
INTRODUCTION

The first life on earth was born under the ancient sea of abun-
dant Fe(II) 3.8 Gya [1,2], and it is generally accepted that no 
independent life on earth can live without iron [3]. Iron is a 
major redox-active transition metal, which is used for various 
electron transfer reactions in the form of Fe(II), Fe-S cluster 
or heme [4]. During evolution, the life obtained the sulfhydryl 
systems [5], including glutathione, to counteract iron toxicity 
when present in excess, which might have been just insolu-
ble FeS at first [6,7]. Finally, the life acquired the capacity to 
use molecular oxygen, which allows more flexible and versa-
tile transfer of one to four electron(s) at a time and continuous 
electron flow inside the entire cells (Fig. 1) [8]. 

IRON AND OXYGEN FOR ELECTRON 
TRANSFER

During the O2 metabolism, reactive oxygen species are in-

evitably produced. Superoxdie (O2
–) and hydrogen peroxide 

(H2O2) are generated via enzymatic reactions whereas hy-
droxyl radical is produced via the chemical reaction called the 
Fenton reaction (Fe[II] + H2O2 → Fe[III] + •OH + OH–) (Fig. 1) 
[9-11]. Catalytic Fe(II) is indeed dangerous for life when pres-
ent unconfined. Now we can detect catalytic Fe(II) by use of 
turn-off or turn-on fluorescent probes in cellular experiments 
[12-14]. Fortunately, we have several distinct mechanisms to 
minimize this iron toxicity.
	 We fully utilize the advantageous characteristics of iron. 
Fe(III) is practically insoluble at neutral pH whereas Fe(II) is 
soluble [11]. Iron is transported by transferrin in higher organ-
isms as Fe(III) [15]. Fe(III) has to be reduced to Fe(II) to be 
transported through the biomembranes with various trans-
porters, such as divalent metal transporter 1 (DMT1) (solute 
carrier family 11 member 2 [SLC11A2]) [16] and ferroportin 
(solute carrier family 40 member 1 [SLC40A1]) [17]. Iron ab-
sorption through the duodenal mucosa is strictly regulated via 
iron storage status [18]. Excess iron in the cell is stored in 
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Figure 1. Molecular oxygen as versatile electron acceptors, and 
its association with ferroptosis. Superoxide and hydrogen peroxide 
are generated through various enzymatic reactions whereas hydroxyl 
radicals are produced via chemical reactions. Enzymatic bypass 
reactions indicate direct decomposition of hydrogen peroxide to water 
by a variety of enzymes, such as catalase and glutathione peroxidase. 
Hydroxyl radicals are closely associated with ferroptosis, which is 
counteracted by sulfhydryls (-SH).

Figure 2. Cytosolic iron chaperon 
systems. Iron is incorporated by 
binding of transferrin to transferrin 
receptor into the cellular cytosol 
through late endosome/lysosome. Iron 
retrieved and reduced by STEAP3 (six-
transmembrane epithelial antigen of the 
prostate 3) to Fe(II) in late endosome/
lysosome goes through divalent metal 
transporter 1 (DMT1) (solute carrier 
family 11 member 2 [SLC11A2]) to 
cytosol, where Fe(II) is immediately 
chaperoned by poly rC binding protein 
2 (PCBP2). PCBP1 is another Fe(II) 
chaperone, competing each other. 
PCBP1 can load iron to ferritin, where 
Fe(II) is oxidized to Fe(III) via ferritin 
heavy chain (FTH). PCBP2 appears to 
play wider roles in transporting Fe(II) in 
the cytosol. If Fe(II) is not chaperoned 
by PCBP1/2 due to pathologic causes, 
unchaperoned Fe(II) is catalytic. Red 
filled circle, Fe(II); blue filled circle, 
Fe(III). Note that Fe(III) is insoluble at 
neutral pH. 

cytosol as ferritin in the form of Fe(III). Furthermore, recently 
identified iron chaperones play roles in the safe transport of 
Fe(II) in the cytosol. These chaperones are poly rC binding 
protein 1 (PCBP1) and PCBP2, which were first reported 
as nuclear proteins responsible for transcriptional regulation 
[19,20]. Both PCBPs accept 3 molecules of Fe(II) and the 
resulting complexes are redox-inactive. Whereas PCBP2 can 
accept Fe(II) from DMT1 [21] and heme oxygenase 1 [22] 
and can transfer Fe(II) to ferroportin [23], PCBP1 can load 
Fe(II) to ferritin (Fig. 2) [24]. PCBP1 and PCBP2 antagonize 
to each other, where PCBP1 works as a tumor suppressor 
[25,26] and PCBP2 as an oncogene in general [27,28]. Fer-
ritinophagy, a form of autophagy, is used to retrieve Fe(III) 
from ferritin cores, which is reduced in lysosome to Fe(II) via 
six-transmembrane epithelial antigen of prostate 3 (STEAP3) 
[29].

IRON-DEPENDENT EXCRETION OF 
FERRITIN AS EXTRACELLULAR VESICLES

Ferritin is a 24-subunit nanocage protein, consisting of light 
chain (FTL) and heavy chain (FHL), for safe iron storage 
under the regulation of the iron-regulatory protein (IRP)/
iron-responsive element (IRE) posttranscriptional system. 
Ferritin is also a serum marker representing body iron stor-
age [30]. However, how ferritin is secreted extracellularly has 
been completely unknown in the absence of secretory signal 
peptides [31]. We recently discovered for the first time that an 
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Figure 3. Iron-loaded ferritin is secreted through extracellular 
vesicles under the regulation of IRP/IRE in CD63. CD63 is one 
of the exosomal markers. In iron excess conditions, not only an iron 
storage protein, ferritin, but also CD63 is induced. CD63 recruits 
nuclear receptor coactivator 4 (NCOA4) to pack iron-loaded ferritin to 
release as extracellular vesicles. Of note, CD63 gene was discovered 
to possess the IRE consensus sequence at the 5’ untranslated region 
of mRNA, similar to that of ferritin gene, which blocks the translation 
of CD63 in the presence of ample amount of iron under the IRE/IRP 
system. IRE, iron-responsive element; IRP, iron-regulatory protein. 
Refer to text and the reference [32] for details. 

exosomal marker CD63 is regulated by the IRP/IRE system 
and that iron-loaded ferritin is secreted as extracellular vesi-
cles (EVs) with the guidance of nuclear receptor coactivator 4 
(NCOA4) [32]. This is an efficient sustainable mechanism to 
share excess iron with nearby or distant cells in a safe man-
ner (Fig. 3).

EXCESS IRON AND CARCINOGENESIS

It is well known that iron metabolism is a semi closed system 
for an individual in higher animals. Namely, the daily fraction 
of incomings and outgoings is extremely small in comparison 
to the total amount (~0.025%). In humans, adult males retain 
~4 g of iron in total whereas premenopausal females have 
~2.5 g of iron [33]. There is no active pathway to excrete iron 
to the outside of the body. The only exceptions are hemor-
rhage or phlebotomy to lose red blood cells, and the use of 
redox-inactive iron chelating agents, such as desferal, defer-
asirox and deferiprone [34]. Accordingly, iron would be pres-
ent in excess during aging by the decrease in metabolic rate, 
causing ferroptosis time-dependently in a fraction of cells in 
various organs of rats [35]. 
	 Excess iron has also been associated with carcinogenesis, 
according to the human epidemiological study of the general 
population or specific diseases, including genetic hemochro-
matosis and ovarian endometriosis [36-38] as well as various 
animal studies [4,8,39]. The responsible mechanisms are: 1) 
increased intracellular iron catalyzes Fenton reaction to gen-

erate hydroxyl radicals, leading to mutagenic oxidative DNA 
lesions [40-42]; 2) iron is necessary for cellular proliferation 
as cofactors of many enzymes [4,8,10,33,43,44].

EXCRETION OF FERRITIN AS BY-PRODUCT 
OF ASBESTOS-INDUCED FERROPTOSIS

Asbestos, a natural nanofibrous mineral, is still used world-
wide, especially in some Asian countries, Russia, and South 
America due to the economic merits, in spite of the desig-
nation by World Health Organization as a definite human 
carcinogen (Group 1 by International Agency for Research 
on Cancer [IARC]) [45]. Asbestos is resistant to heat, acid 
and friction, and is also flexible for various industrial use. The 
association of asbestos exposure and mesothelioma is well 
established [45,46]. Asbestos is inhaled through the airway to 
the pulmonary parenchyma. However, the major target cells 
for carcinogenesis are parietal mesothelial cells in the pleural 
cavity, which has been a long mystery to be solved [47,48]. 
	 Molecular mechanisms underlying asbestos-induced me-
sothelioma have been intensively studies for these two de-
cades. The important point is that the biopersistent nanofibers 
go through pulmonary parenchyma, by penetrating visceral 
pleura, into the pleural cavity after collecting hemoglobin orig-
inating from red blood cells on the surface and hence iron, 
depending on the negative pressure of the cavity, and then 
injures the parietal pleural mesothelial cells [48,49]. Amazing-
ly, this process requires a few decades. 
	 The ability of mesothelial cells to phagocytose asbestos 
fibers provides a high risk for DNA double strand breaks and 
the resultant mutations because asbestos fibers present a 
high affinity for histones as well [50,51]. The tumor suppres-
sor p16INK4a is activated in response to DNA damage as well 
as oxidative stress. Therefore, it is no wonder that homozy-
gous deletion of p16INK4a is the major mutation observed in 
human and rat mesothelioma [52,53], representing direct 
DNA double-strand breaks by asbestos fiber in mesothelial 
cells and the following erroneous end-joining of DNA strands 
[47,48]. Of note, homozygous deletion of p16INK4a is the major 
target mutation also in the Fenton reaction-induced renal cell 
carcinoma in rats [42]. However, the role of macrophages 
in mesothelial carcinogenesis has not been clear other than 
what is called “frustrated phagocytosis [54].”
	 According to our 2020 report, macrophages generate mu-
tagenic milieu for the surface mesothelial cells via ferroptosis, 
catalytic Fe(II)-dependent regulated necrosis accompanied 
by lipid peroxidation, upon taking up asbestos fibers as for-
eign material [55]. We have further sublimated this concept 
into a more concrete one in 2021 that macrophages under 
asbestos-induced ferroptosis emit ferroptosis-dependent ex-
tracellular vesicles (FedEVs) [56] which are received by me-
sothelial cells, resulting in significant mutagenic DNA lesions 
(Fig. 4).
	 Therefore, various cells, including macrophages, can share 
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excess iron with the other cells of different types via ferritin in 
extracellular vesicles as safe non-catalytic Fe(III). However, a 
similar process, one involving FedEVs, may cause accumu-
lation of excess iron in other specific cells, which may eventu-
ally contribute to carcinogenesis.

CONCLUSION

The major causes of human mortality in most countries are 
cancer and atherosclerosis (myocardial infarction and cere-
bral infarction/hemorrhage) except for emerging infectious 
diseases, such as COVID-19. We believe that these condi-
tions, especially cancer, are associated with the long-term 
use of iron and oxygen [4]. Thus, modifying iron metabolism 
would be important as a practical way to prevent carcinogen-
esis. The present finding on the role of EVs in the transport of 
iron-loaded ferritin is important to consider future strategy for 
cancer prevention. We have been using plastics thus far so 
much in our daily life for convenience, which currently causes 
microplastics and nanoplastics pollution in the sea [57]. Sur-
prisingly, the microplastics and nanoplastics are coming back 
to us as part of seafood diet [58], which is an emergent issue 
in current ecotoxicology to be further explored from the view-
point of iron and foreign body.
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