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ABSTRACT

Tissue-specific gene expression is critical in under-
standing biological processes, physiological condi-
tions, and disease. The identification and appropri-
ate use of tissue-specific genes (TissGenes) will pro-
vide important insights into disease mechanisms
and organ-specific therapeutic targets. To better un-
derstand the tissue-specific features for each can-
cer type and to advance the discovery of clini-
cally relevant genes or mutations, we built Tiss-
GDB (Tissue specific Gene DataBase in cancer) avail-
able at http://zhaobioinfo.org/TissGDB. We collected
and curated 2461 tissue specific genes (TissGenes)
across 22 tissue types that matched the 28 can-
cer types of The Cancer Genome Atlas (TCGA) from
three representative tissue-specific gene expression
resources: The Human Protein Atlas (HPA), Tissue-
specific Gene Expression and Regulation (TiGER),
and Genotype-Tissue Expression (GTEx). For these
2461 TissGenes, we performed gene expression, so-
matic mutation, and prognostic marker-based anal-
yses across 28 cancer types using TCGA data. Our
analyses identified hundreds of TissGenes, includ-
ing genes that universally kept or lost tissue-specific
gene expression, with other features: cancer type-
specific isoform expression, fusion with oncogenes
or tumor suppressor genes, and markers for protec-
tive or risk prognosis. TissGDB provides seven cate-
gories of annotations: TissGeneSummary, TissGene-
Exp, TissGene-miRNA, TissGeneMut, TissGeneNet,
TissGeneProg, TissGeneClin.

INTRODUCTION

Tissue-specific gene expression is dynamic and complex, but
it is crucial in understanding biological processes, physio-
logical conditions and disease. The identification and anal-

ysis of tissue-specific genes (TissGenes) in combination with
other biomedical data will provide important insights into
disease mechanisms and organ-specific therapeutic targets.
Since disease and physiological condition are often asso-
ciated with a specific tissue, the appropriate use of Tiss-
Gene expression will substantially reduce false discover-
ies in biomedical research. With the exponential growth of
biomedical data recently, such as cancer genomics, many
studies have searched for alterations of cancer genes across
multiple cancer types (e.g. pan-cancer studies). However,
such studies and related clinical investigations are often per-
formed without considering tissue-specificity in each can-
cer type, leading to both high false positive and nega-
tive discoveries. For example, pan-cancer studies with um-
brella or basket trials using big cancer datasets were based
on the assumption of existing common genetic alterations
across multiple cancer types (1–4). Indeed, several driver
mutations in one cancer type also exist in other cancer
types like BRAF V600E in melanoma, colorectal cancer,
thyroid cancer, non-small-cell lung cancer, and hairy cell
leukemia with frequencies ∼ 50%, ∼10%, ∼35%, ∼4% and
∼100%, respectively (5). However, the BRAF inhibitor Ver-
murafenib was not successful in non-melanoma cancers
that have the BRAF V600E mutation (6). This implies that
the same oncogenic gene plays different roles (e.g. BRAF
V600E is actionable in melanoma but likely has passenger
role in other cancer types) in different cancer types, which
are highly tissue-specific. These different clinical outcomes
across multiple cancers might be inferred through a tissue-
specificity gene resource, in which gene expression mea-
sure is an appropriate way to detect tissue-specificity of the
cancer genes. Accordingly, curation and characterization of
tissue-specific genes at the molecular level will be useful for
better understanding oncogene’s roles across tissue-based
cancers, leading to the enhanced therapeutic strategies in
precision oncology (7).

Thus far, many researchers have studied gene- and
protein-expression and gene-gene networks of tissue-
specific genes for a better understating of the molecular
details of the different tissues in a healthy human body
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(8,9). Other researchers have investigated tissue-specific mu-
tations of cancer genes (2,3,10–12). However, until now, a
systematic annotation of the alterations of TissGenes in
cancer or other diseases has not been available. For example,
the transmembrane protease, serine 2 gene (TMPRSS2),
one of prostate cancer (PRAD) specific genes annotated in
TissGDB, could demonstrate the role of a tissue-specific
gene in the oncogenic process. The translocation between
the prostate tissue-specific, androgen-inducible gene TM-
PRSS2 and the proto-oncogene ERG leads to amplified
proliferation of the prostate tissue cells. This tumorigene-
sis might occur through the androgen receptor dependent
environment, which is related to prostate cancer initiation
and progression by TMPRSS2 and the key regulation of
cell proliferation by ERG.

Here, we built TissGDB, the tissue-specific gene annota-
tion database in cancer, aiming to provide a resource or ref-
erence for cancer and related disease studies in the context
of tissue specificity. This paper introduces TissGDB (Tissue
specific Gene DataBase in cancer), the web interface, and
its applications. Our database includes features of all human
tissue-specific genes based on large cancer data sets through
systematic bioinformatics analyses. Therefore, it will be a
unique resource for broad biomedical research communi-
ties.

DATABASE OVERVIEW

We collected and curated 2461 TissGenes across 22 tissue
types, which matched the 28 cancer types from The Can-
cer Genome Atlas (TCGA) project (13), from three rep-
resentative tissue-specific gene expression resources: The
Human Protein Atlas (HPA) (8), Tissue-specific Gene Ex-
pression and Regulation (TiGER) (14), and Genotype-
Tissue Expression (GTEx) (13). (Figure 1A). For these 2461
TissGenes, we performed gene expression, somatic muta-
tion, and prognostic marker-based analyses across 28 can-
cer types using TCGA data through seven categories of
annotations: TissGeneSummary, TissGeneExp, TissGene-
miRNA, TissGeneMut, TissGeneNet, TissGeneProg, and
TissGeneClin (Figures 1B and 2). The main features of
the TissGDB annotations are summarized as follows. (i)
The TissGeneExp information category shows multiple
bar plots for gene and isoform expression using TCGA
and GTEx data with colors distinguishing different can-
cer types and different gene isoforms. From these plots,
we identified 294 and 209 TissGenes that could univer-
sally keep (TissGenesKTS) or lose (TissGenesLTS) tissue-
specific gene expression across the cancer types, respec-
tively. (ii) The TissGene-microRNA information category
provides the significantly anti-correlated microRNAs (miR-
NAs) for each TissGene among the 28 cancer types us-
ing Spearman’s Rank Correlation method. (iii) In the Tiss-
GeneMut information category, we present a lollipop plot
of nonsynonymous single-nucleotide variants (nsSNVs) on
the amino acid sequence with different colored circles for
cancer types. By examining the extent and patterns of copy
number variation (CNV) in TissGenesKTS, we identified
201 TissGenes whose ratio, which is defined as the num-
ber of samples with copy number gained versus the num-
ber of samples with copy number lost, is at least two across

multiple cancer types. By investigating TCGA fusion genes
involving TissGenes, we found 447 fusion genes among
the 350 TissGenes and 341 oncogenes or tumor suppres-
sor genes (TSGenes). (iv) The TissGeneProg information
category summarizes the results of survival analyses with
Kaplan-Meier and Forest plots based on the log-rank test
and Cox regression analysis using overall survival and re-
lapse free survival outcomes. From these survival analyses,
we found 152 protective and 56 risk TissGenes. (v) Through
the TissGeneClin information category, we identified 705
FDA-approved drugs that target 144 TissGenes (5.85%).
We also found 1844 TissGenes (74.9%) that are reported to
be associated with 6979 different IDs of diseases based on
DisGeNet. The details of the data and analysis processes
are described in a later section.

Table 1 summarizes the statistics of 2461 TissGenes and
among them, 546 highly confident TissGenes (we named
them as cTissGenes––those genes that were identified in all
three tissue-specific gene expression resources). All entries
and annotation data are available for browsing and down-
loading on the TissGDB web site with unique and efficient
visualization (http://zhaobioinfo.org/TissGDB).

DATA INTEGRATION AND ANNOTATIONS

Creation of tissue-specific gene list

To create TissGenes, we used three representative resources:
HPA, TiGER and GTEx. From the HPA and TiGER re-
sources, we retrieved 2543 and 4899 genes, respectively (Fig-
ure 1A). These two resources applied the fold change of the
expression values of each human gene as their criterion for
selecting TissGenes across multiple tissues. They selected
tissue-specific genes that have at least 5-fold higher FPKM
level in one tissue compared to all other tissues. Here, we
adopted their annotation of tissue-specific gene list. After
matching each tissue type with the cancer types of TCGA
data (Supplementary Table S1), 2050 and 3090 TissGenes
were selected from HPA and TiGER resources, respectively.
To identify TissGenes from GTEx data, we generated the
gene list by investigating z-scores ranging from 1.0 to 4.0
based upon the expression levels of the genes. Here, the z-
score equal to N represents that more than N standard de-
viations greater than the mean expression in all tissues. For
the appropriate number of genes, we set the threshold of
the z-score value as 3.0 in the GTEx data. This criterion re-
sulted in 11 223 genes across 32 tissues of the GTEx data.
After matching each tissue type with the cancer types of
TCGA data, 6039 genes were selected as TissGenes from
GTEx data. In summary, across 22 tissue types matching
the 28 cancer types, 2050, 3090 and 6039 TissGenes were se-
lected from HPA, TiGER and GTEx, respectively. Through
a union of these genes, we had 8172 unique human genes.
Among them, 2461 genes overlapped by at least two tissue-
specific gene expression resources, we selected them as Tiss-
Genes to ensure the reliability of tissue specificity of the
genes (Supplementary Table S2).

Manual curation of PubMed articles

For the 546 highly confident TissGenes (i.e., cTissGenes),
a literature query of PubMed was performed in June 2017

http://zhaobioinfo.org/TissGDB
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Figure 1. Overview of TissGDB. (A) Venn-diagram of TissGenes among the three representative tissue-specific gene expression resources. We selected 2461
TissGenes overlapped in at least two out of three resources. Among them, 546 genes were overlapped in all three tissue-specific gene expression resources
(confident TissGenes, cTissGenes). (B) The overall expression distribution of TissGenes among the 28 cancer types using the principal component analysis
(PCA) method.

Table 1. Annotation entry statistics for TissGenes and cTissGenes

Data type # entries # TissGenesa # cTissGenesb

Total 2461 (%) Total 546 (%)

Tissue specific genes # genes
HPAc 2050 1498 (60.9%) 546 (100.0%)
TiGERd 3090 1728 (70.2%) 546 (100.0%)
GTExe 6039 2242 (91.1%) 546 (100.0%)
Cancer genes
CCGf 4050 443 (18.0%) 87 (15.9 %)
Expression # genes
TCGAg 20 530 2444 (99.3%) 546 (100.0%)
GTEx 56 318 2461 (100.0%) 546 (100.0%)
Mutation # genes
TCGA 39 571 2461 (100.0%) 546 (100.0%)
Copy number variation # genes
TCGA 24 776 2461 (100.0%) 546 (100.0%)
Fusion gene # genes
ChimerDB3.0h 10 713 1393 (56.6%) 293 (53.7%)
TCGA data Fusion Portali 7765 718 (29.2%) 155 (28.4%)
Survival analysis # clin.info
TCGA 11 896 2461 (100.0%) 546 (100.0%)
Molecule # molecules
DrugBankj 8206 drugs 218 (8.9%) 61 (11.2%)
UniProtk 2374 proteins 2446 (99.4%) 545 (99.8%)
Phenotype # phenotype
DisGeNetl 15 094 disease ID 1844 (74.9%) 434 (79.5%)

aTissue specific genes (TissGenes).bConfident TissGenes (cTissGenes).cThe Human Protein Atlas.dTissue-specific gene expression and regulation
(TiGER).eGenotype-Tissue Expression. fCatalogue of cancer genes. gThe Cancer Genome Atlas.hChimerDB3.0: an enhanced database for fusion genes
from cancer transcriptome and literature data mining. iTCGA fusion gene data portal. jRelated drug with the TissGenes from DrugBank database.kThe
Universal Protein Resource (UniProt). lGene-level disease annotation from DisGeNet database.
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ERG-TMPRSS2 8
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TMPRSS2-ETV1 4
TMPRSS2-ETV5 2
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prostate-specific TMPRSS2
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TissGene Cancer type miRNA P-val Coeff.
FDXR ACC hsa-miR-107 0.0014 -0.38
EMX2 UCS hsa-miR-19a-3p 0.0043 -0.38
DLC1 LUAD hsa-miR-429 0.0053 -0.36

CACNA2D2 LUAD hsa-miR-34c-5p 0.0075 -0.34
EMX2 UCS hsa-miR-19b-3p 0.0014 -0.33
MITF UCS hsa-miR-323a-3p 0.0016 -0.33

CXCL5 LUAD hsa-miR-23a-3p 0.0023 -0.30

(# samples ≥ 5 
per cancer type)

Figure 2. Overview of TissGene annotations in TissGDB. (A) Gene expression-based annotations of TissGenes. (B) Somatic mutation-based annotations
of TissGenes. (C) Prognostic-based annotations of TissGenes.

using the search expression that applied to each Tiss-
Gene. Using TMPRSS2 as an example, it is ‘((TMPRSS2
[Title/Abstract]) AND tissue [Title/Abstract]) AND spe-
cific [Title/Abstract])’. After manual review of the abstracts
of over 1000 articles, we found 189 genes (∼34.6%) had lit-
erature evidence (196 articles) that support the tissue- or
cancer type-specificity of these TissGenes. Building on these
search results, we created a classification system for the
genes in the database to roughly measure reliability. Class A
consists of genes with literature evidence and is part of the
cTissGenes. Class B consists of only cTissGenes without ad-
ditional evidence. The remaining genes belong to Class C.
There were 189, 358 and 1914 genes in classes A, B and C,
respectively.

Expression data preparation

Gene expression data (HiSeqV2) were downloaded from
TCGA (December 2016). We used pan-cancer normal-
ized values log2(normalized read count+1) from Illumi-
naHiSeq RNASeqV2. Isoform expression data were down-
loaded from the Broad Institute GDAC FireBrowse portal
(http://firebrowse.org/). GTEx RPKM gene expression V6

was downloaded from the GTEx portal (http://gtexportal.
org).

Calculation of anti-correlation between mRNA and miRNA
expression

We obtained the conserved human miRNA-target gene in-
teraction information from TargetScan (release 7.1, June
2016) (15). miRNA expression data were obtained from
TCGA (December 2016). We removed miRNAs with NA
values in over 50% of the samples and selected the miR-
NAs with an expression value greater than 10 reads per
million (RPM) in >10% of the samples in each cancer
type. A gene-miRNA correlation coefficient was calculated
using the Spearman’s Rank Correlation method. We de-
fined a miRNA as significantly anti-correlated if it had P-
value <0.05 and coefficient 0.3.

SNV and CNV data

Somatic gene-level non-silent mutation data including non-
sense, missense, frame-shift insertions and deletions (in-
dels), splice site mutations, stop codon read-throughs,

http://firebrowse.org/
http://gtexportal.org
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changes of start codon, and inframe indels were down-
loaded from TCGA (December 2016). Thresholded gene-
level copy number variation (CNV) data estimated using
the GISTIC2 method were also downloaded from TCGA
(December 2016).

Fusion gene information

30 001 and 7992 fusion transcript candidates and their re-
lated information were downloaded from the ChimerDB
3.0 (http://ercsb.ewha.ac.kr/fusiongene, December 2016)
(16) and TCGA fusion Data Portal (http://54.84.12.177/
PanCanFusV2/, December 2014) (17), respectively. For the
ChimerDB fusion transcripts, we found that 13 729 were
derived from TCGA samples. By union of the 13 729
and 7992 fusion genes, we obtained 21 724 unique fusion
genes. We overlapped each of the 13 729 fusion genes from
ChimerDB and the 7992 fusion genes from TCGA fusion
Data Portal with 2461 TissGenes. This resulted in 3622 and
1151 fusion genes including 1393 and 718 TissGenes from
ChimerDB3.0 and TCGA fusion Data Portal, respectively.

Co-expressed protein interaction network (CePIN)

The protein interaction network (PIN) reported in our pre-
vious study (18) included 113 473 unique protein-protein in-
teraction pairs connecting 13 579 protein-coding genes. To
build the CePIN, we calculated the Pearson’s Correlation
Coefficient (PCC) for each gene–gene pair. Co-expressed
network figures were drawn using the igraph package in R
(19). For each gene, the top 20 neighbor genes with the high-
est PCC values were kept in the network to reflect the ge-
netic signals.

Survival analysis and data preparation

Based on gene expression and survival outcomes [overall
survival (OS) and relapse free survival (RFS)], we identified
prognostic TissGenes in each cancer type. To achieve this,
we used log-rank test and Cox proportional hazards regres-
sion. In the log-rank test, patients were divided into two
groups as high and low expression groups. We used three
cutoff values (25, 50 or 75 percentiles of gene expression)
and the cutoff value showing the most significant statistical
P-value was used for the result of each gene. We present the
results of the log-rank test as Kaplan–Meier survival curves.
The hazard ratios (HRs) obtained from the Cox propor-
tional hazards regression are presented with 95% confidence
intervals as a forest plot for each cancer type.

Drug and disease information

Drug-target interactions (DTIs) were extracted from Drug-
Bank (April 2017) (20) with the duplicated DTI pairs ex-
cluded. All drugs were grouped using Anatomical Thera-
peutic Chemical (ATC) classification system codes. Disease-
gene information was extracted from a database of gene-
disease associations (DisGeNet, June 2016) (21).

Database architecture

The TissGDB system is based on a three-tier architecture:
client, server, and database. It includes a user-friendly web
interface, Perl’s DBI module and MySQL database. This
database was developed on MySQL 3.23 with the MyISAM
storage engine.

WEB INTERFACE AND ANALYSIS RESULTS

Gene expression category (TissGeneExp)

This category presents the landscape of gene expression for
the TissGenes across 22 normal tissue-types and 28 cancer-
types based on GTEx and TCGA data. The expression is
displayed with both gene- and isoform-levels. First, we in-
vestigated the overall expression distribution of TissGenes
among the 28 cancer types using the principal component
analysis (PCA) method. As shown in Figure 1B, the cancer
types that are of the same tissue type were clustered together
like brain (LGG and GBM), adrenal gland (PCPG and
ACC), kidney (KICH, KIRP and KIRC) and lung (LUAD
and LUSC). We also observed that samples of liver cancer
(LIHC) showed a distinct pattern separate from the sam-
ples of other cancer types. Figure 2 shows the overview of
TissGene annotation results. From the gene expression bar
plot across 28 cancer-types for each TissGene, we identified
294 TissGenes that may universally keep tissue-specific gene
expression across the cancer types (TissGenesKTS, Figure
2A). We also identified 209 TissGenes that may universally
lose tissue-specific gene expression across 28 cancer types
(TissGenesLTS). The number of TissGenesKTS and Tiss-
GeneLTS across 28 cancer types are presented in Figure 3A.
To infer the active pathways of these genes, we performed
gene set enrichment tests for the 294 TissGenesKTS for
each cancer type and 209 TissGenesLTS in pan-cancer us-
ing online tool WebGestalt (WEB-based Gene SeT AnaLy-
sis Toolkit) (22). We applied adjusted P-value (i.e. q-value)
<0.05, hypergeometric test followed by multiple test correc-
tion using Benjamini–Hochberg’s method, as implemented
in WebGestalt). As shown in Figure 3B, TissGenesKTS
were enriched in the pathways relevant to their tumorigen-
esis in each cancer type, while TissGenesLTS were enriched
in RNA degradation related pathways (Figure 3C).

Next, we manually curated and selected TissGenes show-
ing cancer type specific isoform expression. Here, we found
nine and three TissGenes with high expression of spe-
cific isoforms and unique expression of specific isoforms
in their assigned cancer type, respectively. These nine Tiss-
Genes were CFHR1, DDX4, G6PC2, GFAP, HAPLN2,
IGLL1, IQCF1, IQCF2, SLC13A1, and SLC22A2 and the
three TissGenes were DCT, MASP2 and TG. For exam-
ple, dopachrome tautomerase, encoded by gene DCT, is in-
volved in the formation of the photo-protective skin pig-
ment eumelanin (23). It has a specific isoform (UCSC
known gene id: uc010afh) that contains a tyrosinase domain
in skin cutaneous melanoma (SKCM). Tyrosinase is an ox-
idase and rate-limiting enzyme controlling production of
melanin. This result provided cancer type-specific isoforms,
which are clinically important.

We next examined differentially expressed genes (DEGs)
in each cancer type. A DEG is defined by |log2(fold

http://ercsb.ewha.ac.kr/fusiongene
http://54.84.12.177/PanCanFusV2/
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Figure 3. TissGenes that keep or lose tissue-specificity in cancer. From the gene expression patterns of all TissGenes across 28 cancer types, we identified
294 TissGenesKTS and 209 TissGenesLTS. (A) The percentage and number of TissGenesKTS and TissGenesLTS across 28 cancer types. (B) Enriched
biological processes of TissGenesKTS per cancer type. (C) Enriched biological processes of TissGenesLTS.

change)| > 1 and q-value < 0.05 (t-test followed by mul-
tiple test correction using Benjamini–Hochberg’s method).
We found 113 TissGenes, which were differentially ex-
pressed in their specific cancer types. Interestingly, among
the 113 TissGenes, 40 (35%) overlapped with the 294 Tiss-
GenesKTS. Among these 40 genes, only one gene, POTEG,
was up-regulated in PRAD. The other 39 genes were down-
regulated; they were significantly enriched in ‘organic an-
ion transport’, ‘organonitrogen compound catabolic pro-
cess’, and ‘sodium-independent organic anion transport’
(WebGestalt, q-value < 0.05, hypergeometric test followed
by multiple test correction using Benjamini-Hochberg’s
method, Supplementary Table S3). This strong bias toward
down-regulation of TissGenes might be related to some

more active functions of cancer genes during the progres-
sion of cancer.

miRNA category (TissGene-miRNA)

In this category, we provide the significantly anti-correlated
miRNAs for each TissGene based on the miRNAs-target
human genes pair information predicted by TargetScan.
We calculated Spearman’s Rank Correlation coefficient and
found that 196 TissGenes had significant anti-correlation
with 144 miRNAs with a correlation coefficient value less
than –0.3 (Supplementary Table S4). Among these, only
six TissGene-miRNA correlations were from the assigned
cancer type for each gene. The six gene-miRNA pairs
with the specific cancer types are CACNA2D2-miR-34c-
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5p (LUAD), CXCL5-miR-23a-3p (LUAD), DLC1-miR-
429 (LUAD), EMX2-miR-19a/b-3p (UCS), FDXR-miR-
107 (ACC) and MITF-miR-323a-3p (UCS). Two corre-
lations were supported by previous studies: CACNA2D2
upregulation in has-miR-34a/b/c-deficient adenomas (24)
and miR-429 promoting the proliferation of lung adenocar-
cinoma via targeting DLC-1 (25).

Mutation category (TissGeneMut)

This category provides somatic mutation annotations
of each TissGene including non-synonymous single-
nucleotide variants, copy number variations, and gene
fusions in the subcategories such as TissGeneSNV, Tiss-
GeneCNV, and TissGeneFusion. From the TissGeneSNV
part, one can retrieve information about how frequently
the TissGenes were mutated across 28 cancer types. Specif-
ically, we used a lollipop plot of nsSNVs on the amino
acid sequence with different colored circles for each cancer
type to illustrate the landscape of nsSNVs across multiple
cancer types. Overall, there were 133 TissGenes mutated
in at least five samples per cancer type. The TissGeneCNV
part shows the number of samples that have CNV across
28 cancer types. By searching the fold change of the
number of samples between copy number gained and lost
(|log2(FC)| > 1), we found 44 TissGenes that had more than
a 2-fold difference between the number of samples with
copy number gain versus loss and 155 TissGenes having
the opposite measure. This is consistent with a biased DEG
result toward more down-regulation of TissGenesKTS. In-
terestingly, the 44 genes were enriched in various metabolic
or biosynthetic processes (WebGestalt, q-value < 0.05, hy-
pergeometric test followed by multiple test correction using
Benjamini–Hochberg’s method, Supplementary Table S5).
In contrast, the 155 genes that had more than a 2-fold dif-
ference between the numbers of samples with copy number
loss versus gain were enriched in anion transport and germ
cell development (Supplementary Table S6). The TissGene-
Fusion part shows the fusion genes involving TissGenes.
Through overlapping 2461 TissGenes with ∼22 000 fusion
genes from ChimerDB3.0 and TCGA fusion Data Portal,
we identified 1393 TissGenes involved in 2662 fusion genes.
Interestingly, 146 and 255 TissGenes were fused with 115
oncogenes and 255 tumor suppressor genes, which resulted
in 168 and 327 fusion genes, respectively (Supplementary
Table S7). For example, the chromosomal rearrangement
between prostate tissue-specific, androgen-inducible gene
TMPRSS2 and proto-oncogene ERG occurring in 30–50%
of prostate cancer patients. This is a typical example of an
alteration of a tissue-specific gene for tumorigenesis. These
candidates might be helpful to understand tissue specific
factors. The tissue-specific gene fusion events in pan-cancer
will provide an important reference for investigators in
broad cancer research.

Prognostic information category (TissGeneProg)

To identify prognostic TissGenes, we performed a log-rank
test and Cox regression analysis based on survival outcome
information (OS and RFS) in 28 cancer types. In Cox re-
gression analysis with 2461 TissGenes, the expression of

1956 and 1783 TissGenes showed significant associations
with overall survival and relapse free survival outcomes, re-
spectively (P-value < 0.05). According to the HRS from
Cox regression analysis, we defined a gene as a ‘protective’
TissGene if the increased expression of the gene was statis-
tically associated with prolonged survival (HR < 1.0), or
as a ‘risk’ TissGene if the increased expression was associ-
ated with poor survival (HR > 1.0). Based on the ranks of
the HR from Cox regression with OS or RFS, we first ob-
tained two sets of the top 1000 protective and risk TissGenes
without consideration of tissue specificity: one set of 1000
protective and risk TissGenes from Cox regression with OS
and the other set from that with RFS. From each set of
the top 1000 TissGenes, we collected only the TissGenes
that matched to their assigned cancer types, i.e., prognos-
tic TissGenes. Subsequently, we obtained the final 152 pro-
tective and 57 risk prognostic TissGenes by combining two
lists of prognostic TissGenes from the results with OS and
RFS (Supplementary Table S8). Among these, kidney can-
cers (KICH, KIRC, and KIRP) showed the largest num-
ber of prognostic TissGenes, including 52 protective and 18
Risk TissGenes. A previous study also revealed large prog-
nostic markers in KIRC (26). We performed enrichment
analysis with the kidney-specific prognostic TissGenes in
terms of biological function (WebGestalt, q-value < 0.05,
hypergeometric test followed by multiple test correction us-
ing Benjamini–Hochberg’s method). The 52 protective Tiss-
Genes were enriched with genes involved in ‘distal tubule
development’ pathway (q-value of 1.24 × 10−8) and ‘uro-
genital system development’ pathway (q = 4.68 × 10−6).
However, no significant enriched term was obtained with
the 18 risk TissGenes. From the results, we could infer that
the TissGenes involved in kidney development were related
to the prognosis in kidney cancers and high expression of
the genes might lead to better prognosis in kidney cancer
patients.

Pharmacological information and disease information cate-
gories (TissGeneClin)

This category includes two subcategories: TissGeneDrug
and TissGeneDisease. TissGeneDrug provides TissGene re-
lated pharmacological information from DrugBank. Over-
all, TissGDB includes 8206 drugs targeting 218 TissGenes
and 705 approved drugs targeting 144 TissGenes. Among
the 218 TissGenes targeted by drugs, only 71 genes (32.6%)
were cancer genes and the others (67.4%) were non-cancer
genes. The TissGeneDisease part shows the related disease
information for each gene from a database of gene-disease
associations (DisGeNet). 1844 genes out of all 2461 Tiss-
Genes were reported to be associated with 6979 different
types of diseases. Overall, only 443 genes (18.0%) out of
all the TissGenes overlapped with the known cancer genes
from the Catalogue of Cancer Genes (27).

DISCUSSION AND FUTURE DIRECTION

TissGDB is the first database that systematically annotates
tissue-specific genes in pan-cancer and it can be extended to
other diseases when data becomes available. To serve broad
biomedical research communities, we will continuously up-
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date and curate TissGenes routinely by checking new tissue-
specific gene or protein expression data. One near-term up-
date is to obtain the related data from the International
Cancer Genome Consortium (ICGC). The ICGC has more
cancer types or subtypes than TCGA. As shown in the 447
fusion genes between 350 TissGenes and 341 oncogenes or
TSGenes, their genomic relation, interaction, linked aber-
ration between cancer genes and TissGenes, and products
(chimeric proteins) are important for studying their poten-
tial roles in tumorigenesis and as possible molecular targets.
We will investigate and extend the methods to find the sig-
nificant relationship between cancer genes and TissGene in
the near future. The easy-to-use website provides multiple
annotation results to researchers and facilitates comprehen-
sive studies of TissGenes. Thus, TissGDB will be useful for
many investigators in pathology, cancer genomics and pre-
cision medicine, drug and therapeutic research, among oth-
ers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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