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Abstract: The Lycium genus is widely used as a traditional Chinese medicine and functional food.
Many of the chemical constituents of the genus Lycium were reported previously. In this review,
in addition to the polysaccharides, we have enumerated 355 chemical constituents and nutrients,
including 22 glycerogalactolipids, 29 phenylpropanoids, 10 coumarins, 13 lignans, 32 flavonoids,
37 amides, 72 alkaloids, four anthraquinones, 32 organic acids, 39 terpenoids, 57 sterols, steroids, and
their derivatives, five peptides and three other constituents. This comprehensive study could lay the
foundation for further research on the Lycium genus.
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1. Introduction

Lycium is one of the genera in the Solanaceae family, comprising 80 species, seven of which are
found in China [1]. These species are all deciduous shrubbery, possessing a highly similar morphology
and structure. The Lycium genus has been an important source of medicines and nutrient supplements
for thousands of years in Southeast Asia, especially in China. Two species in particular, Lycium barbarum
and Lycium chinense, have been widely used as traditional Chinese medicinal herbs for centuries and
L. barbarum is currently widely cultivated in China.

Goji berries (Chinese name Gouqizi), which are derived from the fruits of Lycium Linn, have
been used as traditional herbs for a long time in China for their benefits of replenishing vital essence
to improve eyesight, nourish the liver and kidneys. Lycii cortex is a “heat cleansing” drug that is
derived from the root bark of L. chinense and L. barbarum [2]. Goji berries and Cortex Lycii have
demonstrated good therapeutic effects in some chronic diseases such as hectic fever, night sweats,
cough, hemoptysis, and diabetes. Recently, medical research has indicated that these fruits and root
bark have many pharmacological functions, such as antiglaucoma, immunoregulatory, antitumor,
antioxidant, antiaging, neuroprotective, and blood sugar level reducing activities [3–10].

Traditionally, the berry and root bark available have been used as medicinal sources, as well
as important components in some traditional Chinese patent medicines. They are not only famous
medical herbs, but are also functional foods widely consumed in health-preserving cuisines, i.e., soups,
congee, herbal tea, etc. People also eat the fresh leaves as vegetables. In particular, goji berries have
become increasingly popular for improving overall well-being and as an anti-aging remedy. There
are many goji derived-products on health food market, such as dried fruits, juice, goji wine and goji
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yoghurt. Many research papers were published focused on the phytochemical fingerprinting and
antioxidant activity of these products [11–14].

Two valuable medicinal herbs, namely L. barbarum and L. chinense, have received remarkable
attention due to their effective clinical therapy, especially in the anti-aging category. In addition, there
are increasing numbers of publications about several other Lycium plants, i.e., Lycium ruthenicum [15,16].
Many researchers have focused great attention on the Lycium genus in recent years, and many chemical
components from this genus have been isolated. Therefore, a comprehensive and systematic review on
the chemical constituents of the Lycium genus is much needed.

Most of the published reviews not only covered chemical composition, but also summarized
the pharmacology, clinical studies, safety, toxicology and adverse actions of L. barbarum or
L. chinense [17–19]. The aim of this review was to focus on chemical constituents in different parts of
plants from different species in Lycium genus, especially small molecular compounds with updated
research reports. This paper comprehensively summarizes the reports of constituents from the genus
Lycium. Up to 2016, at least 355 constituents were reported from different species in the Lycium genus
and different parts (fruits, root bark, leaves, seeds, and flowers) of the plant. This review describes
the advances in the phytochemistry of the genus Lycium from 1975 to 2016, based on the 142 cited
references. The reported constituents can be classified as glycerogalactolipids, phenylpropanoids,
coumarins, lignans, flavonoids, amides, alkaloids, anthraquinones, organic acids, terpenoids, sterols,
steroids, peptides, and other constituents. The aim of this review is to illustrate the recent advances
in the characterization of the Lycium genus. The results, based on these phytochemical studies,
could lay a solid foundation for better understanding of pharmacological activities of Lycium and
quality assessment.

2. Constituents

Until now, other than polysaccharides, more than 355 compounds have been isolated and
identified from the Lycium genus. The small molecules can be assigned to various classes
of glycerogalactolipids, phenylpropanoids, coumarins, lignans, flavonoids, amides, alkaloids,
anthraquinones, organic acids, terpenoids, sterols, steroids and their derivatives, and peptides. Beyond
that, other groups of compounds have also been reported. The proportion of different compounds
of the Lycium genus is show in Figure 1. Their structures are shown below, and their names and
corresponding plant sources are included in this paper.
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2.1. Macromolecules in the Lycium Genus

Polysaccharides

Polysaccharides are the most important group of substances in the goji berry, which are estimated
to comprise 5–8% of the dried fruits [20], 1.02–2.48% of the raw material [21–23]. More than
40 polysaccharides, with a molecular weight range of 8–241 kDa, were isolated from the fruit of
L. barbarum, L. chinense and L. ruthenicum. Two, LRLP4-A and LBLP5-A, were isolated from the
leaves of L. ruthenicum. The polysaccharides share a glycan-O-Ser glycopeptide structure and contain
galacturonic acid, 18 amino acids, and nine monosaccharides, namely, xylose (Xyl), glucose (Glc),
arabinose (Ara), rhamnose (Rha), mannose (Man), galactose (Gal), fucose (Fuc), galacturonic acid
(GalA), glucuronic acid (GlcA) [24]. The molar ratios of the polysaccharides are shown in Table 1.
The polysaccharides can be isolated and purified by water extract alcohol precipitation, DEAE
ion-exchange cellulose, gel-permeation chromatography, high performance liquid chromatography
(HPLC). Sevage method and organic reagents were used to remove proteins, pigments and other
impurities. The structural composition of a LBP can be studied by SDS-PAGE gel electrophoresis,
high perfomance size exclusion chromatography (HPSEC), gas-chromatographic–mass-spectrometry
(GC-MS), nucleic magnetic resonance (NMR), and matrix-assisted laser desorption ionization-time of
flight-mass spectrometry (MALDI-Tof-MS) [18,21,25].

Table 1. The molar ratios and source of LBPs.

LBPs Molar Ratio Source Reference

LbGp1 Ara:Gal:Glc = 2.5:1.0:1.0 L. barbarum [26]
LbGp2 Ara:Gal = 4:5 L. barbarum [27]
LbGp3 Ara:Gal = 1:1 L. barbarum [28,29]
LbGp4 Ara:Gal:Rha:Glc = 1.5:2.5:0.43:0.23 L. barbarum [28,30]
LbGp5 Rha:Ara:Xyl:Gal:Man:Glc = 0.33:0.52:0.42:0.94:0.85:1 L. barbarum [28]

LbGp5B Rha:Ara:Glc:Gal = 0.1:1:1.2:0.3 L. barbarum [31]
LBP3p Rha:Ara:Xyl:Gal:Man:Glc = 1.25:1.10:1.76:1:1.95:2.12 L. barbarum [32]
LBPC2 Xyl:Rha:Man = 8.8:2.3:1 L. barbarum [33]
LBPC4 Glc L. barbarum [33]
LBPA1 heteroglycan L. barbarum [33]
LBPA3 heteroglycan L. barbarum [33]

LBP1a-1 Glc L. barbarum [34]
LBP1a-2 Glc L. barbarum [34]
LBP3a-1 GalA L. barbarum [34]
LBP3a-2 GalA L. barbarum [34]
LBPF1 - L. barbarum [35]
LBPF2 - L. barbarum [35]
LBPF3 - L. barbarum [35]
LBPF4 - L. barbarum [35]
LBPF5 Ara, Man, Xyl, Glu, Rha L. barbarum [35,36]
LBPF6 - L. barbarum [36]
LPBC4 Glc L. barbarum [37]
LBP-1 Rha:Ara:Xyl:Gal:Man:GalA = 1:7.85:0.37:0.65:3.01:8.16 L. barbarum [22]
WSP1 Rha:Fuc:Ara:Xyl:Man:Gal:Glc = 1.6:0.2:51.4:4.8:1.2:25.9:7.3 L. barbarum [23]
AGP Rha:Ara:Xyl:Gal:Glc:GalA:GlcA = 3.3:42.9:0.3:44.3:2.4:7.0 L. barbarum [38]

LBP-IV Rha:Ara:Xyl:Glc:Gal = 1.61:3.82:3.44:7.54:1.00 L. barbarum [39]
LbGp1 Ara:Gal = 5.6:1 L. barbarum [40]

LBP-s-1 Rha:Ara:Xyl:Man:Glu:Gal:Gal A =
1.00:8.34:1.25:1.26:1.91:7.05:15.28 L. barbarum [41]

p-LBP Fuc:Rha:Ara:Gal:Glc:Xyl:Gal A:Glc A =
1.00:6.44:54.84:22.98:4.05:2.95:136.98:3.35 L. barbarum [42]

Cp-2-A Ara:Gal:Man:Rha:Glu = 6.02:2.71:1.00:0.70:0.67 L. chinese [43,44]
Cp-2-B Ara:Gal = 1:0.96 L. chinese [43,44]
Hp-2-A Ara:Gal = 5.2:1 L. chinese [43,44]
Hp-2-B Ara:Gal = 7.9:1 L. chinese [43,44]
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Table 1. Cont.

LBPs Molar Ratio Source Reference

Hp-2-C Ara:Gal = 1.2:1 L. chinese [43,44]
Hp-0-A Ara:Gal = 14:1 L. chinese [43,44]
Cp-1-A Ara:Xyl = 1:1 L. chinese [45]
Cp-1-B Ara L. chinese [45]
Cp-1-C Ara:Gal = 3:1 L. chinese [45]
Cp-1-D Ara:Gal = 1:1 L. chinese [45]
LRGP1 Rha:Ara:Xyl:Man:Glu:Gal = 0.65:10.71:0.33:0.67:1:10.41 L. ruthenicum [46]
LRGP2 - L. ruthenicum [47]
LRGP3 Rha:Ara:Gal = 1.0:14.9:10.4 L. ruthenicum [48]

LRGP4-A Rha:Ara:Glu:Gal = 1:7.6:0.5:8.6 L. ruthenicum [49]
LRGP5 Rha:Ara:Xyl:Gal:GalA = 1.0:2.2:0.5:1.2:4.7 L. ruthenicum [50]

LRLP4-A Rha:Ara:Gal = 1:10.3:5.3 L. ruthenicum [47]
LBLP5-A - L. ruthenicum [51]

2.2. Small Molecule Substances

2.2.1. Glycerogalactolipids 1–22

At present, 17 compounds of this type, a series of glycerogalactolipids 1–17, listed in Table 2, have
been isolated and identified. Compounds 1–15 have been isolated and identified from the fruits of
L. barbarum [52], whereas 16 and 17 were isolated from the fruits of L. chinense [53]. Compounds 18–22,
illustrated in Figure 2, were isolated from the root bark of L. chinense [54,55].

Table 2. Chemical structures of compounds 1–17.
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2.2.2. Phenylpropanoids 23–51

Four phenylpropanoids 23–26, namely E-cinnamic acid (23), E-ferulic acid (24), E-coniferol (25)
and isoscopoletin (26) are obtained from wolfberries [56–58]. Four phenylpropanoids, namely scopolin
(27), fabiatrin (28), lyciumin (29), and 9-O-(β-D-glucopyranosyl)lyoniresinol (30) are obtained from
the root bark of L. chinense [59–61]. 1-O-Methyl-4-O-p-E-coumaroyl-α-L-rhamnopyranoside (31) is
obtained from the fruits of L. ruthenicum [62]. The chemical structures of compounds 23–33 are
listed in Table 3 and Figure 3. In 2016, 11 phenylpropanoids 32–42 were isolated for the first time by
Zhou et al. from Lycium [56], including 1-O-E-feruloyl-6-O-β-D-xylopyranosyl-β-D-glucopyranoside
(32), 6-O-E-feruloyl-2-O-β-D-glucopyranosyl-α-D-glucopyranoside (33), 1-O-E-feruloyl-β-
D-glucopyranoside (34), ethyl-4-O-β-D-glucopyranosyl-E-ferulate (35), ethyl E-ferulate (36),
E-sinapinic acid (37), syringenin (38), Z-ferulic acid (39), phloretic acid (40), dihydroferulic acid (41),
and ethyl dihydroferulate (42), along with the nine new lycibarbarphenylpropanoids A–I (compounds
43–51) listed in Table 4.

Table 3. Chemical structures of compounds 26–28.
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No. Compounds R1 R2 R3 R4 Source

32 1-O-E-feruloyl-6-O-β-
D-xylopyranosyl-β-D-glucopyranoside OCH3 OH H COO-β-D-Glc6-β-D-Xyl L. barbarum

33 6-O-E-feruloyl-2-O-β-D-glucopyranosyl-
α-D-glucopyranoside OCH3 OH H COO6-α-

D-Glc2-β-D-Glc
L. barbarum

34 1-O-E-feruloyl-β-D-glucopyranoside OCH3 OH H COO-β-D-Glc L. barbarum
35 Ethyl-4-O-β-D-glucopyranosyl-E-ferulate OCH3 O-β-D-Glc H COOCH2CH3 L. barbarum
36 Ethyl E-ferulate OCH3 OH H COOCH2CH3 L. barbarum
37 E-sinapinic acid OCH3 OH OCH3 COOH L. barbarum
38 Syringenin OCH3 OH OCH3 CH2OH L. barbarum
39 E-ferulic acid OCH3 OH H COOH L. barbarum
40 Phloretic acid H OH H COOH L. barbarum
41 Dihydroferulic acid OCH3 OH H COOH L. barbarum
42 Ethyl dihydroferulate OCH3 OH H COOCH2CH3 L. barbarum
43 Lycibarbarphenylpropanoids A H OH H COO-β-D-Glc3-β-D-Glc L. barbarum
44 Lycibarbarphenylpropanoids B H OH H COO-β-D-Glc4-β-D-Glc L. barbarum
45 Lycibarbarphenylpropanoids C OCH3 OH H COO-β-D-Glc3-β-D-Glc L. barbarum
46 Lycibarbarphenylpropanoids D OCH3 OH H COO-β-D-Glc4-β-D-Glc L. barbarum
47 Lycibarbarphenylpropanoids E OCH3 OH H CH2O-β-D-Glc3-β-D-Glc L. barbarum
48 Lycibarbarphenylpropanoids F H O-β-D-Glc3-β-D-Glc H COOCH2CH3 L. barbarum
49 Lycibarbarphenylpropanoids G H O-β-D-Glc4-β-D-Glc H COOCH2CH3 L. barbarum
50 Lycibarbarphenylpropanoids H OCH3 O-β-D-Glc4-β-D-Glc H COOCH2CH3 L. barbarum
51 Lycibarbarphenylpropanoids I O-β-D-Glc OH H COOCH2CH3 L. barbarum

2.2.3. Coumarins 52–61

Nine coumarins, namely E-p-coumaric acid (52), Z-p-coumaric acid (53), esculetin (54),
fabiatrin (55), scopolin (56), and scopoletin (57), have been reported, and three new coumarins,
6-O-E-p-coumaroyl-2-O-β-D-glucopyranosyl-α-D-glucopyranoside (58), ethyl-4-O-β-d-glucopyranosyl-
E-p-coumarate (59), ethyl E-p-coumarate (60) and lycibarbarcoumarin A (61), have been obtained from
the fruits of L. barbarum in 2016 [56]. Compounds 55 and 56 were isolated from the root bark and fruits
of L. chinense [61], while 52−54 and 57 were isolated from the fruits of L. barbarum [63]. The chemical
structures of these coumarins are listed in Figure 4 and Table 5.
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D-glucopyranoside (70), lyciumlignan A (71), lyciumlignan B (72), lyciumlignan C (73), and
(7R,8S)-4,9,9′-trihydroxy-3,3′-dimethoxy-7′-en-8,4′-oxyneolignan-7-O-β-D-glucopyranoside (74) were
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2.2.5. Flavonoids 75–106

Twenty-seven flavonoids 75–101 have been reported from the genus Lycium, are listed in Tables 7
and 8 and Figures 6 and 7. Compound 75 was isolated from the flowers of L. barbarum [58], while
76–83 were identified from the fruits of L. barbarum [62,65–69]. Compound 84 was isolated from
the fruits of L. chinense [70], whereas 85–91 were isolated from the leaves of L. chinense [62,66,68,71].
Compound 92 and 93 were isolated from the leaves of L. halimifolium [72]. Compounds 94–98 were
isolated from the fruits of L. ruthenicum [16,62]. Compounds 99–101 were isolated from the root bark
of L. chinense [54,73,74]. Additionally, Zhou et al. isolated five isoflavonoids, namely derrone (102),
alpinumisoflavone (103), auriculasin (104), maackianin (105) and maackiain (106) from the fruits of
L. barbarum [56,75,76].

Table 7. Chemical structures of compounds 75–80, 82–83, 85–87 and 89–93.

Molecules 2017, 22, 911 8 of 33 

 

 

 
63 Arctigenin R=OH 
64 Arctiin R=O-β-D-Glc 

 
68 threo-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 
69 erythro-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 

70 (β)-Lyoniresinol 3-O-β-D-
glucopyranoside 

 
71 Lyciumlignan A 72 Lyciumlignan B 

73 Lyciumlignan C 
 

74 (7R,8S)-4,9,9′-Trihydroxy-3,3′-dimethoxy-7′-en-
8,4′-oxyneolignan-7-O-β-D-glucopyranoside 

Figure 5. Chemical structures of compounds 63–64 and 68–74. 

2.2.5. Flavonoids 75–106 

Twenty-seven flavonoids 75–101 have been reported from the genus Lycium, are listed in Tables 7 
and 8 and Figures 6 and 7. Compound 75 was isolated from the flowers of L. barbarum [58], while 76–83 
were identified from the fruits of L. barbarum [62,65–69]. Compound 84 was isolated from the fruits of 
L. chinense [70], whereas 85–91 were isolated from the leaves of L. chinense [62,66,68,71]. Compound 92 
and 93 were isolated from the leaves of L. halimifolium [72]. Compounds 94–98 were isolated from the 
fruits of L. ruthenicum [16,62]. Compounds 99–101 were isolated from the root bark of L. chinense [54,73,74]. 
Additionally, Zhou et al. isolated five isoflavonoids, namely derrone (102), alpinumisoflavone (103), 
auriculasin (104), maackianin (105) and maackiain (106) from the fruits of L. barbarum [56,75,76].  

Table 7. Chemical structures of compounds 75–80, 82–83, 85–87 and 89–93. 

OR1

OH O
R3

R2

OH

 
75,77–80,87,90,92 

OR1

OH O
R2

OH

7,82–83,93 

OR1

OH O

R3

R2

 
85–86,89,91 

No. Compounds R1 R2 R3 Source
75 Quercitrin OH OH O-α-L-Rha L. barbarum 
76 Kaempferol OH OH – L. barbarum 
77 Quercetin OH OH OH L. barbarum 
78 Rutin OH OH O-β-D-Glc6-α-L-Rha L. barbarum 
79 Narcissoside OH OCH3 O-β-D-Glc6-α-L-Rha L. barbarum 

R
O

O

O

O

O

O
HO

OH

HO

O

OH

MeO

HO
OMe

OH
O-β-D-Glc

MeO
OH

OMe

HO

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO
O

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO

O

OH
OO

OH
OH

OH

OH

HO

O

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

O

OH
HO

OH

OH

HO

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

Molecules 2017, 22, 911 8 of 33 

 

 

 
63 Arctigenin R=OH 
64 Arctiin R=O-β-D-Glc 

 
68 threo-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 
69 erythro-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 

70 (β)-Lyoniresinol 3-O-β-D-
glucopyranoside 

 
71 Lyciumlignan A 72 Lyciumlignan B 

73 Lyciumlignan C 
 

74 (7R,8S)-4,9,9′-Trihydroxy-3,3′-dimethoxy-7′-en-
8,4′-oxyneolignan-7-O-β-D-glucopyranoside 

Figure 5. Chemical structures of compounds 63–64 and 68–74. 

2.2.5. Flavonoids 75–106 

Twenty-seven flavonoids 75–101 have been reported from the genus Lycium, are listed in Tables 7 
and 8 and Figures 6 and 7. Compound 75 was isolated from the flowers of L. barbarum [58], while 76–83 
were identified from the fruits of L. barbarum [62,65–69]. Compound 84 was isolated from the fruits of 
L. chinense [70], whereas 85–91 were isolated from the leaves of L. chinense [62,66,68,71]. Compound 92 
and 93 were isolated from the leaves of L. halimifolium [72]. Compounds 94–98 were isolated from the 
fruits of L. ruthenicum [16,62]. Compounds 99–101 were isolated from the root bark of L. chinense [54,73,74]. 
Additionally, Zhou et al. isolated five isoflavonoids, namely derrone (102), alpinumisoflavone (103), 
auriculasin (104), maackianin (105) and maackiain (106) from the fruits of L. barbarum [56,75,76].  

Table 7. Chemical structures of compounds 75–80, 82–83, 85–87 and 89–93. 

OR1

OH O
R3

R2

OH

 
75,77–80,87,90,92 

OR1

OH O
R2

OH

7,82–83,93 

OR1

OH O

R3

R2

 
85–86,89,91 

No. Compounds R1 R2 R3 Source
75 Quercitrin OH OH O-α-L-Rha L. barbarum 
76 Kaempferol OH OH – L. barbarum 
77 Quercetin OH OH OH L. barbarum 
78 Rutin OH OH O-β-D-Glc6-α-L-Rha L. barbarum 
79 Narcissoside OH OCH3 O-β-D-Glc6-α-L-Rha L. barbarum 

R
O

O

O

O

O

O
HO

OH

HO

O

OH

MeO

HO
OMe

OH
O-β-D-Glc

MeO
OH

OMe

HO

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO
O

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO

O

OH
OO

OH
OH

OH

OH

HO

O

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

O

OH
HO

OH

OH

HO

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

Molecules 2017, 22, 911 8 of 33 

 

 

 
63 Arctigenin R=OH 
64 Arctiin R=O-β-D-Glc 

 
68 threo-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 
69 erythro-1,2-bis(4-Hydroxy-3-

methoxyphenyl)-1,3-propanediol 

70 (β)-Lyoniresinol 3-O-β-D-
glucopyranoside 

 
71 Lyciumlignan A 72 Lyciumlignan B 

73 Lyciumlignan C 
 

74 (7R,8S)-4,9,9′-Trihydroxy-3,3′-dimethoxy-7′-en-
8,4′-oxyneolignan-7-O-β-D-glucopyranoside 

Figure 5. Chemical structures of compounds 63–64 and 68–74. 

2.2.5. Flavonoids 75–106 

Twenty-seven flavonoids 75–101 have been reported from the genus Lycium, are listed in Tables 7 
and 8 and Figures 6 and 7. Compound 75 was isolated from the flowers of L. barbarum [58], while 76–83 
were identified from the fruits of L. barbarum [62,65–69]. Compound 84 was isolated from the fruits of 
L. chinense [70], whereas 85–91 were isolated from the leaves of L. chinense [62,66,68,71]. Compound 92 
and 93 were isolated from the leaves of L. halimifolium [72]. Compounds 94–98 were isolated from the 
fruits of L. ruthenicum [16,62]. Compounds 99–101 were isolated from the root bark of L. chinense [54,73,74]. 
Additionally, Zhou et al. isolated five isoflavonoids, namely derrone (102), alpinumisoflavone (103), 
auriculasin (104), maackianin (105) and maackiain (106) from the fruits of L. barbarum [56,75,76].  

Table 7. Chemical structures of compounds 75–80, 82–83, 85–87 and 89–93. 

OR1

OH O
R3

R2

OH

 
75,77–80,87,90,92 

OR1

OH O
R2

OH

7,82–83,93 

OR1

OH O

R3

R2

 
85–86,89,91 

No. Compounds R1 R2 R3 Source
75 Quercitrin OH OH O-α-L-Rha L. barbarum 
76 Kaempferol OH OH – L. barbarum 
77 Quercetin OH OH OH L. barbarum 
78 Rutin OH OH O-β-D-Glc6-α-L-Rha L. barbarum 
79 Narcissoside OH OCH3 O-β-D-Glc6-α-L-Rha L. barbarum 

R
O

O

O

O

O

O
HO

OH

HO

O

OH

MeO

HO
OMe

OH
O-β-D-Glc

MeO
OH

OMe

HO

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO
O

OCH3

O
O

O
OO

OHOH
OH

OH

OH

OH

OCH3

HO

HO

O

OH
OO

OH
OH

OH

OH

HO

O

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

O

OH
HO

OH

OH

HO

OCH3

O
O

O
HO

OH
OH

OH

OH

OCH3

HO

No. Compounds R1 R2 R3 Source

75 Quercitrin OH OH O-α-L-Rha L. barbarum
76 Kaempferol OH OH – L. barbarum
77 Quercetin OH OH OH L. barbarum
78 Rutin OH OH O-β-D-Glc6-α-L-Rha L. barbarum
79 Narcissoside OH OCH3 O-β-D-Glc6-α-L-Rha L. barbarum
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Table 7. Cont.

No. Compounds R1 R2 R3 Source

83 7-O-(β-D-Glucopyranosyl)-3-O-[β-
D-glucopyranosyl]-(1→ 2)-β-D-galactop O-β-D-Glc O-β-D-Glc6-α-L-Glc – L. barbarum

85 Luteolin OH OH OH L. chinense
86 Acacetin OH H OCH3 L. chinense

87
7-O-(β-D-Glucopyranosyl)-3-O-[β-
D-glucopyranosyl-(1→
2)-β-D-galactopyranosyl]-quercetin

O-β-D-Glc OH O-β-D-Glc2-β-D-Glc L. chinense

89 7-O-[α-L-Rhamno-pyranosyl-(1→
6)-β-D-glucopyranosyl]-acacetin

O-β-D-
Glc6-α-L-Rha H OCH3 L. chinense

90 3-O-Sophoroside-quercetin OH OH O-β-D-Glc2-β-D-Glc L. chinense
91 Apigenin OH H OH L. chinense
92 Isoquercitrin OH OH O-β-D-Glc L. halimifolium
93 Nicotiflorin OH O-β-D-Glc6-α-L-Rha – L. halimifolium
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Sixteen amides 107–122 have been isolated from the root bark of L. chinense [9,54,60,77–80], 19 
amides (123–141) have been isolated from the fruits of L. barbarum [81–88]. Meanwhile, two 
cerebrosides 142 and 143 have been obtained from fruits of L. chinense [89]. The chemical structures 
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2.2.6. Amides 107–143

Sixteen amides 107–122 have been isolated from the root bark of L. chinense [9,54,60,77–80],
19 amides (123–141) have been isolated from the fruits of L. barbarum [81–88]. Meanwhile, two
cerebrosides 142 and 143 have been obtained from fruits of L. chinense [89]. The chemical structures of
these amides are shown in Figure 8.
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2.2.7. Alkaloids 144–215

To date, 72 alkaloids have been identified, which can be classified into five categories: nortropane,
imidazole, piperidine, pyrrole, spermine, tropane, and other alkaloids.

Nortropane Alkaloids

Fourteen nortropane alkaloids 144–157, shiwn in Figure 9, have been isolated from the root bark
of L. chinense [90].
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imidazole, Na-[(E)-cinnamoyl]histamine (163), was obtained from the leaves of L. barbarum [66], listed 
in Figure 10. 
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Piperidine Alkaloids 

5-hydroxy-2-pyridylmethyl ketone (164), methyl 5-hydroxy-2-pyridinecarboxylate (165), 
fagomine (166), and 6-deoxyfagomine (167), listed in Figure 11, have been isolated and identified 
from the genus Lycium; among them. Compounds 164 and 165 are from the fruits of L. barbarum [92], 
and 166 and 167 are from the root bark of L. chinense [90]. 
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Pyrrole Alkaloids 

Thirteen pyrrole alkaloids 168–180 have been isolated from the fruits of L. chinense [93–95]. 
Likewise, 2-formyl-5-hydroxymethylpyrrole (181) and 2-formyl-5-methoxymethylpyrrole (182) were 
isolated from the fruits of L. barbarum [92]. Two pyrrolidine alkaloids, alkaloid I (183) and alkaloid II 
(184), are obtained from the root bark of L. chinense [96]. The chemical structures of these pyrrole 
alkaloids are listed in Figure 12. 
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Imidazole Alkaloids

Six imidazole alkaloids 158–162 were detected in the leaves of L. cestroides [91]: Meanwhile, one
imidazole, Na-[(E)-cinnamoyl]histamine (163), was obtained from the leaves of L. barbarum [66], listed
in Figure 10.
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Piperidine Alkaloids

5-hydroxy-2-pyridylmethyl ketone (164), methyl 5-hydroxy-2-pyridinecarboxylate (165),
fagomine (166), and 6-deoxyfagomine (167), listed in Figure 11, have been isolated and identified from
the genus Lycium; among them. Compounds 164 and 165 are from the fruits of L. barbarum [92], and
166 and 167 are from the root bark of L. chinense [90].
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Pyrrole Alkaloids

Thirteen pyrrole alkaloids 168–180 have been isolated from the fruits of L. chinense [93–95].
Likewise, 2-formyl-5-hydroxymethylpyrrole (181) and 2-formyl-5-methoxymethylpyrrole (182) were
isolated from the fruits of L. barbarum [92]. Two pyrrolidine alkaloids, alkaloid I (183) and alkaloid II
(184), are obtained from the root bark of L. chinense [96]. The chemical structures of these pyrrole
alkaloids are listed in Figure 12.
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Nineteen spermine alkaloids have been found in the genus Lycium. Kukoamines A (185) and 
kukoamines B (186) are from the root bark of L. chinense [97,98], while N1-caffeoyl-N3-dihydrocaffeoyl 
spermidine (187) and lyrium spermidine A (188) are from the fruits of L. ruthenicum [62,99], listed in 
Figure 13. Another 15 spermine alkaloids, lycibarbarspermidine A–O (189–203), listed in Tables 9 and 10 
and Figures 13–15, are from L. barbarum [100]. 

Figure 12. Chemical structures of compounds 168–184.

Spermine Alkaloids

Nineteen spermine alkaloids have been found in the genus Lycium. Kukoamines A (185) and
kukoamines B (186) are from the root bark of L. chinense [97,98], while N1-caffeoyl-N3-dihydrocaffeoyl
spermidine (187) and lyrium spermidine A (188) are from the fruits of L. ruthenicum [62,99], listed
in Figure 13. Another 15 spermine alkaloids, lycibarbarspermidine A–O (189–203), listed in Tables 9
and 10 and Figures 13–15, are from L. barbarum [100].



Molecules 2017, 22, 911 16 of 33

Molecules 2017, 22, 911 16 of 33 

 

N
H

O

N
H

H
N

H
N

O

OH

OH

HO

HO

 
185 Kukoamines A 

HO

N
H

O
HO

N
H

N NH2

O

HO
OH

186 Kukoamines B 

N
H

H
N

H
N

HO
OH

OH

OH

O

O

187 N1-Caffeoyl-N3-dihydrocaffeoyl spermidine 

N
H

N
H
N

HO
OH

OH

OH

O

O

COOH

188 Lyrium spermidine A 

Figure 13. Chemical structures of compounds 185–188. 

Table 9. Chemical structures of compounds 189–193. 

CF3COO-R2
O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3
R4

 
189–193 

No. Compounds R1 R2 R3 R4 Source 
189 Lycibarbarspermidine A H β-D-Glc H H L. barbarum 
190 Lycibarbarspermidine B H H β-D-Glc H L. barbarum 
191 Lycibarbarspermidine C β-D-Glc  H H H L. barbarum 
192 Lycibarbarspermidine D H H H β-D-Glc L. barbarum 
193 Lycibarbarspermidine E H β-D-Glc β-D-Glc H L. barbarum 

 

H
O

O
Glc-D-β

O

H
N

N
H

N
H

O

O

O

β-D-Glc
H

 
194 Lycibarbarspermidine F 

Glc-D-β
O

O
H

O

H
N

N
H2

N
H

O

O
O

H β-D-Glc

CF3COO-

 
195 Lycibarbarspermidine G 

Figure 14. Chemical structures of compounds 194 and 195. 

Table 10. Chemical structures of compounds 196–200. 

R2
O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3
R4

CF3COO-

 
196–200 

No. Compounds R1 R2 R3 R4 Source 
196 Lycibarbarspermidine H H H H β-D-Glc L. barbarum 
197 Lycibarbarspermidine I H β-D-Glc H H L. barbarum 
198 Lycibarbarspermidine J H H β-D-Glc H L. barbarum 
199 Lycibarbarspermidine K β-D-Glc H β-D-Glc H L. barbarum 
200 Lycibarbarspermidine L H β-D-Glc H β-D-Glc L. barbarum 

  

Figure 13. Chemical structures of compounds 185–188.

Table 9. Chemical structures of compounds 189–193.

Molecules 2017, 22, x  16 of 33 

 

NOHC
O

H3COOC

OH

 

180 Methyl 2-[2-formyl-5-(methoxy-

methyl)-1H-pyrrol-1-yl]-3-(4-

hydroxyphenyl)-propanoate 

H
NOHC

OH
 

181 2-Formyl-5-

hydroxymethylpyrrole 

H
NOHC

O
 

182 2-Formyl-5-methoxymethyl-

pyrrole 

N
H

HO

HO

HO
OH

OH

 
183 Alkaloid I 

N
HHO

OH

OH

OH

 
184 Alkaloid II 

Figure 12. Chemical structures of compounds 168–184. 

Spermine Alkaloids 

Nineteen spermine alkaloids have been found in the genus Lycium. Kukoamines A (185) and 

kukoamines B (186) are from the root bark of L. chinense [97,98], while N1-caffeoyl-N3-

dihydrocaffeoyl spermidine (187) and lyrium spermidine A (188) are from the fruits of L. ruthenicum 

[62,99], listed in Figure 13. Another 15 spermine alkaloids, lycibarbarspermidine A–O (189–203), 

listed in Tables 9 and 10 and Figures 13–15, are from L. barbarum [100]. 

N
H

O

N
H

H
N

H
N

O

OH

OH

HO

HO

 
185 Kukoamines A 

HO

N
H

O

HO
N
H

N NH2

O

HO

OH

 
186 Kukoamines B 

N
H

H
N

H
N

HO

OH

OH

OH

O

O

 
187 N1-Caffeoyl-N3-dihydrocaffeoyl spermidine 

N
H

N
H
N

HO

OH

OH

OH

O

O

COOH

 
188 Lyrium spermidine A 

Figure 13. Chemical structures of compounds 185–188. 

Table 9. Chemical structures of compounds 189–193. 

 

 
189–193 

No. Compounds R1 R2 R3 R4 Source 

189 Lycibarbarspermidine A H β-D-Glc H H L. barbarum 

190 Lycibarbarspermidine B H H β-D-Glc H L. barbarum 

191 Lycibarbarspermidine C β-D-Glc  H H H L. barbarum 

192 Lycibarbarspermidine D H H H β-D-Glc L. barbarum 

193 Lycibarbarspermidine E H β-D-Glc β-D-Glc H L. barbarum 

 

H
O

O
Glc-D-β

O

H
N

N
H

N
H

O

O

O

β-D-Glc
H

 
194 Lycibarbarspermidine F 

CF3COO-
R2

O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3

R4

No. Compounds R1 R2 R3 R4 Source

189 Lycibarbarspermidine A H β-D-Glc H H L. barbarum
190 Lycibarbarspermidine B H H β-D-Glc H L. barbarum
191 Lycibarbarspermidine C β-D-Glc H H H L. barbarum
192 Lycibarbarspermidine D H H H β-D-Glc L. barbarum
193 Lycibarbarspermidine E H β-D-Glc β-D-Glc H L. barbarum

Molecules 2017, 22, 911 16 of 33 

 

N
H

O

N
H

H
N

H
N

O

OH

OH

HO

HO

 
185 Kukoamines A 

HO

N
H

O
HO

N
H

N NH2

O

HO
OH

186 Kukoamines B 

N
H

H
N

H
N

HO
OH

OH

OH

O

O

187 N1-Caffeoyl-N3-dihydrocaffeoyl spermidine 

N
H

N
H
N

HO
OH

OH

OH

O

O

COOH

188 Lyrium spermidine A 

Figure 13. Chemical structures of compounds 185–188. 

Table 9. Chemical structures of compounds 189–193. 

CF3COO-R2
O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3
R4

 
189–193 

No. Compounds R1 R2 R3 R4 Source 
189 Lycibarbarspermidine A H β-D-Glc H H L. barbarum 
190 Lycibarbarspermidine B H H β-D-Glc H L. barbarum 
191 Lycibarbarspermidine C β-D-Glc  H H H L. barbarum 
192 Lycibarbarspermidine D H H H β-D-Glc L. barbarum 
193 Lycibarbarspermidine E H β-D-Glc β-D-Glc H L. barbarum 

 

H
O

O
Glc-D-β

O

H
N

N
H

N
H

O

O

O

β-D-Glc
H

 
194 Lycibarbarspermidine F 

Glc-D-β
O

O
H

O

H
N

N
H2

N
H

O

O
O

H β-D-Glc

CF3COO-

 
195 Lycibarbarspermidine G 

Figure 14. Chemical structures of compounds 194 and 195. 

Table 10. Chemical structures of compounds 196–200. 

R2
O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3
R4

CF3COO-

 
196–200 

No. Compounds R1 R2 R3 R4 Source 
196 Lycibarbarspermidine H H H H β-D-Glc L. barbarum 
197 Lycibarbarspermidine I H β-D-Glc H H L. barbarum 
198 Lycibarbarspermidine J H H β-D-Glc H L. barbarum 
199 Lycibarbarspermidine K β-D-Glc H β-D-Glc H L. barbarum 
200 Lycibarbarspermidine L H β-D-Glc H β-D-Glc L. barbarum 

  

Figure 14. Chemical structures of compounds 194 and 195.



Molecules 2017, 22, 911 17 of 33

Table 10. Chemical structures of compounds 196–200.

Molecules 2017, 22, x  17 of 33 

 

Glc-D-β
O

O
H

O

H
N

N
H2

N
H

O

O
O

H β-D-Glc

CF3COO-

 
195 Lycibarbarspermidine G 

Figure 14. Chemical structures of compounds 194 and 195. 

Table 10. Chemical structures of compounds 196–200. 

 

 
196–200 

No. Compounds R1 R2 R3 R4 Source 

196 Lycibarbarspermidine H H H H β-D-Glc L. barbarum 

197 Lycibarbarspermidine I H β-D-Glc H H L. barbarum 

198 Lycibarbarspermidine J H H β-D-Glc H L. barbarum 

199 Lycibarbarspermidine K β-D-Glc H β-D-Glc H L. barbarum 

200 Lycibarbarspermidine L H β-D-Glc H β-D-Glc L. barbarum 

 

H
O

O
Glc-D-β

O

H
N

N
H

N
H

O

O

O

H
β-D-Glc

 
201 Lycibarbarspermidine M 

R
O

HO
O

H
N

+H2N

N
H

O

HO

O
CF3COO-

 
202 Lycibarbarspermidine N R = β-D-Glc 

203 Lycibarbarspermidine O R = β-D-Glc3β-D-Glc 

Figure 15. Chemical structures of compounds 201–203. 

Tropane Alkaloids 

As we know, the genus Lycium has been used as both a medicine and a food for a long time in 

Asia, particularly in China. However, the safety of Lycium has been questioned for some time, 

especially after the detection of the three tropane alkaloids atropine (204), hyoscyamine (205), and 

scopolamine (206) [101]. Atropine and hyoscyamine were identified from the fruits of L. barbarum 

gathered in India, while scopolamine was identified from L. halimifolium at concentrations higher 

than the toxic dose. However, another scholar, seeking to verify these reports, demonstrated that the 

atropine content of L. barbarum from different sources was just 3.0 ppb—far below the poisoning dose 

[102]. It was demonstrated that none of the toxic compounds were detected in fruits, leaves, stems 

and roots of three L. barbarum varieties (‘No. 1’, ‘New Big’ and ‘Amber Sweet Goji’) by densitometric 

R2

O

O
R1

O

H
N

N
H2

N
H

O

O

O

R3

R4

CF3COO-

No. Compounds R1 R2 R3 R4 Source

196 Lycibarbarspermidine H H H H β-D-Glc L. barbarum
197 Lycibarbarspermidine I H β-D-Glc H H L. barbarum
198 Lycibarbarspermidine J H H β-D-Glc H L. barbarum
199 Lycibarbarspermidine K β-D-Glc H β-D-Glc H L. barbarum
200 Lycibarbarspermidine L H β-D-Glc H β-D-Glc L. barbarum

Molecules 2017, 22, 911 17 of 33 

 

H
O

O
Glc-D-β

O

H
N

N
H

N
H

O

O

O

H
β-D-Glc 

201 Lycibarbarspermidine M 

R
O

HO
O

H
N

+H2N

N
H

O

HO
O CF3COO-

202 Lycibarbarspermidine N R = β-D-Glc 
203 Lycibarbarspermidine O R = β-D-Glc3β-D-Glc 

Figure 15. Chemical structures of compounds 201–203. 

Tropane Alkaloids 

As we know, the genus Lycium has been used as both a medicine and a food for a long time in 
Asia, particularly in China. However, the safety of Lycium has been questioned for some time, 
especially after the detection of the three tropane alkaloids atropine (204), hyoscyamine (205), and 
scopolamine (206) [101]. Atropine and hyoscyamine were identified from the fruits of L. barbarum 
gathered in India, while scopolamine was identified from L. halimifolium at concentrations higher than the 
toxic dose. However, another scholar, seeking to verify these reports, demonstrated that the atropine 
content of L. barbarum from different sources was just 3.0 ppb—far below the poisoning dose [102]. It was 
demonstrated that none of the toxic compounds were detected in fruits, leaves, stems and roots of three 
L. barbarum varieties (‘No. 1’, ‘New Big’ and ‘Amber Sweet Goji’) by densitometric TLC analysis [103]. 
Through field investigation and model specimen inspections, the above three tropane alkaloids were 
determined to be from Lycium europaeum rather than the L. barbarum. Thus, the genus Lycium is likely 
non-toxic, and consumers can rest assured that its use is safe [104].  

Other than the alkaloids that have been already mentioned, there are nine others that have been 
obtained from this genus, including 9-formylharman (207), 1-(methoxycarbonyl)-β-carboline (208), 
perlolyrine (209), choline (210), 1β-amino-3β,4β,5α-trihydroxycycloheptane (211), betaine 
hydrochloride (212), nicotianamine (213), betaine (214), and melatonin (215). Compounds 207–209 
were isolated from the fruits of L. chinense [105], while 210–212 were isolated from the root bark of  
L. chinense [90]. Compound 213 was isolated from the leaves and flowers of L. chinense [106], and 214 
and 215 were isolated from the fruits of L. barbarum [107,108]. The chemical structures of these tropane 
alkaloids are listed in Figure 16.  

 
204 Atropine 

N

O

O

OH

 
205 Hyoscyamine 

 
206 Scopolamine 

N
N
CHO  

207 9-Formylharman 

N

N
H COOMe 

208 1-(Methoxycarbonyl)-β-
carboline 

N

N
H O

OH 
209 Perlolyrine 

N
OH 

210 Choline 
 

211 1β-Amino-3β,4β,5α-
trihydroxycycloheptane 

N+
O-

O

HCl 
212 Betaine hydrochloride 

N

O

O

OH N

O

O

O

OH

NH2

HO
HO

HO

Figure 15. Chemical structures of compounds 201–203.

Tropane Alkaloids

As we know, the genus Lycium has been used as both a medicine and a food for a long time in Asia,
particularly in China. However, the safety of Lycium has been questioned for some time, especially
after the detection of the three tropane alkaloids atropine (204), hyoscyamine (205), and scopolamine
(206) [101]. Atropine and hyoscyamine were identified from the fruits of L. barbarum gathered in India,
while scopolamine was identified from L. halimifolium at concentrations higher than the toxic dose.
However, another scholar, seeking to verify these reports, demonstrated that the atropine content
of L. barbarum from different sources was just 3.0 ppb—far below the poisoning dose [102]. It was
demonstrated that none of the toxic compounds were detected in fruits, leaves, stems and roots of three
L. barbarum varieties (‘No. 1’, ‘New Big’ and ‘Amber Sweet Goji’) by densitometric TLC analysis [103].
Through field investigation and model specimen inspections, the above three tropane alkaloids were
determined to be from Lycium europaeum rather than the L. barbarum. Thus, the genus Lycium is likely
non-toxic, and consumers can rest assured that its use is safe [104].

Other than the alkaloids that have been already mentioned, there are nine others that have
been obtained from this genus, including 9-formylharman (207), 1-(methoxycarbonyl)-β-carboline
(208), perlolyrine (209), choline (210), 1β-amino-3β,4β,5α-trihydroxycycloheptane (211), betaine
hydrochloride (212), nicotianamine (213), betaine (214), and melatonin (215). Compounds 207–209
were isolated from the fruits of L. chinense [105], while 210–212 were isolated from the root bark of
L. chinense [90]. Compound 213 was isolated from the leaves and flowers of L. chinense [106], and 214
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and 215 were isolated from the fruits of L. barbarum [107,108]. The chemical structures of these tropane
alkaloids are listed in Figure 16.
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2.2.8. Anthraquinones 216–219

Four anthraquinones: emodin (216), physcion (217), 6-hydroxyrubiadin (218), and 3-O-(2-O-α-
L-rhamnopyranosyl-6-O-acetyl-β-D-glucopyranosyl)-6-hydroxy-rubiadin (219), listed in Figure 17,
have been obtained from the root bark of L. chinense [61,109].
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2.2.9. Organic Acids 220–251

To this point, 32 organic acids, listed in Figure 18, have been identified from the genus
Lycium, which can be classified into two groups: aliphatic acids 220–238 and aromatic acids and
their derivatives 239–251. Compounds 220–225 and 240–244 were isolated from the fruits of
L. barbarum [56,63,65,107,110–112]; 239 and 245 were isolated from the leaves of L. barbarum [66];
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226 was isolated from the root of L. chinense [113]; 227, 248 and 249 were isolated from the fruits of
L. chinense [70,114]; 228–233 and 248 were isolated from the leaves of L. chinense [115]; 234, 235, and
249–251 were isolated from the root bark of L. chinense [53,78,93,116,117], and 236–238 were isolated
from the fruits of L. urcomanicum [118,119].
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2.2.11. Sterols, Steroids, and Their Derivatives 291–347

Fifty-seven sterols, steroids, and their derivatives 291–347, listed in Figure 22, have been identified
from the genus Lycium, mainly from the seeds and the fruits. Compounds 293 and 343 were identified
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from the flowers of L. barbarum [130], 291–292; 295, 298, 319–324 and 337–339 were identified from
the fruits of L. chinense [23,35,52,63,107,131]; 341 342, 346 and 347 were identified from the leaves
of L. chinense [132,133]; 336 and 340 were identified from the root bark of L. chinense [80,121];
294 was identified from the seed of L. ciliatum [66]; all others were identified from the seed of
L. chinense [134–137] 344 and 345 were identified from the seeds of L. barbarum [138].
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2.2.12. Peptides 348–352 

Five peptides have been isolated from the root bark of L. chinense [80,139], including one 
dipeptide, lyciumamide (348), and four octapeptides, called lyciumins A–D (compounds 349–350), 
illustrated in Figure 23. 
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2.2.12. Peptides 348–352

Five peptides have been isolated from the root bark of L. chinense [80,139], including one dipeptide,
lyciumamide (348), and four octapeptides, called lyciumins A–D (compounds 349–350), illustrated in
Figure 23.
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Other than what has already been mentioned, a few other chemical constituents, listed in Figure 24,
were also isolated from the genus Lycium. Digupigan A (353), 2-O-(β-D-glucopyranosyl)ascorbic acid
(354) and p-hydroxybenzaldehyde (355) also have been obtained from the root bark of L. chinense,
the fruits of L. chinense, and the fruits of L. barbarum [75,76,121,137,140,141], respectively. Many
minerals, amino acids, and proteins have also been found in the genus Lycium, such as Ca, Mg, Zn, Fe,
aminoethanesulfonic acid, γ-aminobutyric acid (GABA), Mn-SOD, etc. [121,142,143].
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Lycium species are of valuable medicinal, nutritional and functional significance, and have been
studied in terms of their chemical compounds. Phytochemical investigations on eight different species,
have resulted in the isolation of at least 355 constituents up to July of 2016. Research on chemical
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compounds has concentrated mainly on L. barbarum and L. chinense. Therefore, future phytochemistry
research should be focused on the other species in Lycium genus. In addition, diverse plant parts
(i.e., the flowers, leaves, seeds) have also been testified to contain new constituents, most of which
possess the novel chemical structures. Polysaccharides play a particularly significant role in exerting
pharmacological actions. A specific class of polysaccharides, abbreviated as LBP, is used as biomarker
in the 2015 Chinese Pharmacopoeia as a measure by which wolfberry is qualified. At present, LBP in
products or in pharmacological studies usually are polysaccharide mixtures with heterogeneity and
polydispersity. On the other hand, development of new separation, detection techniques will greatly
benefit the phytochemical isolation and structural elucidation of LBP. There is a growing recognition
that not only the LBP, but also the plant secondary metabolites may have the potential active ingredients,
while most of the research on goji berry was LBP rather than small molecule substances, so more
intensive studies of goji berry are required to shed some light on these compounds.
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