stated extensively in the discussion, the model we
did employ does not (and is not intended to) fully repre-
sent all known complexities of cancer biology. In design-
ing the model, we were guided by the principle of
parsimony. Parsimony is essential for three reasons: 1.
For the purpose of this study, the predictions of the model
must be computable for a very large number of treatment
sequences and over a vast combinatorial space of all ad-
justable parameters. Adding additional features to the
model rapidly causes a combinatorial explosion of ad-
justable parameters. 2. A major goal of our research is
actual translation to patient therapy, and we are ac-
tively engaged in discussions with experimentalists and
clinicians in an attempt to do so. We agree with Dr.
Cornell who stated above that even the current model
is far from translation. In our view, the biggest obs-
tacle is obtaining time series data from patients and
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measuring the parameters of our model in real time
to inform patient therapies. Again, adding additional
model features greatly exacerbates this problem. We
have therefore designed what we believe to be a first
order approximation to evolutionary dynamics. We be-
lieve this has the potential to help patients, in that
even the zero order static matching of current precision
medicine has had a clear positive impact for many pa-
tients. 3. The large number of theoretical models for cancer
in part mirrors the large number of experimental models,
each of them contrived to illustrate a particular aspect of
the problem. In our experience in clinical development of
experimental anticancer agents, the experimental data
has rarely been predictive of clinical outcomes. We believe
this is due to the fact that such models are specifically con-
trived, and each one represents only a small fraction of
what is seen in a clinical population. That is, each patient
will be different and require different customization of the
simple generic model. In actual application, we would be
interested in adding complexities to the model if and only
if they can be evaluated for their relevance and quan-
titatively characterized in individual patients in real
time, something which we hope will improve over time.
In addition to this general concern, we believe current
experimental models suffer from very low carrying cap-
acity relative to the clinical situation, causing exagger-
ated perceived importance of competitive dynamics
between subclones, as well as from small numbers of cells
and limited observation time relative to clinical situa-
tions, resulting in underestimation of importance of rare
genetic events.
Reviewer comment: Major problems: 1) The authors

seem to understand that drug resistance and other
processes altering the behavior of cancer cells are driven
by dynamical mechanisms but they describe them by
classical mutation models (Fig. 4 in the manuscript).
Multistage mechanisms including a gradual increase in
number of discrete units (see e.g. (Harnevo and Agur,
[65]), (Kimmel and Axelrod, [64])) which better describe
such transformations lead to other class of compartmen-
tal models and dynamical properties of systems involved
(see e.g. [Kimmel et al., 1998], (Swierniak and Smieja,
[66])). The authors should discuss this problem and
justify the use of four compartmental model (Fig. 4).
Author response: We first wish to clarify that our

model is not a mutation model. We have stated that the
transitions are genetic and epigenetic transitions. This in-
cludes mutations, insertions, deletions, translocations,
copy number variations, and stable epigenetic DNA and
histone modifications. The only requirement is that the
alteration be stably passed on from parent to daughter
cells. We have text in the manuscript and in the legend
to Fig. 4 (now Fig. 6) to this effect. The variety of transi-
tion mechanisms is the reason transition rates were

varied over eight orders of magnitude in order to encom-
pass a wide range of mechanisms [2].
We thank Dr. Swierniak for the suggestion of compar-

ing our model with the multistage models mentioned in
his comments. We have added text in the discussion re-
garding this issue. In our model, states are defined in
terms of drug efficacy. Thus a state in our model may en-
capsulate multiple molecular configurations, as we men-
tion in the Discussion. In contrast, the multistage models
cited by the reviewer intend to capture particular mo-
lecular mechanisms – gene duplication and deletion in
their cases. Our model is certainly a simplification and
abstraction of the complex mechanisms of molecular al-
terations. If there is a monotonic relation between quan-
titative states (e.g., copy number of genes) and drug
resistance, and state transitions are relatively homoge-
neous (e.g., the transition probabilities from 2 to 3 copies
and from 3 to 4 copies are in the same scale), then our
model is a reasonable approximation. However, when
complex relations exist between quantitative states and
drug resistance (for instance, drug resistance is max-
imal at 3 copies and declines with higher and lower
copy numbers), or state transitions are highly inhomo-
geneous (for instance, the transition probabilities from
one to two copies is much higher than the transition
probabilities from two to three copies), then compart-
mental models are more adequate to capture the
process. Nevertheless, the substantial increase of model
complexity in such models will make large-scale simu-
lations intractable.
Reviewer Comment: 2) Drug resistance is important

obstacle against successful chemotherapy but it is not
the primary goal of personalized therapy.
Author response: We agree (as stated by Dr. Swierniak

below) that reduction of toxicity is highly desirable. How-
ever, based on our experience providing medical care to
cancer patients and leading clinical development of nu-
merous targeted agents, we disagree with the contention
that minimizing toxicity is the primary goal. Far and
away the primary goal in the treatment of a life threat-
ening condition is efficacy. The majority of patients will
risk considerable toxicity to optimize survival. Minimiz-
ing toxicity is also an important goal, but the primary
goal of precision therapy and any therapy for cancer is
efficacy. Initial claims of the degree to which precision
medicine would also reduce toxicity may have been naïve
in our opinion. Most targeted agents attack fundamental
pathways common to normal cells, and have significant
side effects. Experience has shown that benefit from single
targeted agents is short-lived and that targeted programs
must knock out numerous related nodes in the intended
signalling pathways and redundant pathways in order to
have meaningful efficacy. The ability of precision therapy
to minimize toxicity under these circumstances may be
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challenging despite its attempt to exploit differences be-
tween patients and between normal and malignant cells.
Reviewer comment: The author do not discussed how

other goals could be reached. For example the problem
of side effects and other problems related to chemo-
toxicity are incorporated in their simulation study. The
only comment on this issue in the manuscript is that
some constrains on chemotoxicity are satisfied. The
problem of minimization of side effects seems to be one
of the most important problems of precise therapy and
should be addressed in the paper.
Author response: Toxicity is a problem that in our

opinion needs to be addressed in the context of specific
agents, specific toxicities, and specific dosing schedules,
not in a generic simulation encompassing all of oncology.
In this context, it may be possible to work out strategies
in specific cases which minimize toxicity without sacri-
ficing efficacy. However, our paper is focused on patients
who suffer from metastatic cancer which is nearly univer-
sally fatal untreated, and for the majority of these pa-
tients efficacy is the first priority. Dynamics of toxicity
are very different, and population dynamic models may
not be the best way to evaluate toxicity. Representing
toxicity in a generic model is extremely challenging. For
example, in a clinical trial of 8000 men with prostate
cancer led by one of us, a principal component analysis
of safety outcomes identified a 600 dimensional space.
Determining which of these safety events were related to
therapy and which were due to cancer or comorbidities
was a daunting problem even in a randomized placebo
controlled trial. Specific dynamic and static constraints
representing toxicities can in principle be added in spe-
cific cases as needed based on knowledge.
Reviewer comment: The authors refer to some

papers of Gatenby et al. on adaptive therapy but it
seems that they have not studied these papers
carefully.
Author response: We have greatly enjoyed reading

Gatenby’s papers and have discussed them with him dir-
ectly at length. Nonetheless, we would be glad to learn
additional nuances. This paper was not intended as a re-
view of Gatenby’s work, but we are emphasizing a land-
mark paper which in our view is still seminal in his
thinking. We have modified the text to make it clear that
we agree with the adaptive nature of Gatenby’s approach
as compared to the current approach of maintaining a
constant therapy. However, our approach provides a dif-
ferent way to vary therapy and create an unpredictable,
jagged fitness landscape.
While we find Gatenby’s ideas intriguing, we differ with

him in several important respects. We have seen consid-
erable emphasis on local competition between sub-
populations, pitting tumor sub-populations against each
other to harness this competition, and relying on

inducing evolutionary steady states to stabilize tumor
growth utilizing evolutionary game theory and Nash
equilibria. In this context, we have seen the recommen-
dation to reduce intensity of therapy against sensitive
sub-populations to allow them to compete with resistant
sub-populations.
In contrast, we view competition as a largely local

phenomenon in those lesions approaching their carrying
capacity, and one which is magnified in perceived im-
portance by the limited carrying capacity of laboratory
systems. We focus on the cells which are clinically rele-
vant for survival of the patient in our opinion, those cells
in uncountable metastases of sizes well below the local
carrying capacity and only minimally subject to competi-
tion. We do not view cancer as an equilibrium process
until the end of its course, when the carrying capacity of
the whole organism is exceeded, at which point it is too
late clinically. Local competition between sub-clones
plays little role in the process in our view, when oppor-
tunities for metastasis are so readily available. Accord-
ingly, we see intratumoral heterogeneity not as an
opportunity for tumor control, but as a threat, providing
opportunities for cooperation between tumor cells [59],
which has been documented in numerous instances, as
well as a reservoir of diversity leading to resistance. Ra-
ther than reduce intensity against the sensitive cells in
order to allow them to compete with resistant cells, we
would focus on finding non-cross resistant therapies to
eliminate singly resistant cells before they become
multiply resistant. As a by-product, we might coinci-
dentally reduce dose intensity for sensitive cells if all
agents cannot be given together in full dose simultan-
eous combination.
Reviewer comment: The problem of balance between

drug resistance and tumor motility is yet another prob-
lem to be discussed.
Author response: We are not sure which aspect of this

complex issue Dr. Swierniak is referring to here. It is im-
portant to again emphasize that the patients of interest in
this study already likely have widespread undiagnosed
micrometastatic disease if not numerous frank metastases.
It is therefore too late to prevent metastases. Clearly, there
is a relationship between the epithelial-mesenchymal tran-
sition required for metastasis and resistance to some ther-
apies; however, this transition reverses upon establishment
of a new metastasis [79]. Another interesting phenomenon
is observed in preclinical models with a limited carrying
capacity when a gradient of drug concentrations is estab-
lished, as is likely to occur in patients due to biophysical
properties of tumors which make homogeneous distribution
of therapy unlikely [55, 73]. In order to avoid local compe-
tition in these preclinical model systems, partially resistant
cells migrate to the highest drug concentration they can tol-
erate [80]. This phenomenon occurs on a rapid timescale
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and may contribute to the average short term effectiveness
of therapies in some instances. However, its relevance to
late relapse, the major phenomenon of interest to this
paper, is unclear. Our model lacks spatial resolution, and
this may be an interesting future research topic.
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