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A joint analysis of transcriptomic 
and metabolomic data uncovers 
enhanced enzyme-metabolite 
coupling in breast cancer
Noam Auslander1,*, Keren Yizhak2,*, Adam Weinstock2,*, Anuradha Budhu3, Wei Tang4, 
Xin Wei Wang3, Stefan Ambs4 & Eytan Ruppin1,2,5

Disrupted regulation of cellular processes is considered one of the hallmarks of cancer. We analyze 
metabolomic and transcriptomic profiles jointly collected from breast cancer and hepatocellular 
carcinoma patients to explore the associations between the expression of metabolic enzymes and the 
levels of the metabolites participating in the reactions they catalyze. Surprisingly, both breast cancer 
and hepatocellular tumors exhibit an increase in their gene-metabolites associations compared to 
noncancerous adjacent tissues. Following, we build predictors of metabolite levels from the expression 
of the enzyme genes catalyzing them. Applying these predictors to a large cohort of breast cancer 
samples we find that depleted levels of key cancer-related metabolites including glucose, glycine, serine 
and acetate are significantly associated with improved patient survival. Thus, we show that the levels 
of a wide range of metabolites in breast cancer can be successfully predicted from the transcriptome, 
going beyond the limited set of those measured.

The use of metabolomic profiling in cancer provides an additional layer of pathophysiological knowledge beyond 
genomic data, and is an important tool for the identification of cancer biomarkers both in vitro and in vivo1,2, 
leading to the discovery of key oncometabolites3,4. While non-targeted metabolomics methods have generated 
highly important insights3, most mechanistic links are still revealed by targeted metabolomics approaches, typi-
cally covering less than 200 predefined metabolite5.

The systematic investigation and contextualization of metabolomic data can be considerably enhanced by the 
integration of other data types such as transcriptomics, thus linking known metabolites and genes via their shared 
metabolic reactions and pathways. Previous studies have integrated these data types in a variety of biological 
systems including the study of plant nutritional responses6, E.coli stress response7, the identification of new bio-
markers in type 2 diabetes8 and of biomarkers associated with cancer progression and outcome9–11. Several such 
integrative studies have investigated the metabolic differences between cancer types and subtypes12–16.

An additional fundamental usage of these high-throughput data has been to study cellular regulation via the 
identification of reactions and pathways controlled by either metabolic or transcriptional (hierarchical) regulation, 
as previously been done in yeast17 as well as the characterization of condition dependent regulatory signatures18. 
The flux in a metabolically regulated reaction is mainly a function of its substrates and products levels, while the 
flux of a transcriptionally regulated reaction is mainly controlled by the expression level of the enzyme catalyzing 
it. Here we set to study the associations between substrate and product levels and the expression levels of the 
enzyme encoding their associated reaction. Despite the increased accumulation of metabolomic data, no pre-
vious study has systematically integrated large-scale transcriptomic and metabolomic signatures collected from 
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the same tissue samples in cancer to comprehensively study the associations between genes and metabolites on 
a network-scale level. Thus, we chart these relations with the analysis of matched non-cancerous versus cancer 
samples via a new machine learning-based pipeline designed to (1) identify reactions manifesting significant 
enzyme-metabolites associations, and then (2) use this information to predict the actual metabolite levels associ-
ated with such reactions from the expression of the genes encoding the enzymes catalyzing them. Such a predictor 
can go beyond the currently rather limited coverage of measured metabolites and obtain estimations of the levels 
of additional metabolites whose levels are strongly associated with the enzymes catalyzing the reactions in which 
they are involved.

Results
We analyzed recently published data of joint transcriptomic and metabolomic measurements across 105 noncan-
cerous and cancerous breast cancer (BC) clinical samples19. To systematically study the association between genes 
and metabolites we utilized the manually curated human metabolic network Recon1, in which genes are mapped 
to metabolites through their catalyzed metabolic reactions20 (Fig. 1A). Out of 162 cytoplasmic metabolites and 
1393 genes that could be mapped to the metabolic network, 1107 pairs were found to be connected to each other 
via a biochemical reaction; that is, the gene’s enzyme product catalyzes a reaction that consumes or produces the 
metabolite (such gene-metabolites (GM) are termed connected herewith). The correlation between the metab-
olomic and transcriptomic levels of each of these pairs was computed across both non-cancerous and cancer 
samples, as well as for each of these conditions separately. We find that more than 50% of the gene (enzyme) –  
metabolite pairs sharing a joint reaction are significantly associated with each other across samples when analyz-
ing the combined non-cancerous and cancer cohorts (FDR-corrected Spearman correlation P-value <  0.05). A 
smaller number of significant associations is found for each of these two cohorts alone, but while cancer samples 
show a significantly high number of significant gene-metabolite associations versus random, noncancerous sam-
ples do not show this trend (empirical P-values <  0.001 and 0.279 respectively, Table 1, Methods). These results 
point to a marked increase in the level of enzyme-metabolite associations in cancer versus healthy tissues.

We next aimed to systematically predict enzyme-metabolite associations on a genome-wide level. To this end 
we developed a two-step pipeline that (1) first performs a binary prediction of which reaction-gene-metabolite 
associations are statistically significant across the whole human metabolic network. (2) Second, it then utilizes 
these predicted associations to build a generalized regression predictor of the actual metabolite levels in a given 
sample from its gene expression data for any reaction in the human metabolic network (Fig. 1).

For the first, binary classification task, we built a Support Vector Machine (SVM) classifier whose goal is to 
identify reaction-gene-metabolite (RGM) triplets whose gene and metabolite (connected to the same reaction) 
exhibit a significant (positive or negative) association. The classifier utilizes gene expression and network features 

Figure 1. (A) The prediction pipeline: Step (1) A classifier predicting RGM triplets that are significantly 
associated: using Metabolomic and transcriptomic data to identify genes and metabolites that are connected via 
a metabolic reaction and are significantly associated with each other. This is obtained via building an RGM SVM 
classifier where each instance represents a unique RGM triplet and whose output is a confidence level signifying 
whether the gene expression and metabolite levels are significantly positively or negatively associated across 
all samples (Methods). Step (2) A regressor predicting metabolite levels from gene expression in a sample-
specific manner: Confidence levels predicted by the classifier for each RGM triplet in the first step are utilized 
together with the expression and network features to build a generalized multiple linear regression predictor of 
metabolite levels from the pertaining enzymes’ gene expression levels (Methods).
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for each RGM triplet while the correlation coefficient between gene and metabolite for each such triplet is used as 
the classification label. (Fig. 1, Methods). We evaluated the classifier’s performance, termed the RGM predictor, via 
a 5-fold cross validation procedure, using the instances where both the genes’ expression and metabolites levels 
were measured. The resulting classifier has high prediction accuracy, both when applied to all samples together 
and when applied to the noncancerous and cancer samples separately (mean AUC =  0.88, 1 and 0.92 respectively, 
Fig. 2A). Remarkably, a highly significant correlation is obtained between the confidence levels that the SVM clas-
sifier assigns to an RGM triplet and the strength of the gene expression-metabolites correlation observed in the 
measured data (Spearman ρ >  0.62, P-value <  1.7e-13 for all three tests described above, Fig. 2A, Supplementary 
Figure S1).

We applied the RGM classifier described above to predict RGM associations in a genome wide manner and 
chart a global map of reaction-enzyme-metabolite associations in breast cancer versus healthy samples. We find 
that the products are more positively correlated with the expression of their associated genes than reaction sub-
strates (one-sided Wilcoxon Rank-sum P-value =  1.19e-69). Similar results are obtained for the breast cancer and 
healthy cohorts separately (Supplementary Table S1). We next constructed a gene-metabolite bipartite graph, 
whose nodes are composed of genes and metabolites, and edges connect gene and metabolites sharing joint 
reactions whose levels where found to be associated in a statistically significant manner (Methods). We find 
that the cancer bipartite network contains substantially more high degree nodes than the healthy tissue net-
work (Supplementary Figure S2). Remarkably, we find that highly connected genes in the cancer network are 
significantly associated with three metabolic pathways: Fatty acid activation, Glycolysis/Gluconeogenesis and 
Extracellular transport, all with low hyper-geometric enrichment P-values, while in the noncancerous network 
we observe that the Extracellular transport pathway is the only significantly enriched pathway (Supplementary 
Table S2). The highly connected metabolites, however, are similar between the noncancerous and cancer graphs 
(hyper-geometric enrichment P-value <  1e-20). The metabolites appearing in the intersection of the two graphs 
are mainly amino acids (alanine, cysteine, glycine and serine), phosphate and sugars (Supplementary Table S3). 
We find that the absolute Spearman correlation of gene-metabolite pairs in the data is markedly correlated with 
the magnitude of the gene’s differential expression across all samples (Spearman ρ =  0.55, P-value =  1.22e-114, 
Fig. 2B), testifying that differentially expressed genes tend to participate in strongly correlated gene-metabolite 
pairs.

Analyzing the genome-wide predictions of gene-metabolite associations that we obtained, we find a greater 
amount of significant associations in cancer compared to healthy tissue, as previously observed in the analysis of 
the raw data. There is only a small overlap between the associations predicted in the healthy and cancer cohorts, 
providing another indication that cancer metabolism is extensively altered from its healthy state (Supplementary 
Figure S3), with many enzyme-metabolite interactions being uniquely established in each state. Pathway enrich-
ment analysis summarizing the classifier’s predictions reveals that these associations lie in different pathways in 
cancer vs healthy samples (FDR-corrected hypergeometric P-value <  0.05, Supplementary Table S4, Fig. 2C). We 
find that glycolysis is enriched with such associations in cancer while the citric acid cycle is enriched in the latter 
in healthy samples, in accordance with the central role of glycolysis in cancer and the Warburg effect21. Additional 
pathways that display such increased gene-metabolite coupling in cancer include glycosaminoglycan pathways 
(including chondroitin and heparan sulfate biosynthesis and degradation), Cholesterol metabolism and folate 
metabolism, all previously associated with breast cancer22–25.

Next we built a multiple regression predictor of metabolite levels from the gene expression levels of the genes 
associated with them in the human metabolic network. This second predictor receives the predicted confidence 
levels in these associations obtained from the previous RGM predictor as inputs (Methods). Applying this regres-
sion analysis to all 162 metabolites that were measured across the 105 clinical breast cancer and noncancerous 
samples reveals an overall moderate but significant correlation between measured and predicted metabolite levels 
(Spearman correlation ρ =  0.33, P-value <  1e-200, for measured metabolites). Overall, 92 of the 162 metabolites 
(56.8%) show a significant correlation (FDR-corrected Spearman correlation P-value <  0.05) between measured 
and predicted values across all 105 samples. 77 of 105 samples (73.3%) show a significant correlation between 
measured and predicted metabolite levels across all 162 measured metabolites (FDR-corrected Spearman cor-
relation P-value <  0.05, Supplementary Figure S4 and Supplementary Tables S5 and S6). For each metabolite, 
the regression performance (for predicting its level across samples) significantly correlates with its strongest 
RGM-predicted gene-metabolite association (Spearman correlation ρ =  0.71, P-value <  2.6e-25), demonstrating 
that, as expected, the levels of metabolites that are strongly associated with their enzyme’s expression can be 
better predicted. Highly predictable metabolites include key amino acids that have been implicated in cancer 
such as glycine, serine and threonine as well as key glycolytic metabolites (D-glucose-6-phosphate, D-fructose-
6-phosphate). Applying the regression to the noncancerous and breast cancer samples separately, a similar overall 

Test Statistic used

Breast Cancer Hepatocellular Carcinoma

Noncancerous Cancer Noncancerous Cancer

Enrichment of highly expressed genes with 
significant GM associations Hypergeometric P-value 0.998 1.14e-7 0.915 1.6e-7

Strength of association between connected GM 
pairs (compared to non-connected pairs) Empiric P-value 0.279 0.001 0.983 0.002

Table 1. A summary of the levels of associations exhibited between connected gene-metabolite pairs in BC 
and HCC, compared between the noncancerous and cancer conditions. In both datasets the cancer condition 
exhibits significantly stronger associations than the noncancerous condition.
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prediction performance is observed (Spearman correlation ρ =  0.3219, ρ =  0.3653 for noncancerous and cancer, 
respectively; P-value <  7.6626e-162 for both cases).

To explore whether the enzyme-metabolite associations observed above can be reproduced in an independ-
ent breast cancer dataset we repeated the same two steps’ analysis using the data of Brauer et al.26. This cohort 
is much smaller in comparison to the previous dataset, having joint transcriptomic and metabolomic measure-
ments across 28 breast cancer samples. Aligning these data with the metabolic network we were able to map 
172 cytoplasmic metabolites to 1066 genes and 842 connected gene-metabolite pairs. We then applied the two 
steps pipeline on this data: (1) we built the SVM RGM classifier to predict RGM associations, resulting in a 
moderate but significant accuracy (mean AUC =  0.73, Fig. 3B). (2) We built a multiple linear regressor to predict 
metabolite levels from the gene expression measurements of the genes associated with them. Here we find again 
a fairly strong correlation between measured and predicted metabolite levels (Spearman correlation ρ =  0.54, 
P-value <  1e-320), and, as before, we observe that the regressor performance significantly correlates with each 
metabolite’s strongest RGM-predicted gene-metabolite association (Spearman correlation ρ =  0.8, P-value <  19 
e-20). Examining the associations found at the metabolic pathways level, reassuringly we find that the path-
way enrichment P-values assigned to each pathway in this dataset are significantly correlated with the P-values 

Figure 2. (A) Top panels describe the mean AUC of the RGM predictors for all the breast data together and 
for cancer and noncancerous samples separately. The sensitivity, specificity and accuracy levels of the different 
classifiers are indicated as well. Bottom panels display the correlation between the confidence levels of the RGM 
predictions and the gene-metabolite correlations actually measured in the data, for the three cases studied 
here (see main text). Confidence levels range between − 1 and 1 where 1 represents a highly confident positive 
association and − 1 a highly confident negative association. (B) Scatter plot representing the association, for all 
genes, between (1) the absolute Spearman correlation between gene and metabolites associated with it across 
all samples (x-axis) and (2) the magnitude of the differential expression of that gene between noncancerous 
and cancer samples (y-axis). (C) Pathways that are predicted to be regulated in healthy (red) and cancer (blue) 
samples. The dashed line represents a hyper-geometric significance threshold of 0.05 (FDR-corrected for 
multiple hypotheses testing).
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assigned in the larger, previous dataset analyzed above (Spearman ρ =  0.6, P-value =  0.0064, Fig. 3C, (Methods, 
Supplementary Table S4)).

We then sought to explore whether the enhanced enzyme-metabolite coupling found in breast cancer may 
extend to another cancer type. To this end, we applied the same prediction pipeline and analyses to data from 
hepatocellular carcinoma (HCC) patients13 (such datasets are yet hard to come by). The HCC data is again smaller 
in its extent compared to the Terunuma data, comprising joint transcriptomic and metabolomic measurements 
across 27 noncancerous and 29 hepatocellular carcinoma samples. Aligning these data with the metabolic net-
work we were able to map 153 cytoplasmic metabolites, 1219 genes and 1400 connected gene-metabolite pairs. 
Notably, the HCC data exhibits much fewer significant GM associations − less than 10% of the connected GM 
pairs are significantly associated (FDR-corrected Spearman P-value <  0.05). Still, analyzing GM associations in 
the raw data reveals the same trend as that observed in BC data (Supplementary Figure S5), of a marked increase 
in these associations in cancer. We then built an HCC RGM classifier and evaluated its performance using 5-fold 
cross validation. It shows high prediction accuracy, both when applied to all samples together and when applied 
to the healthy and cancer samples separately (mean AUC =  0.84, 0.78 and 0.90 respectively, Fig. 3A). As in the 
breast cancer case, the confidence level assigned to an RGM triplet significantly correlates with the magnitude 
of the triplet’s correlation (Spearman correlation ρ =  0.26, 0.29, 0.35 and P-value =  0.002, 0.005, 0.0001 for all 
samples, noncancerous and cancer respectively). We generated a HCC multiple linear regression predictor of 
metabolite levels from the gene expression levels and applying it to all 153 metabolites across 56 HCC samples. 
This regressor obtains a significant but rather small overall correlation between measured and predicted metab-
olite levels (Spearman correlation ρ =  0.165, P-value <  2.4e-24, for the measured metabolites). Yet, these findings 
are quite remarkable given that less than 10% of the reactions show FDR-corrected RGM significant correlations 
in the original, measured data.

We performed a pathway-level enrichment analysis for the HCC dataset as described before for the BC 
dataset (Supplementary Table S2). The correlation of the HCC pathway enrichment p-values and the p-values 
of each of the two breast cancer datasets is lower compared to the correlation between the two BC datasets 
(Fig. 3C and Supplementary Figure S6) as expected, but still notable. These findings suggest that some increased 
gene-metabolite couplings are cancer type specific but others may be more generic to cancer. Indeed, we find 
that fatty acid oxidation is highly coupled in both cancer types for all three datasets, in accordance with recent 
findings testifying to its role in cancer proliferation27,28, and that the Glycolysis/Gluconeogenesis pathway displays 
increased metabolic coupling; the latter that has recently been associated with down-regulation of the p53 tumor 
suppressor29.

Figure 3. (A) The mean AUC of the RGM predictors for the Brauer BC dataset. The sensitivity, specificity and 
accuracy levels of the different classifiers are indicated as well. (B) The mean AUC of the RGM HCC predictors 
for all the data together and for cancer and healthy cohorts separately, and the sensitivity, specificity and 
accuracy levels. (C) A scatter plot describing the correlation between pathway enrichment p-values among the 
three datasets, when all significantly enriched pathways in the two datasets were considered (hyper-geometric 
p-value <  0.05). The left most panel displays the latter for the two BC datasets, and the middle and right most 
panels compare the HCC values to each of the BC datasets.
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Finally, we applied our metabolite prediction pipeline to another independent large cohort of gene expression 
data from BC tumors to predict genome-wide metabolite levels in every sample and associate them with the given 
patients’ survival data30. After obtaining patient specific predicted metabolite levels from corresponding gene 
expression levels (Methods) we examined the association of each metabolite with patients’ survival data in the 
cohort studied via a Kaplan-Meier survival analysis (Methods). Overall, we find that the predicted levels of 531 
metabolites have a significant association with patients’ survival time (FDR-corrected log-rank P-value <  0.05, 
Supplementary Table S7). Focusing on extracellular metabolites as potential biomarkers, we find that low levels of 
glycine, serine and acetate are associated with improved survival, in accordance with previous findings regarding 
these metabolites31–33 (Fig. 4, Table 2). Comparing metabolite-based survival results to the survival inferred from 
the expression of their corresponding genes, we find 168 metabolites whose predicted levels display stronger asso-
ciations with survival than the associations found for the expression of the genes producing or consuming them 
(Supplementary Table S9). Finally, we examined which metabolites can significantly differentiate between ER+  
and ER−  samples. The two leading metabolites are Carbonic acid and CO2 (FDR-corrected two-sided Wilcoxon 
P-value <  1e-150). The levels of these metabolites were not measured in the Terunuma et al. BC dataset, but they 

Figure 4. Kaplan-Meier survival plots for extracellular levels of glycine, acetate and serine. The associated 
FDR-corrected log-rank P-values are 0.002, 5.18e-6 and 8e-4, respectively.

Metabolite name
Log-rank 
p-value

Wilcoxon 
P-value

Fold-change 
(cancer versus 
noncancerous)

L-Cysteine 5.11E-05 1.49E-09 4.7

L-Alanine 5.68E-05 3.79E-09 2.24

D-Serine 0.000801 2.64E-10 3.19

Adenosine 0.0025 3.20E-10 5.29

Glycine 0.0027 5.75E-12 3.24

Uracil 0.0031 3.69E-13 7.52

L-Tryptophan 0.0036 3.71E-09 2.15

L-Tyrosine 0.0036 2.01E-06 1.82

L-Proline 0.0041 6.54E-13 3.92

L-Phenylalanine 0.0059 7.33E-07 1.96

Guanosine 0.0096 1.03E-11 2.38

L-Threonine 0.013 1.59E-08 1.97

Inosine 0.015 5.21E-06 1.76

L-Methionine 0.015 2.02E-07 1.97

Table 2. The top-ranked metabolites whose extracellular levels is predicted to be negatively associated with 
patient’ survival. These metabolites also show a significant difference in their levels in non-cancerous versus 
cancer samples. The Table indicates the log-rank P-value of the survival analysis, the Wilcoxon P-value of the 
differential analysis and the fold change of median cancer versus noncancerous metabolite levels (for the full 
Table see Supplementary Table S8).
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were predicted to be significantly different between ER+  and ER−  samples in this dataset as well (FDR-corrected 
Wilcoxon rank-sun p-value <  0.05 for both). Interestingly, it was shown that Carbonic anhydrase (CA), which 
converts carbon dioxide to carbonic acid to regulate cellular pH, is up-regulated in hypoxia in cancer cells34,35 and 
is a significant prognostic marker in invasive breast carcinoma36.

Discussion
Many cellular processes are widely considered to be dysregulated in cancer, including metabolism37,38. The dis-
rupted regulatory processes have many manifestations, such as altered signaling and increased heterogeneity in 
transcription39–42. Jointly analyzing transcriptomic and metabolomic data revealed increased enzyme-metabolite 
coupling in both BC and HCC. Although it may appear at first that dysregulation and increased gene-metabolite 
associations in cancer are conflicting, our findings may actually suggest that they are complementary, occurring 
at different levels of cellular processing. At the level of transcription, tumor cells exhibit an altered regulatory 
program dictated by changes in signaling and transcription levels. These changes are followed tightly with corre-
sponding alterations at the metabolite levels in key cancer-related metabolic pathways. Remarkably, examining 
both BC and HCC cancer types, we find that increased RGM associated genes also show an increased variance in 
their expression relative to other genes (One-sided Wilcoxon P-value <  4.17e-4 and P-value <  1.18e-7 in BC and 
HCC respectively, Supplementary information). This finding supports the notion that the heterogeneity in tran-
scription and increased metabolic coupling observed here may be complementary. We hypothesize that increased 
metabolic coupling in tumors may make them more adaptable to an ever changing harsh environment; the cells’ 
survival may depend on a quick response at the metabolite level when in metabolically distressed cancer cells. 
Further, we find that these increased gene-metabolite couplings are not occurring randomly across the meta-
bolic network but are localized to specific pathways, in a pattern that is quite consistent across two different BC 
datasets.

Taken together our study provides a comprehensive analysis of metabolomic and transcriptomic associations 
in breast cancer, and highlights metabolic enzyme-metabolite interactions and pathways that are regulated in 
cancer. We introduce here a method for predicting metabolite levels based on transcriptomics and network prop-
erties. As expected, its accuracy increases for metabolites that are strongly associated with their enzyme’s expres-
sion. While the association between metabolites and transcription levels is complex due to additional factors in 
play such as post-transcriptional modifications and protein expression, we still find that many genes and metab-
olites are directly associated via their relations in the metabolic network. Given that targeted metabolomics is still 
limited, mostly covering less than 200 metabolite5, our prediction pipeline offers news ways for deciphering the 
role of different metabolites in cancer progression, and for identifying biomarkers for early detection and progno-
sis. As new and more comprehensive datasets are generated in the future, the prediction pipeline presented here 
can be further refined to generate more accurate predictions. This in turn may provide additional mechanistic 
insights to metabolite-enzyme associations in different cancer types and their potential clinical significance.

Methods
Studying gene and metabolite associations. All pairwise Spearman correlations coefficients between 
measured genes (n =  20202) and metabolites (n =  536) across samples were computed. Next, 162 cytoplasmic 
metabolites and 1393 genes were uniquely mapped to the metabolic network20. Metabolites were mapped first 
based on HMDB and then by KEGG identifiers. Genes were mapped based on their Entrez identifier. The meta-
bolic network was then utilized to identify genes and metabolites that are associated with each other via a bio-
chemical reaction (gene-metabolites (GM) are associated if the gene’s enzyme product catalyzes a reaction that 
consumes or produces the metabolite. To study the extent to which genes and metabolites are associated with each 
other in a given dataset, we calculated strength of association between connected GM pairs (compared to 
non-connected pairs) – Given a dataset with C connected GM pairs, a permutation test was performed as follows: 
gene labels were permuted and C random GM pairs are selected. The number of significant associations (at a 
significance level of α  =  0.05) was counted across the randomized pairs. This procedure was repeated 1000 times 
and the empiric P-value was computed as +

+
r
n

1
1
 where r is the number of times a random permutation achieved a 

greater number of significant associations than the real data and n =  1000.
The tests described were applied to both the BC and HCC datasets, and performed separately for the noncan-

cerous samples, cancer samples and all samples (in each case the correlations were computed across a subset of 
the samples in the dataset).

In the pathway analysis and survival analysis we extended the set of RGM triplets by adding mapped metabo-
lites from all other cellular compartments, as defined by the human model (n =  434).

Support Vector Machine (SVM) classification – the RGM predictor. We applied an SVM classifier 
with a linear kernel and the 14 following features:

Reaction features include:
(1) reaction index in the metabolic network.
(2) an integer value associated with a unique metabolic pathway.
(3) predicted Δ G0 of each reaction43.

(4) a binary integer indicating whether the reaction is reversible.

Gene features include:
(5) The gene index in the metabolic network.
(6) The mean value of the gene’s level in the transcriptomic data.
(7) The variance of the gene’s level in the transcriptomic data.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:29662 | DOI: 10.1038/srep29662

(8),(9) The minimum and maximum values of the transcript level in the transcriptomic data, respectivly.

Metabolite features include:
(10) The metabolite index in the metabolic network.
(11) The total number of metabolites participating in the reaction.
(12) The total number of substrates participating in the reaction.
(13) The total number of products participating in the reaction.
(14) A binary integer indicating whether the metabolite is a substrate or a product.

For the labels we used the significant negative or positive correlations between genes and measured metab-
olites. Triplets for which both gene and metabolite levels are measured are assigned with the corresponding 
Spearman correlation and its associated P-value (we here considered each measured metabolite as a cytoplasmic 
one). RGM triplets with a significant P-value (FDR corrected, α  =  0.05) are labeled as positively/negatively asso-
ciated according to the sign of the correlation coefficient and used as training data. The correlations are computed 
across the noncancerous and cancer datasets together and apart. Per dataset, the SVM classifier is trained on 
an equal number of positively and negatively associated RGM triplets. Following training the classifier assigns 
a confidence level to each RGM triplet (recall that for ~90% of triplets metabolite levels were not measured) in 
the range [− 1, + 1], confidence levels close to + 1 signifying positively associated triplets and − 1 signifying neg-
atively associated triplets. RGM triplets assigned with low confidence values (close to zero) are considered to be 
non-interactional regulated. Cross-validation was performed by setting aside one fifth of the positively/negatively 
associated triplets in the training set. The classifier was trained on the remaining four fifths and confidence levels 
were predicted for the triplets set aside. The classifier’s accuracy was measured by comparing the predicted labels 
against the known labels.

The gene-metabolite interactions graph. We represent each significantly correlated gene and metabo-
lite (FDR corrected Spearman correlation, α =  0.05) with an edge connecting them. The resulting graphs for non-
cancerous and cancer samples separately are bipartite graphs in which the degree of each metabolite node is the 
number of genes that are highly correlated with it and the degree of each gene node is the number of metabolites 
that are highly correlated with it in either noncancerous or cancer samples. In graphs presented in Figure S2 we 
show highly connected metabolites with degree d >  4.

Multiple Regression analysis predicting metabolite levels from transcriptomics and network 
features. A multiple regression analysis is applied between metabolite levels (162 metabolites across 105 sam-
ples in the Terunuma et al. BC dataset, 172 metabolites across 28 samples for the Brauer et al. BC dataset and 153 
metabolites across 56 samples in the HCC dataset), and transcriptomic and network features. The features used in 
this analysis are as follows: for each metabolite m we selected two pairs of genes and reactions GR+(m), GR−(m) 
which are predicted as most positively and negatively correlated with this metabolite respectively, when corre-
lation is defined by the confidence levels of the classifier machine built in the previous step. For each metabolite 
we identified the 2 RGMs that are predicted as most positively and negatively correlated with it, and used RGM 
features utilized for their SVM classifier, resulting in 28 features per metabolite as inputs to the multiple lin-
ear regressor predictor. Metabolite concentrations are log-normalized and standardized using z-scores. We only 
reported cases where the predicted confidence level is above 0.5 but the results are robust to different thresholds.

Pathway Analysis. Two types of pathway analysis were performed – based on the SVM classifier’s predic-
tions and based on GM associations in the raw data. The two types of analysis differed significantly since the 
classifier’s predictions provided full network coverage at RGM level, whereas the GM associations in the data 
provided very partial coverage (less than 10% of the GM associations in the metabolic network were measured). 
When analyzing the classifier’s predictions we first determined which reactions were predicted to be associated 
with regulated enzyme-metabolite interactions in noncancerous or in cancer. Per reaction, we examined the set 
of confidence levels assigned to RGM triplets pertaining to that reaction (a reaction typically participates in 6 
RGM triplets). A reaction is considered regulated in a condition (cancer/noncancerous) if any of its RGM triplets 
was assigned with significant confidence level (with an FDR corrected significance level of α  =  0.05) for a specific 
condition. We then performed a hypergeometric enrichment analysis to find pathways enriched with reactions 
that are regulated in the two conditions (at an FDR corrected significance level of α  =  0.05).

When analyzing GM associations in the raw data we lacked sufficient coverage in order to determine which 
biochemical reactions were interactional regulated. Instead, we examined the set of GM pairs pertaining to each 
pathway. Spearman correlation P-values denoting GM association strength were computed separately across 
the noncancerous and cancer conditions. A Wilcoxon rank-sum test (at an FDR corrected significance level of 
α  =  0.05) was then used determine which pathways exhibited a significant shift in interaction regulation by com-
paring the set of GM association P-values observed in the noncancerous condition against those observed in the 
cancer condition. Only pathways with 10 or more measured GM pairs were considered for this analysis, in order 
to insure the stability of the results. We excluded the smaller BC dataset from this analysis since it has only cancer 
samples.

Evaluating metabolites association with patients survival. For each sample, we predicted the 
metabolite levels based on the features from the two RGM triplets predicted as most positively and negatively 
correlated with it using the classifier generated for the Terunuma et al. BC dataset. We then separate the predicted 
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metabolite levels to ‘low’ and ‘high’ by their median level, and calculated the resulting Kaplan-Meier survival 
log-rank p-value of tumor samples displaying low vs high levels of a given metabolite.
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