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pelvic computed tomography (CT)
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Background: With the advancement of artificial intelligence technology and radiomics analysis, 
opportunistic prediction of osteoporosis with computed tomography (CT) is a new paradigm in osteoporosis 
screening. This study aimed to assess the diagnostic performance of osteoporosis prediction by the 
combination of autosegmentation of the proximal femur and machine learning analysis with a reference 
standard of dual-energy X-ray absorptiometry (DXA).
Methods: Abdomen-pelvic CT scans were retrospectively analyzed from 1,122 patients who received 
both DXA and abdomen-pelvic computed tomography (APCT) scan from January 2018 to December 
2020. The study cohort consisted of a training cohort and a temporal validation cohort. The left proximal 
femur was automatically segmented, and a prediction model was built by machine-learning analysis using a 
random forest (RF) analysis and 854 PyRadiomics features. The technical success rate of autosegmentation, 
diagnostic test, area under the receiver operator characteristics curve (AUC), and precision recall curve 
(AUC-PR) analysis were used to analyze the training and validation cohorts. 
Results: The osteoporosis prevalence of the training and validation cohorts was 24.5%, and 10.3%, 
respectively. The technical success rate of autosegmentation of the proximal femur was 99.7%. In the 
diagnostic test, the training and validation cohorts showed 78.4% vs. 63.3% sensitivity, 89.4% vs. 98.1% 
specificity. The prediction performance to identify osteoporosis within the groups used for training and 
validation cohort was high and the AUC and AUC-PR to forecast the occurrence of osteoporosis within the 
training and validation cohorts were 90.8% [95% confidence interval (CI), 88.4–93.2%] vs. 78.0% (95% CI, 
76.0–79.9%) and 94.6% (95% CI, 89.3–99.8%) vs. 88.8% (95% CI, 86.2–91.5%), respectively. 
Conclusions: The osteoporosis prediction model using autosegmentation of proximal femur and machine-
learning analysis with PyRadiomics features on APCT showed excellent diagnostic feasibility and technical success.
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Introduction

As the life expectancy increases, osteoporosis has become a 
major public health concern worldwide (1-3). Osteoporosis 
is a very common disease in middle-aged and older women, 
and 40% of women over 70 years of age are diagnosed with 
osteoporosis. Half of osteoporotic people will have at least 
one major osteoporosis-related fracture during the rest 
of their lifetime (1,3,4). Proper management through an 
early diagnosis of osteoporosis can have a significant impact 
on patient prognosis (5). Nevertheless, osteoporosis is a 
silent disease, and people frequently fail to acknowledge 
the gravity of this illness until a major fracture occurs (6,7). 
As a result, asymptomatic people do not participate in the 
screening program, and this results in the underuse of dual-
energy X-ray absorptiometry (DXA) for osteoporosis (8-12).

There have been growing efforts and attempt to 
improve the screening of osteoporosis and to overcome 
the limitations and underuse of DXA (13-17). In the era 
of artificial intelligence-related research and radiomics 
analysis, the prediction of osteoporosis or the use of 
the bone mineral density (BMD) with abdomen-pelvic 
computed tomography (APCT) has been a new paradigm 
in opportunistic osteoporosis screening research (18-21). 
Despite the high prediction performance of these values 
which was suggested as maximal area under the receiver 
operator characteristics curve (AUC) of 0.74 by Buckens 
et al., the main weakness of previous studies was that the 
area or volume of interest must be manually drawn or 
segmented to analyze these values (15,16,20,22). Advances 
in technology have made it possible to automatically 
segment the proximal femur volume and to analyze 
854 PyRadiomics features simultaneously. Radiomics 
feature analysis may be a suitable technique to evaluate 
microstructural changes in trabecular bone, including the 
density, shape, size, and interactions of imaging features 
with or without wavelet transformation (18,19,22-26). 
In addition, artificial intelligence in medical practice has 
been proven effective in big data-based screening (27-30). 
Thus, the aim of this study was to assess the diagnostic 
performance of an osteoporosis prediction model made 
by a combination of autosegmentation of the proximal 
femur and machine learning analysis with 854 PyRadiomics 
features from precontrast APCT with a reference standard 
of DXA. We present this article in accordance with the 
TRIPOD reporting checklist (31) (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1751/rc).

Methods

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional review board of Hallym 
University Sacred Heart Hospital (No. HALLYM 2020-12-
015), and the need for informed consent was waived due to 
the nature of the retrospective analysis. 

Patients

Training and validation cohort patients
From January 2018 to August 2020, 915 individuals aged 
50 years or older underwent both APCT and DXA scans 
within a 1-month period (mean, 3.8±6.1 days; range,  
0–30 days) at Hallym University Sacred Heart Hospital. 
Among them, 84 patients were excluded due to various 
reasons: bone metastases (n=11), metastasis outside the 
bone (n=13), recent chemotherapy within the past three 
months prior to the computed tomography (CT) scan 
(n=28), primary bone diseases (e.g., fibrous dysplasia; 
n=5), developmental or traumatic femoral deformities 
(n=8), previous total hip arthroplasty, femoral fractures, or 
internal nailing (n=16), or incomplete scans (n=3). Between 
September and December 2020, 291 consecutive patients 
were included as the temporal validation cohort, following 
the same enrollment criteria as the training cohort (Figure 1).

DXA

A solitary scanner was used for the DXA procedure (GE 
Healthcare Lunar Prodigy Densitometers, Germany). The 
T-score of the total femur among seven values (neck, upper 
neck, lower neck, Ward’s triangle, trochanter, shaft, and total) 
was used as the reference standards because the segmentation 
volume of the femur was based on the total femur area on 
the DXA. The total femur T-score was interpreted as either 
osteoporosis (T-score ≤−2.5), osteopenia (−2.5< T-score 
<−1.0), or normal (T-score ≥−1.0) (32).

CT imaging

We conducted CT examinations using three multidetector-
row CT scanners  (SOMATOM Definit ion Edge, 
SOMATOM Definition Flash, SOMATOM Force; Siemens 
Healthineers, Germany) operating in standard single-energy 
CT mode. The pixel sizes were approximately 0.634 mm,  

https://qims.amegroups.com/article/view/10.21037/qims-23-1751/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1751/rc
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with voxel sizes around 0.317 mm3. While minor variations 
may exist between patients, these differences had a 
negligible impact on the study. We utilized Automatic tube 
voltage selection (Care kVp) and automatic tube current 
modulation (CARE Dose 4D) protocols. To minimize the 
influence of contrast agent administration, all measurements 
were performed using CT images acquired before contrast 
administration. The scanning parameters included detector 
collimations of 128×0.6 or 192×0.55 mm, pitch ranging 
from 0.6 to 0.9, gantry rotation time of 0.5 s, tube current 
between 75–659 mAs, tube voltage of 100–120 kVp, and 
iterative reconstruction.

Radiomics analysis

Proximal femur segmentation was performed by one 
radiologist with 15 years of experience in radiology using a 
dedicated radiomics analysis software, which automatically 
segmented the proximal femur from the femoral head to 
the lower trochanter level (above the horizontal line of 

the ischial tuberosity lower margin) (syngo.via Frontier 
Radiomics, version 1.2.6, Siemens Healthineers) (Figure 2).  
Deep learning based autosegmentation, which took less 
than a minute was conducted to align with the reference 
test, DXA, and scan range, thereby reducing potential 
overestimation caused by individual anatomical variations. 
Furthermore, based on the previous study, Hounsfield unit 
histogram analysis (HUHA) value at the femur neck and 
osteoporosis demonstrated a strong correlation (16).

The technical failure rate was calculated to evaluate 
the accuracy of the autosegmentation. A technical failure 
was defined as a case in which the target femur volume 
was not extracted for more than 90% of the original 
volume or when areas other than the femur region was 
extracted. A total of 854 PyRadiomics features were based 
on PyRadiomics (https://pyradiomics.readthedocs.io/) (33).  
All features consisted of the following four classes: (I) 
17 shape and size features; (II) 18 first-order statistics, 
features of the distribution of voxel intensities; (III)  
24 gray-level cooccurrence matrix features; (IV) 14 gray-
level dependence matrix features; (V) 16 gray-level run-
length matrix features; (VI) 16 gray-level size zone matrix 
features; (VII) 17 neighboring gray tone difference matrix 
features; and (VIII) 744 wavelet transformation features 
of first-order statistics and texture features. The wavelet 
transformation efficiently separates the textural details by 
breaking down the original image, akin to how Fourier 
analysis operates at different frequencies—both low and 
high.

Building the osteoporosis prediction model using a RF 
analysis

We employed the random undersampling algorithm, 
a widely used data-processing technique in machine 
learning, on the training cohort to mitigate the imbalance 
between osteoporosis statuses (osteoporosis vs. non-
osteoporosis, 234 APCT scans/889 APCT scans). This 
approach aimed to prevent bias towards cases in the 
majority class and achieve higher classification accuracy. 
The RF method was chosen for building the prediction 
model due to its effective variance-bias trade-off. To 
address repeatability issues in radiomics, features with 
an intraclass correlation coefficient (ICC) above 0.8 
were deemed stable and selected for model construction. 
Further  feature se lect ion was  omitted to reduce 
computation time, prioritizing efficiency over incremental 
prediction accuracy, particularly with the RF method. We 

Figure 1 Patient enrollment flowchart. DXA, dual-energy X-ray 
absorptiometry; APCT, abdomen-pelvic computed tomography; M, 
male; F, female; SD, standard deviation.

Between Jan 2018 to Aug 2020

Inclusion criteria
• �Male and female, age ≥50 years
• �Underwent both DXA & APCT within 30 days
Exclusion criteria
• �Any total hip arthroplasty, femoral fracture, internal nailing
• �Any metastasis
• �Primary bone disease
• �Active chemotherapy
• �Developmental or traumatic deformity of femur

Training cohort  
(831 APCT/831 patients)

M:F =116:715
Age (mean ± SD), 67.4±11.6 years
• �Osteoporosis (n=204)
• �Osteopenia (n=292)
• �Normal (n=335)

Between Sep 2020 to Dec 2020

T-score of total femur on DXA
• �Normal (T-score >−1.0)
• �Osteopenia (−2.5< T-score ≤−1.0)
• �Osteoporosis (T-score ≤−2.5)

Validation cohort  
(291 APCT/291 patients)

M:F =17:274
Age (mean ± SD), 63.7±10.2 years 
• �Osteoporosis (n=30)
• �Osteopenia (n=109)
• �Normal (n=152)   

https://pyradiomics.readthedocs.io/
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employed a fivefold cross-validation to enhance model 
efficacy, optimizing hyperparameters such as the number 
of trees in the forest and minimum sample size for leaf 
nodes through cross-validation.

Statistical analysis

We conducted all statistical analyses using R software 
(version 3.6.1; R Foundation for Statistical Computing: 
http://www.Rproject.org) and MedCalc for Windows, 
version 20.015 (MedCalc Software). Primarily, we employed 
two-sided tests. The reproducibility of segmented volume 
and radiomics features was assessed using ICCs with a two-

way random model for absolute measurements. To evaluate 
reproducibility, a radiologist with 13 years of experience 
measured 50 randomly selected CT scans. We calculated 
prediction accuracy for both the training and validation 
cohorts using the diagnostic test confusion matrix. The 
performance of the radiomics prediction model in both 
cohorts was assessed using AUC and precision recall 
curve (AUC-PR). AUCs between cohorts were compared 
using the DeLong method. AUC-PR determines whether 
the prediction model can accurately identify all positive 
examples without falsely classifying too many negative 
examples as positive. A significance level of P<0.05 was 
considered statistically significant.

Figure 2 Workflow of the osteoporosis prediction model built with the automatic segmentation and machine learning analysis using 
PyRadiomics features. The target femur was automatically segmented. 854 PyRadiomics features, such as the voxel intensities, shape, size, 
and texture features, were calculated and analyzed after cross checking the segmentation volume. After the reduction of the PyRadiomics 
features by an intraclass correlation coefficient greater than 0.8, the prediction model was built by a random forest machine learning analysis. 
ICC, intraclass correlation coefficient.

Automatic 
segmentation

PyRadiomics calculation
Training cohort

Random subset 1	 Random subset 2	 Random subset (n)

Decision tree 1	 Decision tree 2	 Decision tree (n)

Voting

Random  
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analysis

Prediction model

Features 
reduction  
(ICC <0.8)

Apply to validation cohort

http://www.Rproject.org
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Results

Demographics of the study population

The demographics of the training and validation cohorts are 
summarized in Table 1. Overall, 204 patients were diagnosed 
with osteoporosis in the training cohort, and 30 patients  
were diagnosed with osteoporosis in the validation cohort. 
The osteoporosis prevalence of each cohort was 24.5% 
and 10.3%, respectively. Most demographic variables 
were significantly different, but the T-score as a standard 
reference showed no difference in each of the subgroup in 
both cohorts, as shown in Table 1 (P>0.05).

The technical failure rate and reproducibility of the 
autosegmentation

Of the 1,125 APCT scans, three APCT scans failed the 
autosegmentation. Thus, the technical failure rate was 

approximately 0.3%. The autosegmentation failed in 
patients whose ischial tuberosity was not identified due 
to hip flexion, patients being in an irregular position 
rather than the supine position, or the presence of severe 
thoracolumbar scoliosis. 

The proximal femur volume, as determined by 
autosegmentation, showed almost perfect agreements [ICC 
=0.99, 95% confidence interval (CI), 0.99–0.99]. A total of 
669 wavelet transformation features were excluded because 
of having ICC less than 0.1. A total of 185 features (110 
original first-order features and 75 wavelet transformation 
features) were selected and showed almost perfect 
reproducibility (ICC =0.96, 95% CI, 0.94–0.97).

Important radiomics features in the machine learning 
prediction model 

Of the185 PyRadiomics features with age and sex included 
in the RF prediction model, the top 10 important features 
are displayed by the Mean Decrease Gini (Figure 3).

Diagnostic performance of the osteoporosis prediction model

The prediction performance of the model according to each 
subcategory group is summarized in Table 2. Approximately 
1% of the normal cases in both cohorts were predicted to be 
osteoporosis cases. Overall, the percentage of false positive 
cases were 4.5% (37/831) and 1.7% (5/291) in the training 
and validation cohorts, respectively; 7 of 487 normal cases 
and 35 of 401 osteopenia cases in the respective cohorts 
were mispredicted as osteoporosis. The overall diagnostic 
accuracy of the prediction model in the training cohort 
and its 5-fold cross validations as well as in the validation 
cohort are summarized in Table 3. In the diagnostic test, the 
training and validation cohorts showed 78.4% vs. 63.3% 
sensitivity, 89.4% vs. 98.1% specificity, 94.1% vs. 95.9% 
NPV, 65.7% vs. 79.2% PPV, and 87.1% vs. 94.5% accuracy, 
respectively. The AUCs of the training and validation 
cohorts to predict femoral osteoporosis were 90.8% (95% 
CI, 88.4–93.2%) and 94.6% (95% CI, 89.3–99.8%), 
respectively, without a significant difference (P=0.20)  
(Figure 4). The AUC-PR of the training and validation 
cohorts was 78.0% (95% CI, 76.0–79.9%) and 88.8% (95% 
CI, 86.2–91.5%), respectively (Figure 5).

Discussion

The main aim of this study was to assess the prediction 

Table 1 Comparison of the patient demographics of the training 
and validation cohorts

Index
Training cohort  

(831 APCT)
Validation cohort 

(291 APCT)
P value

Overall (n=1122)

Sex (M:F) 116:715 17:274 <0.001

Age (years) 67.4±11.6 63.7±10.2 <0.001

BMI (kg/m2) 23.9±3.9 25.0±9.5 0.006

Days btw DXA & 
APCT

3.6±6.0 3.9±5.4 0.78

T-score (overall) −1.4±1.3 −1.0±1.3 <0.001

BMD (g/cm2) 0.764±0.161 0.850±0.141 <0.001

Osteoporosis (n=234) 204 30

T-score −3.1±0.5 −3.5±1.9 0.06

BMD (g/cm2) 0.560±0.069 0.560±0.087 0.009

Osteopenia (n=401) 292 109

T-score −1.7±0.4 −1.7±0.3 0.06

BMD (g/cm2) 0.728±0.051 0.771±0.060 <0.001

Normal (n=487) 335 152

T-score −0.2±0.7 −0.20.7 0.98

BMD (g/cm2) 0.919±0.090 0.954±0.083 <0.001

All values are presented as mean ± standard deviation, 
or number (frequency). APCT, abdomen-pelvic computed 
tomography; M, male; F, female; BMD, bone material density; 
BMI, body mass index; DXA, dual-energy X-ray absorptiometry.
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Table 3 The diagnostic accuracy of the prediction model of the 5-fold cross validation of the training cohort, overall training cohort and 
validation cohort 

Dataset
True  

positive (n)
True 

negative (n)
False 

positive (n)
False 

negative (n)
Sensitivity 

(%)
Specificity 

(%)
NPV (%) PPV (%)

Accuracy (%)  
(95% CI)

CV_1st 23 119 6 18 56.1 95.2 86.9 79.3 85.5 (79.3–90.5)

CV_2nd 31 117 9 10 75.6 92.9 92.1 77.5 88.6 (82.8–93.0)

CV_3rd 23 122 4 18 56.1 96.8 87.1 85.2 86.8 (80.7–91.6)

CV_4th 29 116 9 12 70.7 92.8 90.6 76.3 87.4 (81.3–92.0)

CV_5th 25 114 11 15 66.5 91.2 88.4 69.4 84.2 (77.8–89.4)

Training cohort 134 590 70 37 78.4 89.4 94.1 65.7 87.1 (84.7–89.3)

Validation cohort 19 256 5 11 63.3 98.1 95.9 79.2 94.5 (91.2–96.8)

NPV, negative predictive value; PPV, positive predictive value; CI, confidence interval; CV, cross validation. 

Figure 3 Top 10 important radiomics features by the Mean Decrease Gini. The unit for age is years. GLDM, gray level dependence matrix.

Table 2 Prediction performance according to each subcategory of 1,122 APCT cases 

Diagnosis

Prediction (Y = osteoporosis, N = non-osteoporosis)

Normal (n=487) Osteopenia (n=401) Osteoporosis (n=234)

Yes No Yes No Yes No

Osteoporosis 0 (0) 0 0 0 (0) 0 (0) 134 (19) 70 (11)

Non-osteoporosis 4 (3) 330 (136) 33 (2) 260 (120) 0 (0) 0 (0)

Each number in parenthesis is the data of the validation cohort. APCT, abdomen-pelvic computed tomography.

18.6

15.1

14.5

8

7.6

6.9

6.1

5.5

5.4

5

Original first-order 10 percentile 

Original first-order median 

Original first-order mean 

Original first-order energy 

Original GLDM large dependence high gray level emphasis 

Original first-order 90 percentile 

Original first-order total energy 

Age 

Original first-order skewness 

Original first-order root mean squared

10 15 20 0  5



Quantitative Imaging in Medicine and Surgery, Vol 14, No 6 June 2024 3965

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(6):3959-3969 | https://dx.doi.org/10.21037/qims-23-1751

of femoral osteoporosis by employing autosegmentation 
and machine-learning analysis with PyRadiomics features 
based on APCT scans. In this study, autosegmentation of 
the proximal femur showed a 99.7% technical success rate. 
In addition, the prediction performance of the RF model 
(AUC) was 90.8% and 94.6% in the training and validation 
cohorts, respectively, which was uncommon but probably 
due to small sample size of the study. The high specificity 
and high NPV were considered meaningful results to 
select healthy people and to reduce unnecessary DXA tests. 
The precision-recall curve illustrates the balance between 
precision and recall across various thresholds. A substantial 
area under the curve signifies both heightened recall and 
precision. Elevated precision corresponds to a diminished 
false positive rate, while heightened recall aligns with a 
reduced false negative rate. In particular, since the AUC-
PR is not affected by the number of true negative patients, 
it is known that the AUC-PR is better than the AUC in 
imbalanced populations (34). In this study, the prevalence of 
osteoporosis was significantly different between the training 
and validation cohorts. However, the AUC-PR and AUC of 
the validation cohort were superior to those of the training 
cohorts, and therefore, this prediction model proved the 
feasibility of the diagnostic performance of the model in 

both the AUC and AUC-PR analyses. 
Most of the important radiomics features overlapped with 

a prior study (20), except for the negative HU value that was 
assumed for the fatty marrow. An increased fatty marrow 
content is known as the most important pathophysiologic 
change in osteoporosis, and the important features have 
been analyzed in previous studies (16,20,35). Although 
the PyRadiomics features includes the 10 percentiles  
of HU, this feature would not be sufficient to accurately 
reflect the fatty bone marrow changes in each case. In 
addition, we examined the volume of the femur extending 
from the head to the lesser trochanter, as this region aligns 
with the total femoral area in DXA scans. In this study, the 
T-score of the total femoral volume was used as a reference 
standard instead of the lowest T-score of femur, which 
has been applied in the previous studies (16,20). These 
differences may be reasons for the relatively low sensitivity 
of this study. However, considering the high diagnostic 
performance and near perfect technical success rate of 
autosegmentation, osteoporosis prediction using this study 
model could be applied in clinical practice. 

This prediction model was designed for a binary 
classification of cases with osteoporosis or non-osteoporosis, 
which consists of normal cases and osteopenia cases. 

Figure 4 Comparison of the area under the curves of the training 
cohort (AUC =90.8%) and validation cohort (AUC =94.6%) 
(P=0.20). CI, confidence interval; AUC, area under the receiver 
operator characteristics curve. 

Figure 5 The area under the precision-recall curves of the 
prediction model in the training cohort and validation cohort. 
The 95% confidence intervals are rounded values. CI, confidence 
interval. 
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Therefore, there may be concerns that normal cases were 
incorrectly predicted as osteoporosis. We hypothesized 
that a model capable of accurately predicting osteoporosis 
would have no problem in distinguishing normal femurs. 
Considering that the T-score varies according to age 
and sex even if the BMD value is the same, it is difficult 
and challenging to distinguish osteoporosis from non-
osteoporosis cases (36). In the outcome analysis of the 
training and validation cohorts, approximately 1–2% of 
normal cases were mispredicted as osteoporosis with the 
machine learning model made by only the PyRadiomics 
features. The precise tuning of important variables, such as 
the target femur volume, PyRadiomics features, and HU 
histogram analysis, in addition to the adjustment for age 
and sex, could improve the prediction model performance.

Prior studies have shown the usefulness of the HU 
histogram analysis alone and combination of using the HU 
histogram analysis and radiomics features (16,20). Although 
these studies showed feasibility to predict osteoporosis 
with high sensitivity and specificity and with an accuracy 
up to 95%, the segmentation of the proximal femur and 
radiomics analysis in addition to the HU histogram were 
performed manually. It is a time-consuming task to apply 
this model to real-time clinical practice. However, in this 
study, all segmentation and analysis of the target volume 
were automatically performed within a few minutes. This 
is not only a sufficient time for clinical application without 
additional workload but can also remove the measurement 
error-related observer bias. 

Even though there was almost perfect agreement of 
the autosegmented volume on the ICC analysis, 669 
PyRadiomics feature-related wavelet transformations were 
excluded because of low reproducibility. In prior study, the 
wavelet transformation features showed poor reproducibility 
on the different radiomics analysis software programs (20). 
Thus, the wavelet transformation features were considered 
insignificant features in the femoral osteoporosis analysis.

Age and female sex have been considered important 
variables in osteoporosis (4,37). Interestingly, these factors 
were ranked lower on the feature importance evaluation on 
the machine learning analysis. The PyRadiomics features 
were affected and were linked according to the bony 
microstructure change depending on the BMD. These 
changes were dependent on age and sex, so they were 
already reflected in the important PyRadiomics features. 
Thus, age and sex seem to be ranked at a lower level.

The limitation of this study was that there was an 

imbalance in the sex ratio of osteoporosis patients and 
that this was a single-center study. Osteoporosis is a 
consequence of aging and rapidly progresses after 50 years 
of age in women, so a gender imbalance is inevitable (35). 
To handle these imbalances, a random undersampling 
algorithm was applied to build a prediction model with 
a RF analysis, and an AUC-PR analysis was added. The 
PyRadiomics features are significantly affected by the CT 
acquisition technique, and these included the tube voltage, 
tube current, reconstruction algorithm and manufacturer. 
This heterogeneity of CT acquisition status is a large 
barrier for the external validation. Therefore, in this study, 
the prediction model had to be verified using the temporal 
validation cohort, but a prospective multicenter study is 
being considered by referring to the results of this study and 
the existing HU histogram analysis studies (16,20). Based 
solely on the research findings, it is expected that the results 
would apply well to excluded patients. However, there may 
be conditions among excluded patients such as metastasis 
or primary bone diseases that could introduce confusion 
into the calculations. Therefore, this aspect may need to be 
addressed in future studies. Lastly, fracture risk indicators 
that cannot be assessed by areal BMD or CT-HU alone are 
currently the focus of attention in the osteoporosis field 
and these areas are important for future research endeavors, 
which we plan to explore in subsequent studies (38).

Conclusions 

In conclusion, femoral osteoporosis prediction by the 
combination of autosegmentation and machine learning 
analysis using PyRadiomics and APCT proved to be an 
opportunistic screening feasibility with more than 90% 
accuracy, specificity, and NPV as well as a 99.7% of 
technical success rate of autosegmentation.
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