
OPEN

REVIEW

Immunopathogenesis of granulomas in chronic
autoinflammatory diseases
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Granulomas are clusters of immune cells. These structures can be formed in reaction to infection and display signs of necrosis,

such as in tuberculosis. Alternatively, in several immune disorders, such as sarcoidosis, Crohn’s disease and common variable

immunodeficiency, non-caseating granulomas are formed without an obvious infectious trigger. Despite advances in our

understanding of the human immune system, the pathogenesis underlying these non-caseating granulomas in chronic

inflammatory diseases is still poorly understood. Here, we review the current knowledge about the immunopathogenesis of

granulomas, and we discuss how the involved immune cells can be targeted with novel therapeutics.
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INTRODUCTION

Inflammation is a physiological response of the body to invading
pathogens. However, if the inflammatory state is not transient and
persists chronically, this can result in irreversible tissue damage.1

Typical non-infectious causes of chronic inflammation are autoim-
mune diseases, which are characterized by T-cell and antibody
responses to self-antigens. Disorders that are characterized by innate
immune responses without obvious autoantibodies are referred to as
autoinflammatory diseases.2 In several autoinflammatory diseases,
chronic inflammation can result in the formation of granulomas,
which are clusters of immune cells in affected tissues.
The most common cause of all granuloma formation worldwide is

tuberculosis.3 The formation of granulomas in tuberculosis is thought
to be a physiological reaction to prevent the systemic spread of the
causative pathogen, the mycobacterium.4 This immune response
typically results in a caseating granuloma with signs of necrosis.5

Many other infectious agents can trigger granuloma formation
(Table 1), as well as foreign body material such as beryllium, and
inherited defects in neutrophil function (chronic granulomatous
disease).3,6–9 In chronic inflammatory diseases and primary immuno-
deficiencies with chronic inflammation, the granulomas have not been
associated with specific external agents. With the exception of
granulomatosis with polyangiitis, these granulomas are non-caseating
(Figure 1) and typically observed in patients with sarcoidosis,10

Crohn’s disease11 and common variable immunodeficiency
(CVID).12

In recent years, several new insights have been generated into
granulomatous inflammation. These new insights might soon be
translated to clinical care, as increasing numbers of therapeutic

agents targeting various immune pathways are currently tested in
clinical trials.13 Here, we review and discuss recent literature on
granulomatous inflammation in sarcoidosis, Crohn’s disease and
CVID, all chronic inflammatory disorders with similar types of
granulomas without a known trigger. We will specifically address
the immune components involved in granuloma formation and how
these can be used as disease markers and targeted by new therapeutic
approaches for chronic autoinflammatory diseases with granuloma
formation.

CHRONIC AUTOINFLAMMATORY DISEASES WITH

GRANULOMA FORMATION

Sarcoidosis
Sarcoidosis is a multisystem granulomatous disease of unknown
etiology. The hallmark of this disease is the presence of non-
caseating granulomas affecting multiple organs. It is a rare disease
with a worldwide prevalence ranging from 1 to 40 per 100 000 and a
peak incidence at 20–39 years of age.14 The clinical presentation of
sarcoidosis is highly variable and dependent on the organs involved.
Systemic complaints of fever, weight loss and fatigue are common.
About 90% of patients have pulmonary granulomas with frequent
involvement of other organs such as lymph nodes, skin, liver, eye,
central nervous system and heart.10 Owing to the high variability in
clinical manifestations, it can be challenging to diagnose sarcoidosis.
There is no definite test and diagnosis of sarcoidosis is based on three
elements: (1) clinical and radiographic manifestations; (2) exclusion of
diseases that may present similarly; (3) identification of non-caseating
granulomas by histological analysis of tissue.15 Chest X-ray and
computed tomography are the most common used visualization
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techniques. Radiographic pulmonary manifestations can vary from
bihilar lymphadenopathy, pulmonary infiltration or fibrosis.16 Nuclear
techniques, such as the fluorine-18 fluorodeoxyglucose positron
emission tomography, can also be used to evaluate extrapulmonary
manifestations of sarcoidosis or to find a location for biopsy.17

Blood tests can provide supportive information for making the
diagnosis through detection of high serum levels of angiotensin-
converting enzyme or soluble interleukin 2 receptor (sIL-2R), which is
a marker for increased activation of T cells.14,18

Fortunately, treatment is not necessary in over 50% of patients in
whom the disease will resolve in 3 years without medication.10,14

Patients are only given medication when inflammation leads to organ
damage. First-line therapy for sarcoidosis is based on corticosteroids
such as prednisone. Second-line treatment comprises immuno-
suppressive medication such as methotrexate and azathioprine. For
refractory cases, third-line medication is available in the form of
biologicals that block tumor necrosis factor-α (TNF-α): infliximab or
adalimumab.19 This approach is successful in ~ 50% of treated
patients in whom the granulomas resolve with no or little remaining
organ damage. However, 20–25% of all diagnosed patients develop
chronic disease with pulmonary fibrosis.14 Current therapies target
inflammatory pathways and have little effect on fibrosis. This is a
major limitation because fibrosis results in increased morbidity and
mortality and the need for lung transplantation.20 The lack of a cure
for sarcoidosis underlines the need to find new, effective drugs.10,14

Crohn’s disease
Crohn’s disease is an inflammatory bowel disease.11 In recent years,
the worldwide prevalence of Crohn’s disease has been reported to
increase, with current estimates in Western countries of 25 to 318 per
100 000.21 Similar to sarcoidosis, Crohn’s disease typically affects
young adults, but with a 10-fold higher prevalence. The chronic
inflammation in the intestinal tract is thought to result from an
interplay of the genetic background, environmental factors, intestinal
microbiota and a dysregulated immune system.22 In Crohn’s disease,
chronic inflammation can manifest throughout the gastrointestinal
tract, mainly affecting the ileum and the colon resulting in abdominal
pain and diarrhea with passage of mucus or blood.11 In addition,
subsets of patients show inflammation of the skin, eyes or joints.
Diagnosis of Crohn’s disease is based on clinical assessment and
physical examination of the patient in conjunction with imaging and
histopathology of inflamed tissues and with blood tests.11 Crohn’s
disease has many overlapping features with ulcerative colitis,23 the
other major variant of inflammatory bowel disease. In contrast to
Crohn’s disease, inflammation in ulcerative colitis is restricted to the
colon and does not result in granuloma formation. When inflamma-
tory bowel disease is suspected, a colonoscopy is performed during
which biopsies are taken. The histological finding of a non-caseating
granuloma is the most discriminating factor for Crohn’s disease.24

Supporting evidence from laboratory analyses include high C-reactive
protein, low hemoglobin and high fecal calprotectin.11 Furthermore,
the majority of patients has detectable serum levels of anti-

Table 1 Overview of infectious and non-infectious diseases with granuloma formation

Category Disease Type of granuloma Localization

Infectious
Bacterium Tuberculosis Caseating necrosis Lung, extrapulmonary; disseminated

Brucellosis Necrotizing and fibrotic Liver, spleen

Bartonellosis Necrotizing

Actinomycosis Non-caseating Cervicofacial, abdominal, lung

Fungus Histoplasmosis Necrotizing Lung

Aspergillosis Necrotizing Lung

Candidiasis Necrotizing with abcesses Skin

Cryptococcal disease Fibrotic with abcesses Lung

Parasitic Leishmaniasis Necrotizing Skin

Dirofilariasis Fibrotic and calcifying Subcutaneous

Schistomiasis Non-caseating Liver, intestines, bladder

Viral CMV Unspecified Spleen and liver

EBV Unspecified Skin

Measles Unspecified Thyroid gland

Non-infectious with known cause
Primary immunodeficiency CGD Non-caseating Skin, intestines, liver

Malignancy Lymphoma Non-caseating Lymphatic tissue

Foreign body Non-caseating Tissue with contact to foreign body particle; skin, lung, intestines

Other Berylliosis Non-caseating Lung

Non-infectious with unknown cause
Chronic inflammatory disease GPA Necrotizing Lung, upper airways

Sarcoidosis Non-caseating Lung, skin, eye, lymph node, liver, CNS, heart

Crohn's disease Non-caseating Intestines, skin, liver, lymph node

Primary Immunodeficiency CVID Non-caseating Lung, lymph node, liver, skin, spleen, intestines

Abbreviations: CGD, chronic granulomatous disease; CMV, cytomegalovirus; CNS, central nervous system; CVID, common variable immunodeficiency; EBV, Epstein–Barr virus; GPA, granulomatosis
with polyangiitis. This table provides a non-exhaustive list of causes of granuloma formation. The affected organs are listed from the most commonly involved organ on the left to less common. The
information is derived from refs 3,6–9,185–190.
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Saccharomyces cerevisiae antibodies,25 or antibodies to the outer
membrane porin C of Escherichia coli (anti-OmpC).26 Despite
granulomas being a discriminating factor with ulcerative colitis, these
structures are only identified in ~ 37% of patients with Crohn’s
disease.23 The presence of granulomas is associated with higher rates
for surgical bowel resection, indicating that these are an indicator for
severe disease.23 Treatment of Crohn’s disease is similar to sarcoidosis
and includes corticosteroids, immunosuppressive and biologicals. In
spite of the introduction of infliximab, treatment outcomes remain
suboptimal with disease control being achieved in only 60% of
Crohn’s patients,27 and intestinal complications and the requirement
for surgery remain.11

CVID with granulomatous complications
CVID is a primary immunodeficiency. It is a rare, heterogeneous
disease with a prevalence of 2 to 4 per 100 000 and mean age of
diagnosis between 30 and 40 years.28 Patients suffer from recurrent
sinopulmonary infections and to a lesser extent from gastrointestinal
infections. The hallmark of CVID is a B-cell defect leading to low or
absent levels of immunoglobulins, and can be accompanied by
abnormal T-cell responses and cytokine defects. Diagnosis of CVID
is made when a patient has severely reduced levels of serum
immunoglobulin G (IgG) with low IgM and/or IgA, and fulfills all
of the following criteria: (1) onset after 2 years of age; (2) poor or
absent vaccination response and (3) exclusion of other causes of
hypogammaglobinemia.29 Despite these commonalities in immunolo-
gical defects and recurrent infections, CVID represents a heteroge-
neous group of patients with ranging clinical features that include
autoimmunity, granuloma formation and hematological malignancies.
These non-infectious complications are associated with high morbidity
and early mortality.30 Previously, only in 2–10% of patients a
molecular cause of disease was identified in genes such as ICOS,
CD19, CD81, TNFRSF13C (encodes BAFFR) and TNFRSF13B
(encodes TACI).31–35 However, none of these correlated with the
incidence of granulomatous complications in 8–22% of CVID
patients.12 With the recent identification of autosomal-dominant

causes of complex antibody deficiencies and incomplete penetrance
of some mutations (e.g. CTLA4, PIK3CD, PIK3R1 and NFKB1),36–39

it will become possible to relate granulomas to a genetic cause.
In CVID patients, granulomas most prevalently affect the lungs,

followed by lymph nodes, liver, skin and spleen. The presence of
granulomas can precede the diagnosis of CVID for years resulting in a
potential misdiagnosis of sarcoidosis. However, sarcoidosis patients do
not present with recurrent infections or low/absent immunoglobulins,
because serum IgG levels are normal or even elevated in sarcoidosis.40

CVID patients can also present with abdominal complaints, such as
chronic diarrhea, weight loss and histological evidence of intestinal
inflammation, resulting in an overlap of clinical features with Crohn’s
disease.41 CVID patients with granulomas are more frequently affected
by other autoimmune manifestations and have a higher morbidity and
mortality rate than non-granulomatous patients.12,42 The primary
treatment of CVID is intravenous or subcutaneous immunoglobulin
substitution, which is highly effective in reducing the infectious
burden.43 However, this treatment does not ameliorate the non-
infectious complications. Conversely, granulomatous inflammation in
CVID is treated with similar types of immunosuppressive agents that
are used for sarcoidosis and Crohn’s disease. The combination of
immunodeficiency with inflammation highlights the complicated
processes involved in CVID, because it appears contrasting to
treat immunocompromised patients with immunosuppressive
medication.
While granulomas are the hallmark of disease in sarcoidosis, these

are only detected in subgroups of patients with Crohn’s disease and
CVID. However, the exact incidence of granulomas in these disorders
remains unclear and might be underestimated because of sampling
errors.23 Furthermore, granulomas in CVID are often poorly
recognized by physicians or upon discovery the patient is mis-
diagnosed with sarcoidosis.12 As granulomatous complications are a
predictor for poor disease outcome in CVID12,42 and a pathognomic
feature in Crohn’s disease,44 detection of these inflammatory
structures is important in diagnostic workup.

Figure 1 Non-caseating granulomas in Crohn’s disease and sarcoidosis. Hemotoxylin and eosin stainings reveal granulomatous structures in a lymph node
biopsy of a patient with sarcoidosis (a) and a biopsy of the ileum of a patient with Crohn’s disease (b). Typically, CD4-expressing Th cells are detected in and
around the granulomas, whereas CD20-expressing B cells are found to accumulate around the granulomas.118,130
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KEY PLAYERS IN GRANULOMA PATHOGENESIS

Antigenic triggers
Granulomas are thought to be formed following by a foreign trigger.
Therefore, in diseases thus far characterized by non-infectious
granulomatous inflammation, the search for a causative agent is still
ongoing. In sarcoidosis there is a particular interest in finding the
responsible trigger. An increased number of sarcoidosis cases was
reported in rescuers after the terrorist attack on the World Trade
Center in New York,45 suggesting an external antigenic cause.
Mycobacteria and Propionibacterium acnes are of specific interest,
because DNA of these antigens was found in granuloma material from
sarcoidosis patients with numbers ranging from 0 to 9% for
Mycobacterium tuberculosis and 79 to 100% for Propionibacterium
acnes.46 However, the causality of one single pathogen is debatable
with such diverse pathogens being proposed.10 Antigenic agents have
also been suggested to trigger granuloma formation in Crohn’s disease,
mainly because of the associated defective bacterial clearance by
autophagy. Polymorphisms in genes involved in autophagy have been
reported,47 the mechanism by which cells degrade and recycle of
cellular components. In Crohn’s disease this leads to the impaired
capacity to handle pathogens by specialized intestinal epithelial cells,
Paneth cells.48 Furthermore, the presence of anti-Saccharomyces
cerevisiae antibodies and anti-OmpC antibodies are suggestive of
fungal or bacterial triggers of granuloma formation.25,26 Finally, the
high prevalence of Mycobacterium avium in blood and tissue suggested
that, similar to sarcoidosis, granulomas in Crohn’s disease were
formed in response to mycobacteria.49,50 This theory is considered
controversial, because M. avium is not typically pathogenic in humans
and treatment of patients with anti-mycobacterial agents was proven
ineffective.51 An antigenic driver for persistence of granulomas in
CVID is unlikely, because these patients are regularly treated with
antibiotic or anti-fungal drugs, and these do not effectively resolve this
type of inflammation.12,52 Yet, a high prevalence of human herpesvirus
type 8 is reported in granulomatous or lymphocytic interstitial lung
disease patients (67%) as compared with the low prevalence of 4.8%
in patients with CVID without granulomatous or lymphocytic

interstitial lung disease. Human herpesvirus type 8 infection might
therefore contribute to the poor prognosis of patients with granulo-
matous CVID.53

In conclusion, there is no unambiguous evidence for specific causal
factors that trigger non-infectious granulomatous inflammation.
It is evident that the immune system drives tissue-destructive
inflammation, but it remains to be determined if certain infectious
or non-infectious particles are prone to trigger formation or
persistence of granulomas.

Macrophages
Macrophages are immune cells that are specialized in clearing of
degraded extracellular substances through phagocytosis. These specia-
lized immune cells are derived from circulating monocytes and are
typically found in granulomas (Figure 2). Macrophages are thought to
be one of the first cell types to migrate into affected tissue to clear
debris and recruit other immune cells.54 An important cytokine
produced by macrophages is TNF-α, which induces vasodilation and
thereby facilitates the infiltration of monocytes and lymphocytes.
Macrophages also release other proinflammatory cytokines such as
IL-1, IL-6, IL-12 and IL-23. Together with TNF-α, these cytokines
promote leukocyte infiltration and T-cell activation, while inhibiting
regulatory T cells (Tregs) and T-cell apoptosis.54 These activated
macrophages are important in cell-mediated inflammation seen in
granulomas, yet they also induce tissue damage. Polarization of
macrophages mirrors the T-helper immune response status.
Macrophages can acquire different functionalities in response to
local triggers.55 One definition to describe the activated state of
macrophages is the classical M1 and alternative M2 activation. M1
macrophages are activated by Toll-like receptors and interferon-γ
(IFN-γ) produced by Th1 cells.56,57 M2 macrophages are activated
through IL-4 and IL-13 and secrete extracellular matrix components
promoting tissue remodeling.56,57 Inflamed tissue in patients with
Crohn’s disease predominantly contain M1 macrophages,58 and these
contribute to the intestinal inflammation by disrupting the epithelial
barrier in Crohn’s disease.59 A similar M1 polarization was seen in

Figure 2 Model of the cellular organization of a non-caseating granuloma. Histology of granulomatous tissue (e.g. in Figure 1) display the presence of
macrophages, epithelioid cells and multinucleated giant cells in the core of the granuloma. Th cells are localized in and around the granuloma. B cells are
rarely seen in granulomatous structures; however, they are abundantly present around granulomas.118,130
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alveolar macrophages of patients with sarcoidosis.60 Interestingly, an
M2 polarization has been reported in other interstitial lung diseases
with fibrosis. This is in line with an M2 polarization in a Th2
environment that has been observed in neurosarcoidosis with
myofibrisosis,61 and in fibrotic intestinal lesions of patients with
Crohn’s disease.62 These studies suggest an M1 activation predomi-
nantly in the acute proinflammatory granulomatous inflammation
with a possible shift towards M2 macrophages in fibrotic processes.
Stimulated macrophages can further mature into epithelioid cells

that are elongated and resemble epithelial cells. Epithelioid cells appear
to lose their phagocytic function and shift to more secretory
capacities.63,64 However, to our knowledge, it remains unclear what
soluble factors these epithelioid cells produce. Epithelioid cells can
fuse together and create compact aggregations, which are called
multinucleated giant cells.65 In contrast to epithelioid cells, these
multinucleated cells are capable of phagocytosis and cytokine secre-
tion, especially IL-1, TNF-α and tumor growth factor-β.66
Our understanding of TNF-α and its role in granuloma integrity is

mostly based on tuberculosis animal models.67,68 In the absence of
TNF, primary granulomas can still be formed. However, granulomas
appeared disorganized.67,68 Furthermore, a loss of TNF signaling
disrupts already formed granulomas. This could, in part, be due to
impaired lymphocyte recruitment and activation, in which TNF-α also
has a major role.67

Several abnormalities in monocyte and macrophage function
have been reported in sarcoidosis, CVID and Crohn’s disease, and
these might contribute to the chronic inflammation and granuloma
formation. Specifically, monocytes in patients with sarcoidosis and
Crohn’s disease have an increased ability to form multinucleated
cells.69,70 Furthermore, cultured alveolar macrophages of patients with
sarcoidosis spontaneously produce more proinflammatory cytokines,
including TNF-α, compared with controls,71 and these higher levels
were associated with progressive disease.72 TNF-α production was also
found to be increased in monocytes of patients with CVID.73 The TNF
488A allele leads to higher TNF production and is strongly positively
associated with granulomatous CVID.74 Furthermore, 82% of TNF

488A allele-negative patients were IL-10 a-t-a allele positive, leading to
lower IL-10 production resulting in a more proinflammatory
TNF environment. Taken together, these two genetic variants seem
to promote a cytokine shift contributing to an inflammatory
environment leading to granulomatous complications.75 The intestinal
microbiota can also affect the inflammatory environment. Intestinal
macrophages of patients with Crohn’s disease produced more
proinflammatory cytokines such as TNF-α after stimulation with
commensal bacteria,76 whereas reduced levels of proinflammatory
cytokines were reported in response to E. coli.77–79 Furthermore,
E. coli is able to survive and replicate in intestinal macrophages in
patients with Crohn’s disease, is present in granulomas and can induce
granuloma formation in vitro.80–82 Owing to this apparent decreased
macrophage function, it has been proposed that Crohn’s disease
should also be considered a primary immunodeficiency.83,84

T cells
The inflammatory mediators produced by macrophages in affected tissue
trigger the recruitment of additional immune cells, especially CD4+ Th
cells (Figures 1 and 2). Th cells are important mediators of immune
responses and are thought to organize the granulomatous structure
together with the already present macrophages. Traditionally, Th cells
were divided in Th1 and Th2 subsets, and the Th cells in granulomatous
tissue were assumed to be type 1 cells that produce IL-2 to induce T-cell
proliferation and the accumulation of effector T cells. However, with the
more recent detection of other subsets such as Th17 cells and Tregs, the
concepts of Th-mediated inflammation have changed.85

Naive Th cells have the ability to differentiate in a particular subset
through a specific cytokine milieu. The major subsets are Th1, Th2,
Th17 and Tregs that are defined by their cytokine profiles and distinct
effector functions (Figure 3). Th1 cells develop in the presence of
IFN-γ and IL-12 and protect against intracellular pathogens through
the production of IFN-γ and the resulting macrophage activation.54,85

Upregulation of cytokines promoting Th1 differentiation have
been reported in sarcoidosis: IL-2, IL-12, IL-15 and IL-18.86 Th
cell involvement in sarcoidosis is underpinned by the typical CD4

Figure 3 Involvement of CD4+ Th cell subsets in three chronic granulomatous inflammatory diseases. (a) Model of Th cell maturation into Th1, Th2, Th17
and Treg subsets. Key cytokines are depicted. (b) Summary of observations on total CD4+ Th as well as Th1, Th2, Th17 and Treg subsets in tissue and
blood of patients with sarcoidosis, Crohn’s disease and CVID.87,88,111,112,177–184
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T-cell lymphopenia in peripheral blood in combination with CD4
T-cell infiltrates at the site of inflammation, such as in bronchoalveolar
lavage fluid.87,88 Despite these signs of local T-cell hyperactivity, the
typical diminished cutaneous response to tuberculin is suggestive of
T-cell anergy in non-granulomatous tissue.89 CD4 T-cell anergy in
these patients is likely due to chronic stimulation and results from
reduced availability of G proteins,90 and reduced nuclear factor-κB
capacity of these cells.91

Patients with Crohn’s disease show overexpression of IL-12 in
intestinal tissue leading to increased production of IFN-γ.92,93 Still,
total blood CD4 T-cell numbers as normal, and even an expansion of
CD4 memory T cells has been observed in patients with active Crohn’s
disease.54 The hyperactive state of inflammation in Crohn’s disease is
further illustrated by mucosal T-cell proliferation and expansion with
resistance to apoptosis.94 Unlike sarcoidosis and Crohn’s disease,
patients with granulomatous CVID have low levels of total T cells and
naive CD4 T cells.74 This decrease could be related to the immuno-
deficiency and result from increased T-cell turnover and apoptosis or
decreased thymic output. It remains unclear whether this decrease also
distinguishes granulomatous inflammation from Crohn’s disease and
sarcoidosis or it is the result of migration of T cells from circulation to
the affected tissue.
In addition to Th1 responses, other Th subsets have been implicated

in chronic inflammation. It is thought that the initial Th1 response
during acute granulomatous inflammation shifts to a Th2 response in
response when this becomes chronic. The production of Th2 cytokines
can activate and stimulate fibroblasts and thereby contribute to
fibrosis.20

More recently, Th17 have been shown to be disruptive in chronic
inflammatory diseases.95 Th17 cells are generated in the presence of
IL-6 and tumor growth factor-β, and in turn produce IL-17 and IL-22
that are major factors in responses against extracellular pathogens and
fungi (Figure 3). IL-17 was proposed to be a key mediator of
inflammation in rheumatoid arthritis, yet anti-IL-17 therapy with
secukinumab was not effective.96 Therefore, the exact role of Th17
cells in inflammatory disorders is not clear and information is mostly
based on animal models. IL-17 overexpression leads to tissue damage
in different organs such as lungs, intestines, joints and brain.97 Th17
cells have the ability to change to a Th1 phenotype enabling cells to
produce both IFN-γ and IL-17 referred to as Th1/Th17 cells.98 The
plasticity of Th17 cells enables to further enhance inflammation either
directly through the coproduction of IL-17 and IFN-γ or through
providing help in the generation of new pathogenic Th1 cells.99

Moreover, Th17 cells in mouse models have recently been shown to
adapt into a regulatory phenotype with a change in transcriptional
profile and regulatory capacities.100

In both sarcoidosis and Crohn’s disease IL-17 expression is
increased in inflammatory tissue, concomitant with an increase of
Th17 cells in the peripheral blood.22,101 In contrast, CVID patients
have low Th17 cell numbers in their peripheral blood, which is
associated with higher numbers of CD21low B cells and lower numbers
of memory B cells.102 The presence of an expanded CD21low B-cell
population in CVID patients is associated with higher incidence of
non-infectious complications.103 The concomitant decrease in Th17
cells is suggestive of a combined defect in B and T cells in this subset
of CVID patients. The nature of this defect remains to be determined
and could be B- or T-cell intrinsic or arise from impaired regulation of
Th maturation.102

Tregs are important to dampen immune responses and thereby
maintain a physiological immune homeostasis and self-tolerance.104

Naive T cells can mature into Tregs through the expression of the

transcription factor Forkhead box p3 (FoxP3) in the context of tumor
growth factor-β, subsequently exerting immune regulatory functions
through production of tumor growth factor-β and IL-10.85 Tregs
became an intensively studied cell population after it was reported that
CD4+CD25+ depletion in mice resulted in a variety of autoimmunity
including gastrointestinal involvement.105 Furthermore, patients with
immune dysregulation, polyendocrinopathy, enteropathy, X-linked
syndrome, a genetic disorder caused by mutation in the FOXP3 gene,
are affected by excessive gastrointestinal autoimmunity.106

In patients with sarcoidosis, higher frequencies of Tregs have been
reported in both peripheral blood and bronchoalveolar lavage fluid
with accumulation of Tregs in the vicinity of granulomas.107 These
Tregs inhibited T-cell proliferation, yet several groups confirmed a
decreased suppressor function on CD4+ cells.107–109 Moreover, Tregs
from patients with active sarcoidosis were not able to suppress
granuloma formation in an in vitro model, whereas Treg cells from
healthy controls were.110 However, it remains unclear whether Tregs
were defective or were merely exhausted as a result of the continuous
inflammation. Patients with active Crohn’s disease have decreased
Treg numbers in the blood, whereas these are increased in the
intestinal mucosa.111,112 The anti-inflammatory function of Tregs is
likely to be intact as they have preserved suppressor function,112 and
are able to inhibit effector T-cell responses.111 However, it has been
postulated that effector T cells in the lamina propria are unresponsive
to the inhibiting effects of Tregs, implicating a contributing factor to
the chronic inflammatory response.111 Treg function in CVID has
been less well documented, yet decreased levels of Tregs in blood of
CVID patients were specifically seen in patients with autoimmune
complications.113 Importantly, Tregs require the inhibitory receptor
cytotoxic T-lymphocyte-antigen 4 (CTLA-4) for suppressive function,
and mutations in CTLA4 underlie an immunodeficiency in which
Tregs have reduced suppressive function. These patients often present
with granulomatous inflammation and intestinal inflammation with
similarities to Crohn’s disease.39,114,115 As decreased CTLA-4 expres-
sion on Tregs has also been reported in patients with sarcoidosis, it is
possible that defects in CTLA-4 and Treg function contribute to
granuloma formation in autoinflammatory diseases.116

B cells
The main focus in granulomatous inflammation has previously been
directed to macrophage and T-cell dysfunction. However, in addition
to macrophages and T cells, B-cell infiltrates are present in granulo-
matous tissue of patients with tuberculosis.117 Furthermore, several
studies showed that numerous B cells surround granulomas in affected
tissues from patients with sarcoidosis as well as Crohn’s disease
(Figure 1).118–120 These B cells are likely to be essential for the
development of granulomas as indicated by two findings: first, patients
with CVID can develop granulomas, whereas patients with X-linked
agammaglobulinemia do not.121 CVID and X-linked agammaglobuli-
nemia patients both have an antibody deficiency due to B-cell
dysfunction, but mature B cells are completely absent in X-linked
agammaglobulinemia.122 Second, in a mouse model of oil granulomas
the absence of T cells did not affect the ability of granuloma
formation, whereas granulomas were not formed in the absence of B
cells.123 Traditionally, B cells are regarded as the antibody-producing
cells of the immune system. While this is a major function of B cells, it
has become clear that B-cell development is a complicated process
with many B-cell subsets and functions involved. Other B-cell
functions include the ability to act as antigen-presenting cells,
costimulate T cells, have regulatory effects and produce cytokines that
direct Th subset maturation.124 These insights, together with novel
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possibilities to target B cells with biologicals, provide a strong rationale
to investigate the role of B cells in granulomatous inflammation.
Some recent insights have been generated into B-cell abnormalities

in sarcoidosis and Crohn’s disease. Patients with sarcoidosis
carry reduced numbers of IgM, IgG and IgA memory B cells and
plasma cells in blood with the exception of CD27−IgA+ memory
B cells.118,125,126 Despite their reduced numbers, levels of somatic
hypermutations in Ig gene transcripts of these cells were increased,
suggestive of chronic activation.118 This is potentially related to serum
B-cell activating factor (BAFF), a critical factor for mature B-cell
survival of which the levels are increased in sarcoidosis patients with
active disease.125,126 Furthermore, the levels of nuclear factor-κB
transcription factors in B cells are reduced and potentially affect B-cell
responses and proliferation.127 How these B-cell abnormalities affect
the formation of persistence of granulomas still needs to be
determined, yet combined these results do suggest a disturbed B-cell
homeostasis.
Patients with Crohn’s disease also display reductions in blood IgM

memory B-cell numbers. In contrast to sarcoidosis, they have normal
numbers of Ig class-switched memory cells plasma cells.128,129 In
addition, transitional B cells and anergic CD21low B cells were found
to be expanded.130 Expansions of CD21low B cells are an indication of
chronic activation,131 as were the observed increased levels of somatic
hypermutions in Ig gene transcripts.130 It remains unclear if the
decline in memory B cells is the result of impaired generation from,
for example, the splenic marginal zone, or from their specific
recruitment to granulomatous tissue.
CVID is characterized by hypogammaglobinemia and all patients

have reduced blood plasma cells, which in many patients is accom-
panied by memory B-cell defects.103 Furthermore, in subgroups of
patients, expansions of transitional B cells, as well as CD21low B cells,
have been identified. Many of these abnormalities have formed the
basis of flow cytometry-based classifications.103 However, B-cell
phenotypes do not seem to correlate well with severity of disease or
non-infectious complications. Yet, granulomatous complications are
found to be associated with lower numbers of Ig-switched memory
B cells.52,103 Still, it remains unclear if these reductions are related to
the immunodeficiency or the result of migration towards the sites of
granulomatous inflammation. Patients with mutations in ICOS
(inducible T-cell costimulator) and TACI gene can develop granulo-
matous complications and autoimmunity in general.132 These genes
are involved in different pathways of B-cell survival and
T-cell-dependent or -independent antibody responses. With the
implementation of whole-exome sequencing, the genetics of CVID
unravels rapidly. Possibly, this will provide better insights into affected
processes and will help to dissect the mechanisms that, when
impaired, result in granuloma formation.
In addition to a role in ongoing inflammation, B cells might also

function to dampen or restrict inflammatory processes. Subsets of B
cells are capable of production of IL-10, and these regulatory B cells
could therefore dampen the ongoing immune response. This function
is illustrated by mouse models of colitis, in which B cells were found
to ameliorate intestinal inflammation.133

Although it remains unclear how B cells contribute to disease
pathogenesis, the common signs of chronic activation of B cells in
granulomatous autoinflammatory diseases is suggestive of their role in
ongoing inflammation. The systemic B-cell abnormalities could
provide good markers for disease and treatment monitoring.
Moreover, disease-specific abnormalities could provide more insight
into pathogenesis and starting points for novel therapeutic approaches.

THERAPEUTIC IMPLICATIONS

Remission or fibrosis?
In many patients granulomas persist and lead to organ damage due to
fibrosis. Fibrosis is therefore a common problem in sarcoidosis and
Crohn’s disease,14,129 The impact of granulomas on permanent organ
damage in CVID patients is currently unknown due to the complica-
tions of recurrent respiratory infections that lead to bronchiectasis in
23% of patients.28 Despite fibrosis leading to increased morbidity and
mortality,20 to date, therapies targeting inflammatory pathways do not
resolve or delay the process. Moreover, it is not yet possible to identify
which patients will develop fibrotic complications.10 Therefore,
exploring fibrotic pathways may lead to new and much needed
therapies to prevent irreversible organ damage.

Mechanism of current therapies
First- and second-line medication to treat patients with chronic
inflammatory disease are corticosteroids and immunosuppressives
such as methotrexate and azathioprine. Corticosteroids have anti-
inflammatory properties through the inhibition of leukocyte migration
and proinflammatory cytokine production (esp. TNF-α and IFN-γ).134
Methotrexate inhibits the purine metabolism and azathioprine purine
synthesis, which both lead to decreased lymphocyte proliferation and
cytokine release.135 While these therapies are administered to suppress
proinflammatory cytokines by inhibiting T-cell responses, these
immunosuppressive drugs also affect the B-cell compartment.136,137

With the introduction of biological therapies, a third line of
treatment has become available, of which TNFα blockers are most
notable. The most widely used TNFα blockers are antibodies against
TNFα (infliximab and adalimumab), which have proven to be effective
in Crohn’s disease and sarcoidosis (Figure 4).138,139 This treatment
specifically disrupts the granuloma structure. As this can result in
reactivation of latent tuberculosis, all patients need to be intensively
screened for tuberculosis before treatment with TNFα blockers.140

TNF blockers infliximab and etanercept have proven to be beneficial
in some patients with granulomatous CVID.52,141 Etanercept is a
recombinant TNFα receptor fused to an Ig constant region and is
often used to treat RA.142 Importantly, etanercept is not effective in
sarcoidosis and Crohn’s disease, and can even lead to increased disease
activity in these disorders.143,144 This might be related to its different
biological properties as opposed to anti-TNF antibodies: (1) etanercept
binds only to soluble trimeric and not monomeric soluble TNF-α;
(2) etanercept has low affinity to transmembrane TNF;145

(3) etanercept binds to both TNF-α and lymphotoxin-α, a cytokine
that is crucial for secondary lymphoid organ development, IgA
regulation and T-cell gut homing.146 These abilities could explain
the reduced effectivity of etanercept in Crohn’s disease and sarcoidosis,
as well as observed disease complications. Treatment with TNFα
blockers also affects the blood B-cell compartment in patients with
Crohn’s disease and sarcoidosis.129,130,147 It remains to be determined
if this is an indirect effect following modulation of inflammation or if
this is through direct binding to TNFRII that is expressed on B cells.
Targeting of T cells in granulomatous diseases has yielded mixed

results. A clinical trial for the treatment of patients with Crohn’s
disease with abatacept was ineffective.148 Abatacept is a recombinant
fusion protein of CTLA4 with an immunoglobulin. CTLA-4 inhibits
T-cell activation by binding to CD28 on T cells. Abatacept has shown
beneficial effects in RA patients,149 and in animal models of intestinal
inflammation. These results illustrate that, in spite of unraveling
underlying immune mechanisms, translation into effective therapies
for human autoinflammatory disease remains challenging.
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Targeting of Th17 responses have also been studied. However,
blocking IL-17 with secukinumab was ineffective in patients with
Crohn’s disease,150 whereas treatment with brodalumab, an anti-IL-17
receptor monoclonal antibody, even resulted in exacerbation of
Crohn’s disease.151

Ustekinumab, a monoclonal antibody against both IL-12 and IL-23,
resulted in a clinical response in patients with refractory Crohn’s
disease152 and is currently implemented in patients who are resistant
to TNFα blockers.153 However, ustekinumab did not show therapeutic
efficacy in sarcoidosis patients.154

Patients with Crohn’s disease do show a good response to treatment
with vedolizumab, a humanized monoclonal antibody that binds to
integrin α4β7.155 As α4β7 specifically mediates gut homing, it can
selectively inhibit intestinal inflammation. Because granulomas in
patients with sarcoidosis and CVID more frequently present in other
tissues than the gut, vedolizumab is likely to have limited effects in
these diseases.
Targeting of B cells with rituximab has shown promising results in

granulomatous CVID.52 Rituximab is a humanized anti-CD20 anti-
body that depletes all naive and memory B cells.156 The efficacy of
rituximab in sarcoidosis is still unclear: several case reports show
proven effectivity; however, in one small prospective study with 10
patients, only 5 of them showed a marginal (45%) improvement of
respiratory function.157 In contrast, a patient with Crohn’s disease
displayed disease exacerbation following treatment with rituximab,
implying a protective role for B cells in Crohn’s disease.158 These
different outcomes of rituximab treatment highlight the complexity of
the underlying inflammatory processes.

New targets for treatment with biologicals
New therapies are in high demand for refractory patients with chronic
inflammatory disorders. As new therapeutic targets become evident
and new biologicals may become available in the coming years, we

propose therapeutic candidates involving the B and/or T cells
(Figure 4).
IL-21 is a cytokine produced by Th cells and stimulates B and

T cells through the IL-21 receptor. Increased levels of IL-21 have been
reported in inflamed tissue of Crohn’s disease patients, with infliximab
inducing a downregulation of IL-21.159 IL-21 is also implicated in
the immunopathogenesis of RA and therefore treatment with a
monoclonal antibody binding to IL-21, NNC0114-0005, is currently
being tested in these patients.160 When safety and efficacy is proven in
RA, this treatment could be translated into other inflammatory
disorders such as Crohn’s disease. However, caution should be taken
because genetic defects in IL-21 gene were recently reported to cause
a severe CVID-like disorder161 that manifests with early-onset
inflammatory bowel disease.162

Interestingly, the key in therapy might lie in improving T-cell
function by targeting of the inhibitory receptor programmed death-1
(PD-1).163 In patients with sarcoidosis, PDL-1 expression is increased
on T cells in granulomatous tissue, and the number of
PD-1-expressing Th cells in blood are increased.164 As a down-
regulation of PD-1 on CD4 cells was seen in patients with spontaneous
clinical resolution, blocking the PD-1/PD-1L pathway could be a
therapeutic target.164 A variety of malignancies also show upregulation
of the PD-1/PD-1L pathway and currently several antibodies against
PD-1, such as pembrolizumab and nivolumab, are being tested in the
treatment of solid and hematological malignancies.165 Still, a cautious
approach is warranted as sarcoidosis-induced disease also has been
reported by the use of pembrolizumab in a patient with sarcoma.166

This case could be explained by the enhanced CD4 T-cell proliferation
that was reported when PD-1 was blocked, which could lead to a Th1
proinflammatory response that is also observed in sarcoidosis.
ICOS and ICOSL are important factors in adaptive immunity

through B–T-cell interaction and genetic defects in ICOS have been
reported to result in adult onset CVID.31 Moreover, ICOSL gene
polymorphisms are associated with Crohn’s disease,167 and increased

Figure 4 Novel therapeutics that are currently used or in trial for treatment of granulomatous autoinflammatory diseases that target B and/or T cells.
Indicated are monoclonal antibodies that specifically target T cells (ustekinumab), or B cells (rituximab and belimumab). Anti-TNFα (infliximab, adalimumab)
and anti-IL-21 monoclonal antibodies block cytokines that affect both B and T cells. Finally, AMG-557 targets ICOSL and affects the B–T-cell interaction:
BCR, B-cell receptor; mAb, monoclonal antibody; MHCII, major histocompatibility complex class 2; TcR, T-cell receptor.
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ICOS expression was reported on Tregs in patients with sarcoidosis.168

A monoclonal antibody targeting ICOSL, AMG-557, has been
developed and is currently undergoing the first trial in systemic lupus
erythematosus.169 While treatment targeting the ICOS/ICOSL pathway
is still under development, it is a potential target of interest for
granulomatous inflammatory diseases, because ICOS/ICOSL is an
implicated pathway in both sarcoidosis and Crohn’s disease.
Moreover, targeting this costimulatory pathway affects both T- and
B-cell activation without their cellular depletion.169

Finally, alternative approaches to target B cells are promising
therapeutics. Currently, belimumab, a monoclonal antibody targeting
BAFF, is currently implemented in the treatment of systemic lupus
erythematosus. BAFF is a cytokine produced mainly by macrophages,
and it is essential for mature B-cell survival.170 Especially autoreactive
B cells are dependent on high BAFF levels.171 As patients with active
sarcoidosis and CVID display increased BAFF levels, it likely con-
tributes to disease pathogenesis.102,125,126 Thus, belimumab might be
more effective than rituximab through stronger effects on pathogenic
B cells.170

Treatment monitoring
With the increasing possibilities for biological therapies, it becomes
important to determine which patient should benefit most from which
drug. While several agents can be efficacious in patients, there are still
subgroups of patients that have refractory disease.138,139 For example,
only 60% of patients with Crohn’s disease achieved short-term disease
control.27 Starting a patient on ineffective therapy can be expensive and
will delay the start of a potentially effective treatment with the possibility
of disease exacerbation. Thus, there is a need for biomarkers that can
predict therapy outcome before the start of treatment or shortly after.
Therapeutic drug monitoring for infliximab has been extensively

studied. Measurements of serum trough levels of infliximab have
become standard in diagnostics because low drug levels resulting from
the formation of antibodies against infliximab can hamper therapy
success.172 Treatment monitoring through immunological tests are
another option. Specifically, quantification of serum soluble IL-2R
levels is routinely used for patients with sarcoidosis,18 because it
correlates with pulmonary function tests and with local disease activity
as visualized by fluorine-18 fluorodeoxyglucose positron emission
tomography scan.173,174

Quantification of serum BAFF levels could be a good biomarker as
it is elevated in chronic active sarcoidosis.125,126 Specific lymphocyte
subsets could also act as potential biomarkers for therapy.
A restoration of the relative numbers of peripheral blood Tregs has
been reported in both sarcoidosis and Crohn’s disease in patients
responding well to infliximab.175,176 Furthermore, successful
infliximab therapy in Crohn’s disease resulted in a normalization
of IgM memory B-cell numbers.129,147 Therefore, with increasing
knowledge about the specific immune dysregulation seen in these
inflammatory diseases, immune monitoring by analysis of specific
lymphocyte subsets are potential biomarkers and improve treatment
response rates for patients.

CONCLUSIONS

Granulomatous inflammation is a complex interplay between mature
macrophages, Th cells and B cells. Generally, our understanding of the
immune system is improving and fortunately biologicals that block
TNF-α have become available. Yet, the complexity in chronic
inflammatory diseases is illustrated by numerous failed drug trials,
while refractory disease make new therapeutics for chronic
inflammation much needed. A translational approach towards basic

immunology and advances in other immune-mediated diseases remain
necessary to improve treatment options for refractory patients.
Specifically, cross-disciplinary studies into granulomatous inflamma-
tion in various disorders could yield new insights. Studies into
granuloma formation in genetically defined immunodeficiencies
can provide candidate pathways, whereas insights into immune
dysregulation in sarcoidosis and Crohn’s disease can provide immu-
nological markers to identify CVID patients at risk for granulomatous
complications. Recent insights into disease pathogenesis and the
potential involvement of B cells open new avenues for treatment
and treatment monitoring. In particular, patients with granulomatous
inflammatory disease could benefit from targeting B cells or B–T-cell
interactions with new therapeutics.
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