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The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts
strong evolutionary selection pressures on cancer cells. We hypoth-
esize that the poor metabolic conditions near the ductal center
foment the emergence of a Warburg Effect (WE) phenotype, wherein
cells rapidly ferment glucose to lactic acid, even in normoxia. To test
this hypothesis, we subjected low-glycolytic breast cancer cells to dif-
ferent microenvironmental selection pressures using combinations of
hypoxia, acidosis, low glucose, and starvation for many months and
isolated single clones for metabolic and transcriptomic profiling. The
two harshest conditions selected for constitutively expressedWE phe-
notypes. RNA sequencing analysis of WE clones identified the tran-
scription factor KLF4 as potential inducer of the WE phenotype. In
stained DCIS samples, KLF4 expression was enriched in the area with
the harshest microenvironmental conditions. We simulated in vivo
DCIS phenotypic evolution using a mathematical model calibrated
from the in vitro results. The WE phenotype emerged in the poor
metabolic conditions near the necrotic core. We propose that harsh
microenvironments within DCIS select for a WE phenotype through
constitutive transcriptional reprogramming, thus conferring a survival
advantage and facilitating further growth and invasion.

DCIS | Warburg Effect | tumor evolution | clonal selection | adaptation

Ductal carcinomas in situ (DCIS) of the breast are a hetero-
geneous group of neoplastic lesions confined to the lumens of

breast ducts. In early intraductal cancers, hyperplasia forces cells to
grow toward the ductal lumens, which moves cells further from
their supplying blood vessels that are restricted to the surrounding
stroma (Fig. 1A) (1). As a consequence, these cells are significantly
nutrient deprived. Hyperplastic tissue in DCIS can be >0.16 mm
thick, which is larger than the diffusion distance of oxygen in tis-
sues, rendering the periluminal areas of DCIS hypoxic (2, 3). This
lack of oxygen would induce glucose fermentation due to a Pasteur
effect, and the resulting production of lactic acid would make the
periluminal areas of DCIS profoundly acidic. This has been veri-
fied following identification (4) and subsequent validation (5) of
membrane-associated Lamp2b as a marker for acid adaptation,
which is abundant in the periluminal cells of DCIS. These micro-
environmental properties of hypoxia, acidity, and nutrient depri-
vation exert strong selection pressure on cancer cell survival, and
the metabolic adaptations subsequently feed back to the micro-
environment, creating a dynamically changing landscape. Over
many years in this environment, cells adapt and emerge with
flexible, aggressive, and dedifferentiated phenotypes (6).
The most prominent metabolic hallmark to emerge from DCIS

selection is the Warburg Effect (WE) phenotype, which is defined
as aerobic glycolysis, where glucose is fermented to lactic acid even
in the presence of adequate oxygen, contributing to the acidity of
the ductal microenvironment (1). A WE is commonly observed in
aggressive cancers (7, 8) and has been exploited clinically with
18fluoro-2-deoxy-d-glucose positron emission tomography scans as

a diagnostic marker of tumor stage and is prognostic of cancer
outcome (9). Despite its almost ubiquitous expression in cancers,
the causes and consequences of a WE remain a mystery. There
have been dozens of mechanisms proposed, yet none have been
proven. We have previously proposed that these conditions
(hypoxia, acidosis, or nutrient deprivation) would select for cells
with WE phenotype. In an initial study, cells were selected with
periodic hypoxia (16 h 0.2% O2 and 8 h 21% O2 for 50 cycles).
Multiple clones were derived from surviving cells, and these were
shown to be pan-therapy resistant and had an E-cadherin to
N-cadherin switch and a loss of p53, with a moderate increase in
aerobic glycolysis that was not sustained (10). In a subsequent
study, we adapted cells to growth in acidic conditions, and this
selected for a number of important phenotypes, including
anchorage-independent growth, yet it did not select for cells with
aerobic glycolysis, although cells adapted to acid pH did ferment
glucose more rapidly at a low pH compared to nonadapted cells
(4, 11, 12). Vogelstein’s group has shown that nutrient deprivation,
specifically limiting (0.2 mM) glucose, promoted the outgrowth of
pancreatic cancer cells that express mutant k-ras and a WE phe-
notype in mixed starting cultures, although de novo selection was
not shown (13).
Hence, we hypothesize that, if conditions in DCIS select for

constitutive aerobic glycolysis, it may involve a complex and
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Fig. 1. Early DCIS conditions can select for glycolytic phenotype. (A) Schematic of early and late DCIS progression. (B) Multiplex IHC staining of DCIS patient
sample with markers of glycolysis (Glut1 [green]), acid adaptation (LAMP2b [orange]), hypoxia (CA9 [purple]), lactate production (MCT4 [cyan]), vasculature
marked (CD138 [red]), and nuclei (DAPI [blue]). (C) Lactate production rate of clones grown out from cells selected under conditions of being selected through
multiple rounds of the following conditions: unfed for 1 mo (UF); low glucose (G); low glucose, oxygen, and pH (GOP); low oxygen and pH (OP); and growth in
rich media (Control). (D) Seahorse glycolytic rate assay to measure ECAR and OCR following addition of glucose. Basal glycolysis was higher in UF cells (E), but
compensatory glycolysis showed no difference between control clones and overall UF clones (F). (G) UF clones have higher WE phenotype (expressed as ECAR/
OCR ratio) than control.
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dynamic interplay between the multiple factors of hypoxia, aci-
dosis, and nutrient deprivation. To test this, we subjected low-
glycolytic breast cancer cells to a series of these combined se-
lection pressures over a period of many months. At endpoints,
individual clones were isolated and characterized for their met-
abolic and transcriptomic profiles. The resulting selected clones
were enriched for populations that constitutively expressed an
aerobic –glycolytic (WE) phenotype. Transcriptomic analyses
identified a number of relevant factors that could account for
constitutive glycolysis, including SP1/KLF4 and NFκB. KLF4
expression was validated on selected clones using Western blots
and immunocytochemistry (ICC). Tissue microarray (TMA) and
whole mount staining of DCIS patients showed increased ex-
pression of KLF4 in DCIS samples, when compared to adjacent
normal, as well as a relatively elevated expression at the core of
each DCIS where the most selective environment exists. NFκB
was also validated to be overexpressed at the protein level
in vitro, with a significant increase in the transcriptionally active
phosphorylated form, which was associated with increased HK2
expression. Knockdown of NFκB-related p65 reversed the WE in
highly glycolytic clones.
We further investigated the emergence of WE phenotypes in

areas under harsh selective pressures by adapting a previously
published mathematical model of tumor metabolism and growth,
informed by empirical data (14, 15). The model simulates a tumor
growing in a homeostatic tissue, initialized within a ductal struc-
ture with diffusion-limited nutrients. Different tumor phenotypes
were allowed to evolve due to selection, and multiple simulations
showed that the selection of a WE phenotype occurred in the
harshest conditions near the periluminal necrotic core. The model
was calibrated to the in vitro results presented herein, and simu-
lations under different conditions suggested that different modes
of selection can be in action, depending on cellular turnover and
the specific microenvironmental conditions. In particular, the
harsh conditions had bottleneck-like selection events, whereas the
less-harsh conditions tended to show phenotypic drift.
Thus, we conclude that the microenvironmental conditions

existing in DCIS are sufficient, with time, to select for cells with a
WE phenotype. In this particular case, the switch to a WE phe-
notype is related to KLF4 as a phenotypic switch and/or NFκB
expression as a survival strategy. This study unravels the role of
harsh microenvironmental selection pressures in driving activation
of pathways, controlled by key transcription factors, that lead to
the WE phenotype and subsequent cancer progression.

Results
Harsh Microenvironments, Similar to Early DCIS Conditions, Select for
Clones with Higher Aerobic Lactate Production Rate. In early carci-
nogenesis, intraductal hyperplasia leads to significant alterations
in the physical microenvironment, especially in periluminal cells
that are far (>0.16 mm) from their blood supplies, leading to a
highly selective microenvironment of hypoxia, acidosis, and se-
vere nutrient deprivation (1, 6, 16). This suggests that the peril-
uminal cells should be oxygen deprived, which is consistent with
increased expression of hypoxia-inducible factor client proteins,
such as CA9 and Glut1, in periluminal areas of late-stage DCIS
(17, 18). As proof of principle, we performed multiplexed immu-
nohistochemistry (mIHC) on our DCIS stage patient whole mount
samples for markers of high glycolysis (Glut1), hypoxia-induced
acid production (CA9), non-hypoxia-induced acid production
(MCT4), and acid resistance (LAMP2b) (Fig. 1B). Our results
illustrate that all these conditions exist inside the DCIS ducts in-
dividually or in combination. To better understand the impact of
these conditions in DCIS breast cancer and their correlation to the
WE phenotype, we subjected low-glycolytic Michigan Cancer
Foundation-7 (MCF7) cells to a range of selection forces such as
acidity (pH 6.7), hypoxia (1% O2), low glucose (0.1 mM), and
combinations thereof, reflecting increasing levels of stress (i.e., low

glucose (G); low oxygen and pH [OP]; and low glucose, oxygen,
and pH [GOP]). Additionally, as an extreme condition, we se-
lected cells by placing them in a flask and not replenishing the
media for 4 wk (unfed [UF]) which caused >95% of the cells to
die (Fig. 1C). We excluded acidosis and hypoxia alone as selection
pressures, because previous results showed that these conditions
alone do not strongly select for a WE phenotype (4, 10). Each of
these harsh microenvironments resulted in significant cell death,
followed by regrowth under rich microenvironmental conditions
(neutral pH, 21% O2, and 5.8 mM glucose). This process was
repeated multiple (two to six) times with flasks regaining conflu-
ence, typically within 4 wk, before reexposure to harsh conditions.
After the final outgrowth, we isolated individual clones (>20 per
condition) both from controls that were continuously grown in a
rich microenvironment and those that were selected to survive in
harsh microenvironments (G, OP, GOP, and UF) by seeding in-
dividual cells in 96-well plates, which were then regrown under
rich microenvironmental conditions. These clones were then ex-
panded in individual T25 flasks, which were then harvested for
freezing and for metabolic profiling for rates of lactate production
and glucose consumption under normal culture conditions, as the
first sign of WE phenotype, using colorimetric kits. Fig. 1C shows
the lactate production rates (LPRs, in nanomole per minute per
milligram of protein) for individual clones from the four harsh and
one rich (control) conditions. These data demonstrate that harsh
environmental conditions preferentially select for clones with in-
creased rates of aerobic lactate production; specifically, the UF
and low-GOP conditions had the greatest number of high LPR
clones (Fig. 1C). To relate our finding of high LPR to the WE, we
further measured lactate production and glucose consumption rates
at the same time using a multianalyte system (YSI 2900, Yellow
Springs, OH) in 96-well plates. For these studies, we used the three
UF clones (UF1, UF9, and UF18) with highest lactate production
rates and three clones from the rich-microenvironment MCF7 cells
with low LPR. Results shown in SI Appendix, Fig. S1 confirmed the
higher LPR, observed by colorimetric assays in the harsh- compared
to rich- microenvironment clones.
To confirm the WE phenotype of the harsh micro-

environmentally selected clones, compared to parental MCF7
cells, we performed the Seahorse glucose stress test (GST) assay
to measure both basal and maximal glycolytic capacity of cells as
well as their respiratory capacity (see Methods for more details)
(Fig. 1D). We found all theUF clones had higher basal glycolysis
rate compared to control clones (Fig. 1E), although their com-
pensatory glycolysis was not different in general (Fig. 1F).
However, compared to their parental MCF7 clones, all UF
clones showed an increase in the ratio of extracellular acidifi-
cation to oxygen consumption (ECAR/OCR), which is a measure
of the WE phenotype (Fig. 1G). These results indicated that the
harsh microenvironmental conditions similar to those found in
early DCIS select for a WE (aerobic glycolytic) phenotype; more
specifically, the combination of low glucose, low oxygen, and low
pH or starvation provide the greatest selective pressure for a WE
phenotype.

Clonal Evolution under DCIS Microenvironmental Conditions. These
data have demonstrated that harsh microenvironmental condi-
tions selected for cells with increased rates of aerobic glycolysis.
Furthermore, and slightly counterintuitively, these selected cells
maintained their WE phenotype even after being placed in
abundant nutrients and oxygen conditions for multiple genera-
tions (i.e., exceeding 20 passages). To investigate the mecha-
nisms leading to this stable (“hardwired”) phenotypic switch, we
performed RNA sequencing (RNA-seq) analyses of our harsh
and rich microenvironment selected single-cell–derived clones
(seeMethods). Briefly, the harsh (UF, GOP, OP, and G) and rich
clones were plated in 96-well plates and grown to confluence,
from which RNA was extracted and sequenced using pooled
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library amplification for transcriptome expression (PLATE-seq)
(19) (see Methods). After filtering, 12,568 genes were used for
further analysis. Unsupervised clustering of the RNA-seq data
identified five distinct groups that corresponded to each of the
microenvironmental conditions (Fig. 2A and SI Appendix, Fig.
S2 A and B). Principal component analysis showed generally
good segmentation for the different microenvironmental condi-
tions (Fig. 2B and SI Appendix, Fig. S3). It is notable that the UF
cluster was readily segmented from the rest of the cells, sug-
gesting that this condition, which more accurately reflects the
in vivo situation, adds selection pressures beyond those imposed
by the metabolic selections of G, OP, and GOP. Furthermore,
there was some overlap between the parental unselected and
some of the selected (G and OP) clones, suggesting some clonal
heterogeneity in the parental population or original phenotype
recovery due to the highly plastic nature of MCF7 cells (15).
To determine which genes were associated with the WE phe-

notype, the gene expression data were linearly regressed against
LPR using the limma and voom R packages (20, 21). A total of
676 genes had a significant association with LPR (Padj < 0.1), with
388 having a positive association (correlation coefficient > 0) and
288 having a negative association (correlation coefficient < 0)
(Fig. 2A and Dataset S1).
To study phenotypic evolution under the different microen-

vironmental selection pressures on control MCF7 cells, Palantir
analysis (SI Appendix, Supplementary Data1) was applied to the
single-clone RNA-seq dataset of unselected (parental), UF, G,
OP, and GOP clones to detect evolutionary trajectories of these
clones and alignment along pseudotime (Fig. 2C and SI Appen-
dix, Figs. S4 and S5). All clones started in the rich microenvi-
ronment of the parental phenotype, indicated by orange points in
Fig. 2C. Aligning clones along pseudotime revealed three distinct
terminal phenotypes: UF, G, and OP. Interestingly, the GOP
phenotype lay along the trajectory of the UF terminus. Analysis

of the differentiation potential of the clones showed that those
aligned to the earliest pseudotime (dark blue in SI Appendix, Fig.
S4) also had the highest differentiation potential, indicating that
they are most likely to evolve to one of the terminal phenotypes
over pseudotime. Likewise, especially for the UF and G phe-
notypes, pseudotime was near 1 (yellow in SI Appendix, Fig. S4),
indicating that these clones had the lowest differentiation po-
tential and that they were at their terminal phenotypic states.

Mathematical Modeling Shows the WE Phenotype Is Rapidly Selected
in Harsh Conditions. To investigate the emergence of the WE
phenotype in more detail, we extended a mathematical model of
tumor metabolism (14, 15) to simulate the experiments pre-
sented herein. The extensions to the model that simulate the
in vitro portions of this work are provided in the Methods, Eq. 1,
and Tables 1 and 2. First, we applied our previously published
model to simulate DCIS development in vivo. These results in-
dicated that the WE phenotype primarily emerged from the most
metabolically depleted area of a simulation, namely far from
blood vessels and adjacent to the necrotic core. Fig. 3 A–D shows
representative examples of these simulations (refer to SI Appendix,
Fig. S6 for the schematic of the model and SI Appendix, Fig. S7 for
more information about the simulated barcoding data in in
Fig. 3B). The WE phenotype is pink, and after 100 time incre-
ments (“days”), this phenotype began to emerge in the center of
the duct where glucose and oxygen were highly depleted and the
pH was acidic. This suggests that the harsh heterogeneous con-
ditions of a tumor growing within a duct (or other similarly poorly
vascularized region) would select for WE phenotypes.
We then calibrated the model to directly simulate our in vitro

experiments and, the results of this simulation are shown in
Movie S1. In short, to recapitulate an in vitro environment,
blood vessels were removed from the simulation and nutrient
concentrations and pH levels were changed globally across the

Fig. 2. RNA sequencing analysis of selected clones reveals the molecular mechanism of switch to WE phenotype. (A) Heatmap showing the top 500 most
variable genes, grouped by selection condition. A preliminary analysis of RNA-seq data was performed by linearly regressing gene expression data with
lactate production rate and filtered for significantly correlated or anti-correlated genes. Unsupervised clustering (SI Appendix, Fig. S3) of these data showed
that the 1,000 most highly correlated and anticorrelated genes clustered within selection condition. (B) Principal component analysis of gene expression data
showed separation of the UF and GOP groups compared to control. (C) Phenotype evolution trajectory alignment of single-clone RNA-seq for evolving breast
cancer cell populations. Cell fate analysis with Palantir was applied to the single-clone RNA-seq dataset to determine differentiation potential from an initial,
unselected, parental lineage to selected, phenotypic terminal states of G, OP, and UF. UMAP projections were used to visualize the high-dimensional dataset
and known identity of each clones was colored on the UMAP projections. Unselected clones were indicated in red, UF clones were indicated in purple, G
clones were indicated in green, OP clones were indicated in mint, and GOP clones were indicated in blue.
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“flask.” Cells were plated at the same seeding density as in the
experiments and were allowed to adapt to their particular con-
ditions through phenotypic drift as in the original in vivo model.
Fig. 3 E–I shows that the WE phenotype was selected primarily in
the “UF” case, when glucose and pH levels dropped significantly
after 14 d without media change. The harsh conditions toward the
end of the UF period induced rapid turnover that enabled faster
phenotypic drift. Furthermore, these cells exhibited increased
adenosine triphosphate (ATP) efficiency (Fig. 3 E and F), which is
useful for survival in low-glucose conditions (SI Appendix, Fig. S8).
The barcoding plots in Fig. 3 G–I show how phenotypic se-

lection changes through the period of the simulation for each of
the five conditions. The colors correspond to the phenotypes of
Fig. 3C, with pink cells having a WE phenotype. The UF con-
dition (bottom panel) showed rapid turnover of the population,
driven by an early bottleneck, which quickly drove adaptation to
the WE phenotype due to the severely depleted glucose and the
highly acidic microenvironment. In contrast, the other conditions
showed less turnover, even though some had low glucose and/or
acidosis. The adaptation was slower and was primarily aimed at
mitigating acidosis rather than becoming glycolytic. Notably, UF
cells with a WE phenotype emerged from only a few of the initial
cells. This is in contrast to our metabolic profiling of the unse-
lected clones, which showed that one clone had a slightly ele-
vated lactate production rate, alluding to the likely preexistence
of this phenotype (Fig. 1C).

The Role of Transcription Factors in Selection of WE Phenotype. To
investigate whether specific transcription factors were involved in
the transcriptional switch for generating a WE phenotype, we used
the list of 388 significantly and positively associated genes for
enrichment analysis by oPOSSUM and Enrichr (22, 23). oPOS-
SUM “single site analysis” with “human” was selected with default
parameters. The top oPOSSUM hit was KLF4 (Z-score = 54.053)
(Fig. 4A). As a test of the oPOSSUM analysis, we investigated
whether cells from UF clones had high nuclear KLF4 expression

using ICC. Fig. 4B shows nuclear localization and higher expres-
sion of KLF4 in UF clones compared to their parental MCF7
cells. KLF4 plays a role in early development and promotes a
stem-like phenotype (24–26). Consistent with this, we also ob-
served increased RNA expression of genes associated with stem-
ness (SI Appendix, Table S1).
We also queried the Enrichr “Genome Browser Position

Weight Matrices” pathway, which contains a list of genes and
associated binding motifs from transcription factors, and iden-
tified an NFκB-associated list as significantly enriched (Padj =
0.04) (Fig. 4C and SI Appendix, Fig. S9). To investigate this, we
performed Western blotting on UF clones and parental MCF7.
SI Appendix, Fig. S10 shows that the total amount of NFκB was
slightly, but significantly, higher in the UF clones relative to
control clones (C clones). In contrast, Western blot of phospho-
NFκB (p-NFκB) shows that the p-NFκB, which promotes nu-
clear localization, was significantly elevated in UF clones com-
pared to that present in the C clones (SI Appendix, Fig. S10A).
To further investigate this, we performed ICC on UF clones and
parental control MCF7 and found higher expression of p-NFκB
in nuclei of UF cells (Fig. 4D). To investigate the role of NFκB in
promoting glycolysis in these systems, three separate anti-p65
small interfering RNAs (siRNAs) were prepared and tested for
efficacy against UF18 cells and were all able to effect knockdown
at different doses. Using the p65siRNA-C, we were able to op-
timally knockdown expression in UF18 and UF9 clones (SI Ap-
pendix, Fig. S10B). In UF18 cells, knockdown of p65 significantly
reduced aerobic glycolysis (SI Appendix, Fig. S10C) to the levels
observed in nonselected cells. In addition to NFκB, other met-
abolically relevant proteins that were observed to be different
between UF and C clones were pAkt and the NFκB client, HK2
(SI Appendix, Fig. S10A), which were also consistent with in-
creased aerobic glycolysis in the UF cells. These results propose
the prosurvival activity of NFκB in our UF cells, which has also
been shown for acid-exposed cells in sarcoma (27).
To determine which of the cells expressing a WE were more

aggressive compared to nonselected parental clones, we injected
cells from two UF clones and one unselected clone into the tail
vein of NOD scid gamma (NSG) mice and observed that 100%
of both UF cell groups formed metastases, while only one mouse
(8.3%) showed metastasis with MCF7 parental cells (Fig. 4E).
KLF4 expression in clinical breast tumor samples. To further investigate
KLF4 expression following selection of WE phenotype in DCIS
lesions, we then interrogated expression of KLF4 in breast tumor
samples from the Moffitt Cancer Center TMA collection. KLF4
was selected for further clinical validation over NFκB based on
its nature of switching phenotype in stem cells and early em-
bryonic cells (25) as well as its previously shown role in regu-
lating glycolysis in stem cells and pancreatic cancer (28, 29).
Breast TMAs from Moffitt breast cancer patients were used to

Table 1. In vivo parameters

Parameters Value Units Description

δx 20 μm Diameter of CA grid point
pD 0.005 1/d Normal tissue death rate
pΔ 0.7 1/d Death probablity in poor conditions
pn 5e-4 1/d Necrotic turnover rate
Do 1820 μm2/s Diffusion rate of oxygen
Dg 500 μm2/s Diffusion rate of glucose
DH 1080 μm2/s Diffusion of protons
Oo 0.0556 mmol/L Oxygen concentration in blood
Go 5 mmol/L Glucose concentration in blood
pHo 7.4 pH pH of blood
Vo 0.012 mmol/L/s Maximal oxygen consumption
ko 0.005 mmol/L Half-max oxygen concentration
kG 0.04 mmol/L Half-max glucose concentration
kH 2.5e-4 — Proton buffering coefficient
ΔH 0.003 — Phenotype variation rate (acid res.)
ΔG 0.15 — Phenotype variation rate (glycolysis)
Ad 0.35 — ATP threshold for death
Aq 0.8 — ATP threshold for quiescence
βT,min 6.1 Maximal acid resistance
βG,max 50 Maximal glycolytic phenotype
βN 6.65 Normal acid resistance
τmin 0.95 Days Minimum cell cycle time
σmin 80 μm Minimum vessel spacing
σmean 150 μm Mean vessel spacing
vmean 5 — Vessel stability
pang 0 — Angiogenesis rate

Table 2. In vitro parameters

Parameters Value Units Description

S 0.08 — Oxidative phosphorylation survival
ΔH 0.005 — Phenotype variation rate (acid res.)
ΔG 0.25 — Phenotype variation rate (glycolysis)
Ad 0.15 — ATP threshold for death
Aq 0.8 — ATP threshold for quiescence
βT,min 5.8 Maximal acid resistance
βG,max 10 Maximal glycolytic phenotype
βN 6.2 Normal acid resistance
τmin 0.95 Days Minimum cell cycle time
kG 0.3 mmol/L Half-max glucose concentration
kG0 2.5 mmol/L Baseline half-max concentration
ko 0.005 mmol/L/s Half-max oxygen concentration
kH 1.2e-4 — Proton buffering coefficient
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study the expression level of KLF4 at different stages. TMA4
contains 204 biopsy cores including adjacent normal samples,
DCIS, invasive ductal carcinoma (IDC) with no metastasis, IDC
with local metastasis, and lymph node metastasis core biopsy
samples. Staining of TMA4 with KLF4 antibody showed signif-
icantly increased expression of KLF4 in DCIS samples compared
to normal breast tissue. The KLF4 expression remained high in
IDCs and metastasis samples (Fig. 4 F and G and SI Appendix,
Fig. S11). To relate the role of KLF4 to selection of the WE
phenotype in DCIS, we performed spatial analysis of KLF4 in
our DCIS samples and observed that multiple sites had very high
expression of KLF4 at the center of the duct, where access to
nutrient resources is severely restricted, and thus exerts a strong
selection pressure with regard to increased acidosis and
decreased oxygen (Fig. 4G).

Discussion
The WE phenotype is associated with progression and aggres-
siveness of cancers and is defined by a high glycolytic rate in the
absence or presence of oxygen (aerobic glycolysis). Most cancer
cells reprogram their metabolism in favor of aerobic glycolysis

despite the presence of plentiful oxygen in their microenviron-
ment. This observation was first reported by Otto Warburg and is
thus referred to as the “Warburg Effect” (30–33). We and others
have observed this high glycolysis rate in tumors using positron
emission tomography (34). We also know that most cancer cells
in hypoxic environments (Pasteur effect) compensate for the low
ATP yield of glycolysis by overexpression of glucose transporters,
such as Glut1 (35). The driving theory for why the WE takes
place in cancer is that the high rate of glycolysis benefits cancer
cells by increasing ATP production. It also provides many in-
termediates that are used in subsidiary metabolic pathways for de
novo synthesis of nucleotides, amino acids, lipids, and NADPH
that are required for cancer cell survival and proliferation.
However, none of these cellular regulations individually are
enough to hardwire the WE phenotype in cells because they can
be altered based on microenvironmental conditions. At the
center of individual DCIS, the harsh microenvironment consists
of low glucose, low oxygen, and high acidity. Therefore, we hy-
pothesized that there are some biological controls or switches at
the genome, transcriptome, or epigenome level that initiate and
control the WE phenotype.

A

B

C D

E

F

G H I

Fig. 3. Computational modeling of the emergence of the WE phenotype. (A–D) A previously published two-dimensional hybrid discrete-continuum ho-
meostatic cancer metabolism model (42, 43) shows the evolution of acid resistance (blue to green) and WE (blue to pink) phenotypes over time. The model
simulates growth into ductal structure (A) where increased acidity in the center of the duct promotes acid resistance phenotypes (blue). After depletion of
glucose, the WE phenotype emerges in harsh conditions near the center of the duct, on the edge of the necrotic core. (B) A Muller plot shows phenotypic
selection and lineage over time. Vertical axis indicates size of clones, colored by its acid-resistance/WE phenotype shown in C. Final distributions of oxygen,
glucose, and acid are shown in D. (E–I) An in vitro version of the model simulated for identical conditions as Fig. 2A confirms that WE phenotype (E) emerges
in harsh conditions (“unfed”). Furthermore, these cells have enhanced efficiency in producing ATP from nutrients (F). Model simulated barcode proportions
are shown for three timepoints: 0 d (G), 60 d (H), and 120 d (I). Barcodes are colored by average final phenotype with dead clones colored in black. Control and
glucose-depleted conditions have low turnover, leading to slowed evolution. OP and UF conditions have increased turnover, selecting for WE phenotypes.
Parameters are as follows (Eq. 1): S = 0.08, ko = 0.005, kg = 0.3, kg0 = 2.5, and V0 = 0.93.
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Previous research has shown evidence of driver mutations,
such as p53 and KRAS, up-regulating the WE phenotype in
different cancer types; however, none of these mutation-driven
WE phenotypes are consistently present in all cancer cells.
Furthermore, there are cancer cells with a WE and no known
driver gene mutations. This suggests that there may be mutation-
independent drivers of this phenomenon (i.e., the microenvi-
ronment). To test our hypothesis, we probed the transcriptome
of single selected clones under different microenvironmental
conditions recapitulating the environments found in DCIS. Us-
ing single clones over single cells had the benefit of allowing us to
measure the derived diversity and heterogeneity of a single cell’s
progeny over time. Surprisingly, we found a highly variable
transcriptome among the clones across all of the selection con-
ditions, which may have been lost at the single-cell resolution.
Using sophisticated transcriptome analysis of oPOSSUM and
Enrichr, we discovered the transcription factor KLF4 controls all
of the LPR genes. KLF4 was previously identified as one of the
essential factors for induced pluripotent stem cell development
(25). KLF4 was previously reported to regulate WE phenotype

(28, 29, 36), although none of these studies connected the KLF4
expression or activation to microenvironmental conditions as
evolutionary selection pressures. Here, we have shown that
KLF4-induced WE is connected to the microenvironment of
cancer cells in DCIS lesions. Open questions still remain re-
garding the heterogeneity of KLF4 expression in selected clones
as well as clinical samples. This might imply redundant mecha-
nisms, such as NFκB, that we also uncovered as a mechanism to
maintain the WE phenotype or co-opt adjacent cancer cells (37).
The emergence of a glycolytic phenotype following multiple

rounds of harsh selection may be a general phenomenon. For
example, selection of immortalized breast epithelial cells by
starvation does result in emergence of clones with a WE in two
different cell lines. Both of these are associated with increased
nuclear KLF4. However, it is entirely possible that other mech-
anisms exist to generate a WE phenotype and that these may be
observed in other cellular systems.
While selected clones clearly can survive and thrive under harsh

conditions, it may seem paradoxical that the selected clones can
outcompete the nonselected under nutrient-rich conditions, where

Fig. 4. Clinical validation of KLF4 expression in breast cancer patients’ samples. (A) Enrichment analysis of 388 genes positively associated with LPR using
oPOSSUM revealed KLF4 as the top regulator of LPR genes. (B and C) ICC analysis of UF and parental MCF7 and DCIS validates the higher expression and
nuclear localization of KLF4 in UF cells. (D) Harsh condition in DCIS selects for aggressive cells that can invade other organs. One million of MCF7 parental, UF9,
and UF18 clones were injected to tail vein of NSG mice and looked for possible metastasis. The figure shows the metastasis in the lung of the UF group. (E)
There was only one metastasis in the control group of 12 mice compared to 100%metastasis in both UF cells. (F) TMA analysis of 204 breast biopsies of Moffitt
Cancer Center patients for KLF4 expression shows higher expression of this protein in DCIS compared to adjacent normal tissues. The expression of KLF4 stays
high with higher grade of breast cancer. (G) Representative images of the TMA analysis done in A. The box is zoomed in the center of the duct to show spatial
correlation of KLF4 in DCIS samples. Cells with high KLF4 expression are located to the center of the duct in DCIS samples that proves our hypotheses that
harsh condition selects the cells with glycolytic phenotype through a transcriptional factor switch.

Damaghi et al. PNAS | 7 of 10
The harsh microenvironment in early breast cancer selects for a Warburg phenotype https://doi.org/10.1073/pnas.2011342118

EV
O
LU

TI
O
N

https://doi.org/10.1073/pnas.2011342118


their growth rates are identical. As the selected clones with a WE
are more metastatic, we expect that their greater fitness is derived
from their ability to migrate and invade and not necessarily out-
proliferate the nonselected clones, although all the clones have the
same growth rate as parental ones and some have higher. In the
context of avascular DCIS, the first step in our models (1) is the
loss of a requirement for basement membrane (BM) attachment,
which forces these cells via hyperplasia toward the perilumen,
where they are subject to harsh environmental selection. Although
those near the BM do have access to a richer environment, they
are not under selection and therefore do not adopt an aggressive
WE phenotype. Notably, as we have shown in prior works, once
cells are selected for a WE, they tend to relocate to the invasive
edge (7, 38). This has also been observed in our extended math-
ematical models that indicated that the WE phenotype primarily
evolved in the most metabolically depleted area, namely far from
blood vessels and adjacent to the necrotic core. SI Appendix, Fig.
S12 shows the evolutionary trajectory of cells in the presence and
absence of vascular renewal, clearly implicating emergence of an
invasive, aggressive phenotype under the harshest microenviron-
mental conditions. While mutagenicity of the harsh environmental
conditions is likely (6), our current model is based on the WE
phenotype emerging from preexisting clones with a fast turnover
in the harsh microenvironment with some phenotypic drift. In-
deed, metabolic profiling of unselected clones shows at least one
with a relatively high preexisting glycolytic rate (Fig. 3G). This is
nonetheless an unsettled question and will be a major focus of
future research in this area.
There is growing evidence that the stromal microenvironment

of preinvasive breast cancer actively participates in DCIS–IDC
transition (39, 40) and “reactive” stroma can often be observed
in DCIS before the emergence of microinvasion, where pro-
gression to invasion can be promoted by cancer-associated fi-
broblasts (41–43). Furthermore, macrophage infiltration in the
periductal stroma surrounding DCIS is also correlated with early
dissemination and recurrence (44, 45). Relevant to the current
work, it is also possible that the metabolic sequelae (acidity,
hypoxia) emanating from the DCIS may induce stromal
reactivity (13).
Finally, these results are paradoxical to our notion that cells

under very low nutrient conditions should reduce their demand
and energy expenditures based on the energy availability. Our
findings suggest that the WE phenotype may be more efficient
than previously assumed since we show that the WE phenotype is
a highly regulated and controlled energy consumption source.
Our results also illuminate the evolutionary trajectory of the WE
phenotype driven by microenvironment selection pressures. We
observed that transcription factors can activate the WE pheno-
type under appropriate environmental conditions that can both
select for the WE phenotype and facilitate its hardwired statues.
The activation of transcription factors such as KLF4 and NFκB
may serve as an adaptive mechanism for cancer cells to switch to
fitter phenotypes (WE) that can withstand the harsh environ-
mental selective forces found in early DCIS lesions.

Methods
Cell Culture and In-Vitro Clonal Selections. MCF7 cells were acquired from
American Type Culture Collection (ATCC, Manassas, VA, 2007 to 2010) and
were maintained in Roswell Park Memorial Institute 1640 (Life Technologies,
catalog number 11875-093) supplemented with 10% fetal bovine serum
(HyClone Laboratories). Growth medium was further supplemented with 25
mmol/L−1 each of Pipes and Hepes and the pH adjusted to 7.4 or 6.7. Cells
were tested for mycoplasma contamination and authenticated using short
tandem repeat DNA typing according to ATCC’s guidelines.

Western Blotting. Selected and nonselected MCF7 cells were grown with the
same number of passages and used for whole-protein extraction. Lysates
were collected radioimmunoprecipitation assay buffer containing 1× pro-
tease inhibitor mixture (P8340; Sigma-Aldrich). A total of 20 mg of protein

per sample were loaded on polyacrylamide–sodium dodecyl sulfate gels,
which later were electrophoretically transferred to nitrocellulose mem-
branes. Membranes were incubated with primary antibodies against rabbit
monoclonal KLF4 (1:1,000, ab215036 Abcam), NFκB (1:1,000, #8242 Cell),
SignalingHK (1:1,000, #2867s Cell Signaling), p-AKT (1:1,000, #4060s Cell
Signaling), Tubulin (1:1,000, #3873 Cell Signaling), and GAPDH (1:4,000, anti-
rabbit; Santa Cruz Biotechnology).

siRNA Transfection. Three unique 27-mer RELA human siRNA oligo duplexes
(SR304030A, B, and C) were obtained from Origene (SR304030). Universal
scrambled negative control siRNA duplex (SR30004, Origene) was used as a
nontargeting control for this study. Cells were seeded in a 6-well plate and
reached 70 to 80% confluence before transfection. Cells were transfected with
the negative control siRNA or p65-targeting siRNA according to standard
protocols using lipofectamine RNAiMAX transfection reagent (13778030,
Themo Fisher).

Immunofluorescence. Selected and nonselected MCF7 cells cultured with the
same number of passages were rinsed with phosphate buffered saline (PBS),
fixed in cold Methanol:Acetone (1:1) for 10 min and further permeabilized by
0.5% triton 100 and then blocked with 5% bovine serum albumin in PBS.
Samples were incubated with KLF4 rabbit monoclonal primary antibody
(1:100; ab 215036 Abcam) and secondary Alexa-Fluor 488 anti-rabbit (1:1,000)
antibody. Coverslips were mounted using ProLong Gold Antifade Reagent
(Life Technologies) and images were captured with a Leica TCS SP5 (Leica)
confocal microscope.

Glycolytic and Oxygen Consumption Rate Measurements (Seahorse). Glycolytic
rate ofMCF7and selectedMCF7 cancer cells wasmeasuredusing Seahorse XF96
extracellular flux analyzer and a glycolysis rate kit (Seahorse Biosciences). OCR
and ECARof cancer cellsweredeterminedby seeding themonXF96microplates
in their growth medium until they reached over 90% confluence. In these
studies, seeding started with 20,000 cells (80% of well area). Measurements
were determined 24 h later when the cells reached the 90% confluence. One
hour before the Seahorsemeasurements, culturemediawere removed and cells
were washed three times with PBS followed by addition of base medium
(nonbuffered Dulbecco’s Modified Eagle Medium supplemented with 25 mM
glucose) or our nonbuffered only-glucose-containing solution. For glycolytic
rate measurements, mitochondria inhibitors including rotenone (1 μM) and
antimycin A (1 μM) were injected after basal measurements of ECAR and OCR
of the cells under treatment to stop the mitochondrial acidification.
2-deoxy-glucose (100 mM) was added next to bring down glycolysis to basal
levels. Finally, data were normalized for total protein content of each well
using the Bradford protein assay (Thermofisher). Seahorse measurements
were performed with four to six technical replicates, and these experiments
were repeated four times.
Solutions for seahorse experiments. A total of 2 mM Hepes, 2 mM MES, 5.3 mM
KCl, 5.6 mM NaPhosphate, 11 mM glucose, 133 mM NaCl, 0.4 mMMgCl2, and
0.42 mM CaCl2 were titrated to the given pH with NaOH. For reduced Cl−

experiments, 133 mM NaCl was replaced with 133 NaGluconate, and MgCl2
and CaCl2 were raised to 0.74 and 1.46 mM, respectively, to account for
gluconate-divalent binding. The amount of dilute HCl or NaOH added to
medium to reduce pH to target level was determined empirically.

Respiratory capacity is a measure of the maximum rate of O2 consumption
and mitochondrial electron transport in a cell (46). Glycolytic capacity is the
maximum rate of glucose conversion to pyruvate and/or lactate by a cell.
Glucose breakdown to two lactates produces two protons, allowing for the
capability of indirect measurement of glycolytic rate using the extracellular
acidification (46). Compensatory glycolysis is the maximum possible rate of
glycolysis in cells following inhibition of oxidative phosphorylation with
rotenone/antimycin. The WE phenotype (“Warburgness”) can be expressed
as the ratio of glycolysis (ECAR) to oxidative phosphorylation (expressed as
the OCR) from the GST.

RNA-Seq. High-multiplexed library preparation for RNA-seq (PLATE-seq) was
performed as described previously (19). Briefly, we captured poly-adenylated
mRNA from cell lysates using a 96-well plate with oligo(dT) grafted to the
inner walls of each well (Qiagen). Next, we eluted the poly-adenylated
mRNA and reverse transcribed using 96 different barcoded oligo(dT) pri-
mers (Integrated DNA Technologies). Following exonuclease digestion of
excess primers, the barcoded cDNA libraries were pooled for second-strand
synthesis and Illumina library construction. We sequenced the resulting
pooled and barcoded 3′-end libraries on an Illumina NextSEq. 500.

8 of 10 | PNAS Damaghi et al.
https://doi.org/10.1073/pnas.2011342118 The harsh microenvironment in early breast cancer selects for a Warburg phenotype

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011342118/-/DCSupplemental
https://doi.org/10.1073/pnas.2011342118


Metabolic Profiling. Cells were seeded in a 24-well plate in the growth me-
dium containing 10% FBS under standard culture condition. Once cells
reached 90% confluence, the growth media were removed, and cells were
washed twice in PBS and incubated in 2% serum and phenol-red freemedium
for 24 h. Then, the media were collected for lactate production assay. L-
(+)-Lactate was measured with a colorimetric kit (BioVision, K627-100)
according to the manufacturer’s instructions. Absorbance (optical density
450 nm) for each sample was background corrected with the culture me-
dium (2% FBS) collected from the well without growing cells. Final data of
the lactate production rates were normalized to the protein amount
per well.

Lactate and glucose concentration measurement was also done by a YSI
machine and followed their protocol (YSI 2900 multianalyte system [YSI,
Yellow Springs, OH]).

RNA Sequencing Data Analyses.
Bioinformatics processing and statistical analysis of RNA-seq data. Paired-end
PLATE-seq data have the sample-identifying barcode sequences in read 1
and transcript sequences in read 2. We first aligned read 2 to the hg19 human
genome with University of California Santa Cruz Genome Browser (https://
genome.ucsc.edu/) known genes transcriptome annotation using STAR39.
Next, we demultiplexed the aligned reads based on the barcode sequence in
read 1. Finally, we quantified the number of uniquely aligned reads associated
with each gene in each sample using the featureCounts (47).

We next filtered genes and only kept those with >2 counts per million in at
least five samples, resulting in 12,568 genes for further analysis. To account for
differences in library size between the samples, trimmed mean of M values
(TMM) normalization was applied, followed by data transformation using the
mean–variance relationship estimated on the observed log count data as
implemented in the R package voom (20, 48). This results in approximately
normally distributed count data for each gene, thus allowing for standard
normal theory methods to be applied. We determined there that no batch
effects were present using principal component analyses. Association of gene
expression with continuous measure of LPR was completed with linear re-
gression models using the limma package (21). Genes with false discovery rate
(FDR) q-values < 0.10 were considered significant (49, 50). Gene list enrichment
was performed using oPOSSUM (http://opossum.cisreg.ca/oPOSSUM3/) and
Enrichr (https://maayanlab.cloud/Enrichr/) (22, 23).

Evolutionary Trajectory Analysis. Alignment of cells along their evolutionary
trajectories from the parental, unselected lineage to several selected states was
performed using Palantir (51), a recently published trajectory-detection algo-
rithm for single cell RNA-seq data. Here, with single-clone RNA-seq, we had
complete RNA-seq expression per clone and did not need to impute any
missing data, as is done with single-cell RNA-sequencing datasets. Palantir
models cell fate choices as a continuous probabilistic process over pseudotime,
estimating the probability of a cell in an intermediate state to reach a terminal
state (here: G, OP, and GOP). Palantir calculates differentiation potential of a
given cell, leveraging the entropy over branch probabilities. Differentiation
potentials near 1 correlate with earlier in the pseudotime lineage, which in this
case corresponds to the parental lineage (unselected) and indicates cells with
the highest potential of becoming a different phenotype over time. The high-
resolution data allows for mapping of gene expression trends and dynamics
over this pseudotime, which can be interpreted as how gene expression
changes as the populations were driven from the parental lineage (unselected)
to alternate terminal trajectories of G and OP phenotypes. Visualization of this
dataset was performed using uniform manifold approximation and projection
(UMAP) projections (52, 53) of the high-dimensional dataset and further
analyses were overlaid onto this representation. Python code implementing
Palantir on this single-clone dataset is available in SI Appendix.

Mathematical Modeling.We used the mathematical model described in ref. 14
and extended in ref. 15 as a starting point. An interaction network and
decision tree for the model are shown in SI Appendix, Fig. S6. For the in vivo
simulations in Fig. 3 A–D, we set up an initial condition of a duct, as in (15).
Vascular was initialized with normal vascular density outside the duct and no
vessels within. For the in vitro simulations in Fig. 3 E–I, we altered the model
as follows: vasculature was removed, and concentrations of oxygen, glucose,

and protons (pH) were considered to be well-mixed and therefore had a
global value across the simulation domain. No diffusion was necessary, and
metabolic reaction rates for glucose were calculated per cell and then
summed across the entire population for each time step. This lowered the
concentration of glucose over time; the pH was calculated via the metabolic
equations of the model

ATP = (P − Vo
o

o + ko
)( g
g + kG

) + (Vo
o

o + ko
)( g
g + kG0

) + PS [1]

,

where P is the cell’s glycolytic phenotype while g and o are glucose and
oxygen concentrations, respectively. Cells in the model were shown to sur-
vive in the UF conditions well after glucose was depleted, suggesting that a
secondary survival effect was in operation. This could be due to glutamine in
the media, autophagic response, etc. To account for this behavior in the
model, we added a term to the equation for ATP production under the
hypothesis that this behavior emerges in concert with the WE phenotype.
The term is a simple linear scaling with the glycolytic phenotype (pG) of a
given cell, kS pG, added to the ATP production derived from normal me-
tabolism (SI Appendix, Fig. S9). We fit the parameter kS based on the dy-
namics of the population and metabolites seen in the experimental system.

Replating was mimicked in the simulation by restoring the nutrient and pH
values to their initial conditions every 3 or 14 d, as per the experimental
protocol for the five different conditions. Simulations were implemented
using the “Hybrid Automata Library” framework (54) and barcoding visu-
alized using the EvoFreq package in R (55). Parameters for in vivo and
in vitro models are below in Tables 1 and 2 (14, 15).

Statistical Analysis.
Bioinformatics processing and statistical analysis of RNA-seq data. Primary analysis
and de-multiplexing are performed using Illumina’s CASAVA software,
resulting in demultiplexed FASTQ files for subsequent analysis by the map-
ping software and aligner. These data will then be checked with fastqc
program for quality assessment. Then cutadapt will be used to trim off
adaptor contaminant sequences and low-quality bases at the ends. Reads
pairs with either end too short (<25 bps) will be discarded from further
analysis. Fastqc will be used again to examine characteristics of the se-
quencing libraries after trimming and to verify its efficiency. Next, trimmed
and filtered reads will be aligned to the hg19 human transcriptome using
spliced alignment transcripts to a reference (STAR) (56), followed by gene
abundance estimation completed using RNA-seq by expectation maximiza-
tion (57), as this approach accounts for reads mapping to multiple locations.

We next filtered genes and only kept those with >2 counts per million in at
least five samples, resulting in 12,568 genes for further analysis. To account
for differences in library size between the samples, TMM normalization was
applied, followed by data transformation using the mean–variance rela-
tionship estimated on the observed log count data as implemented in the R
package voom (20, 48). This results in approximately normally distributed
count data for each gene, thus allowing for standard normal theory meth-
ods to be applied. We determined there that no batch effects were present
using principal component analyses. Association of gene expression with
continuous measure of LPRs was completed with linear regression models
using the limma package (21). Genes with FDR q-values < 0.10 were con-
sidered differentially expressed (49, 50). Gene list enrichment was per-
formed using oPOSSUM and Enrichr (22, 23).

Data Availability. All study data are included in the article and supporting
information.
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