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Abstract

Background

The posterior cerebellar lobules seem to be the anatomical substrate of cognitive cerebellar

processes, but their microstructural alterations in multiple sclerosis (MS) remain unclear.

Objectives

To correlate diffusion metrics in lobules VI to VIIIb in persons with clinically isolated syn-

drome (PwCIS) and in cognitively impaired persons with MS (CIPwMS) with their cognitive

performances.

Methods

Sixty-nine patients (37 PwCIS, 32 CIPwMS) and 36 matched healthy subjects (HS) under-

went 3T magnetic resonance imaging, including 3D T1-weighted and diffusion tensor imag-

ing (DTI). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated within each

lobule and in the cerebellar peduncles. We investigated the correlations between cognitive

outcomes and the diffusion parameters of cerebellar sub-structures and performed multiple

linear regression analysis to predict cognitive disability.

Results

FA was generally lower and MD was higher in the cerebellum and specifically in the vermis

Crus II, lobules VIIb and VIIIb in CIPwMS compared with PwCIS and HS. In hierarchical

regression analyses, 31% of the working memory z score variance was explained by FA in

the left lobule VI and in the left superior peduncle. Working memory was also associated
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with MD in the vermis Crus II. FA in the left lobule VI and right VIIIa predicted part of the

information processing speed (IPS) z scores.

Conclusion

DTI indicators of cerebellar microstructural damage were associated with cognitive deficits

in MS. Our results suggested that cerebellar lobular alterations have an impact on attention,

working memory and IPS.

Introduction

Diffusion tensor imaging (DTI) is a sensitive method for studying microstructural changes in

the brain [1]. It has been used in recent years in several studies to obtain a better understand-

ing of the cognitive impairment associated with multiple sclerosis (CIAMS) [2]. CIAMS is

common and can affect persons with multiple sclerosis (PwMS) at all stages of the disease,

including the early stages, such as clinically isolated syndrome (CIS) [3]. CIAMS implies sev-

eral cognitive domains including episodic memory, attention, working memory and executive

functions [3]. However, the slowness of the information processing speed (IPS) is the main

cognitive dysfunction observed in MS even at the earlier stages and is associated with poor

prognosis, significant consequences on employment status and decreased quality of life [4].

The pathogenic mechanisms underlying CIAMS are still not fully understood [2,3]. Magnetic

resonance imaging (MRI) studies suggested that diffuse damage of the cerebral white matter

affecting important cognitive networks [5,6] could play a role in the early stages, but a role for

the involvement of grey matter (GM), including the thalami, has also been demonstrated [7].

It is now established that the cerebellum plays an important role in cognition in general [8].

Schmahmann et al. suggested that the cerebellum regulate speed, consistency and accuracy of

cognitive processes. The cerebellum is supposed to integrate and permit cognitive facilitation

and optimisation in order to obtain automation. Then, cerebellar damage could result in a «

dysmetria of thought » defined by analogy with motor dysmetria [8,9]. In MS, cerebellar dys-

function is associated with cognitive deficits [10,11], particularly IPS [12]. MS is associated

with cerebellar damage, and extensive demyelination has been observed in the cerebellar cor-

tex [13]. An association between CIAMS and cerebellar GM atrophy [14,15] and lesion volume

[11,16] has been reported. Several DTI studies of the brain reported abnormal DTI metrics

such as fractional anisotropy (FA) and mean diffusivity (MD) associated with CIAMS in the

cerebellar peduncles or the cerebellar parenchyma. This association suggests an anatomical

disconnection between the cerebral associative areas and the cerebellum [17–22]. Functional

magnetic resonance imaging (fMRI) confirmed the existence of a functional cortico-cerebellar

disconnection associated with CIAMS [23] and provided evidence of the cognitive specificity

of posterior cerebellar lobules in healthy subjects (HS) [24,25]. Posterior lobules integration

within the cortico-cerebellar loop has been shown anatomically. Cortico-pontine projections

have been evidenced using viral transynaptic tracers in rhesus monkeys showing connexion

between hemispheric parts of Crus II and vermian parts of lobules VII et IX on the one hand

and area 46 and 9 of the dorsolateral prefrontal and area 5 and 7 of posterior parietal cortices

on the other hand [26,27]. A specific cognitive cartography of the posterior cerebellar lobules

has been described based on fMRI studies made in the last twenty years [25]. Indeed, in healthy

subjects (HS), although all posterior lobules are engaged, some preferential contribution of

specific lobules in cognitive domains have been observed, such as the left supero-posterior
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cerebellum for attention [28], vermis VI and Crus I for verbal working memory and lobule VI,

Crus I/II and VIIb for executive functions [24,25].

However, the association between specific alterations of the posterior lobule microstructure

and specific cognitive outcomes has not been studied in CIS and MS. Our aim was to study the

diffusion metrics in lobules VI to VIIIb in persons with CIS (PwCIS) according to the cogni-

tive status, in PwMS with cognitive impairment (CIPwMS) and in HS as negative controls.

Methods

Subjects

Sixty-nine patients (PwCIS and CIPwMS) and 69 HS matched for age, sex and educational

level were recruited from June 2010 to December 2014 at the Bordeaux University Hospital

Center, France. Out of 69 HS, 36 underwent an MRI scan and all 69 were evaluated with cogni-

tive testing.

All PwCIS (n = 37) were included within 6 months after their first neurological episode and

presented at least two asymptomatic cerebral lesions larger than 3 mm on fast fluid-attenuated

inversion-recovery (FLAIR) images. For CIPwMS (n = 32) the inclusion criteria were as fol-

lows: MS diagnosis according to McDonald’s criteria [29], disease duration >6 months and

�15 years and mild cognitive impairment defined as two scores beyond one standard devia-

tion (SD) among a large neuropsychological battery. MS patients were treated according to

current standards of clinical care.

Exclusion criteria were as follows: age under 18 or over 55 years, history of other neurologi-

cal or psychiatric disorders, inability to perform computerised tasks or MRI, MS attack in the

two months preceding the screening, corticosteroid pulse therapy within two months preced-

ing the screening, severe cognitive deficits (Mini-Mental State Examination <27), and depres-

sion (Beck Depression Inventory score (BDI) >27).

Expanded Disability Status Scale (EDSS) score was determined by expert neurologists.

Standard protocol, approvals, registration, and patient consents

Each subject provided written informed consent. Patients were included from two different

studies (REACTIV, ClinicalTrials.gov Identifier: NCT01207856, study concerning cognitively

impaired PwCIAMS, and SCI-COG, ClinicalTrials.gov Identifier: NCT01865357, analysing

cognitive impairment in patients after a CIS). Both studies were approved by the local ethics

committee which is called Comité de Protection des Personnes, Bordeaux.

Neuropsychological assessment

Neuropsychological evaluation assessed attention, working memory, executive functions and

IPS. Because PwCIS and PwCIAMS were included in two different studies, some tests for

working memory and verbal fluency differed between the two samples and z scores for cogni-

tive domains were calculated by comparisons with scores obtained in the control group. Atten-

tion IPS and executive function tests, other than verbal fluency, were identical for all patients

and HS and have been described previously [30]. All patients and their matched HS included

in a given study (respectively SCI-COG and REACTIV) were assessed by the same tests.

Each domain was evaluated with the following tests (CIS and matched HS: �; MS and

matched HS: ��):

1. Attention: Test of Attentional Performance (TAP)�/�� consists of subtests for visual scan-

ning (accurate answers) and visual and auditory divided attention For divided attention,

the number of accurate answers and reaction time ratios of the double task (auditory and
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visual divided attention) to the simple task (auditory or visual divided attention) were

considered.

2. Working Memory: Numerical span test (forward�/�� and backward�/��) and Paced-Audi-

tory Serial Addition Test–3 seconds (PASAT)� or working memory subtest of the TAP��.

3. Executive functions: Stroop test�/�� (using the difference between the denomination part

and the inhibition task scores) and Word List Generation test (verbal fluency assessment) �

or semantic verbal fluency (using animal category) ��.

4. IPS: Symbol Digit Modalities Test (SDMT)�/��

Depression and anxiety symptoms were measured using Beck’s Depression Inventory

(BDI) and State-Trait Anxiety Inventory for adults, subtest State (STAI-S), respectively in all

participants.

MRI acquisition

MRI scans were performed on a 3T Achieva TX system (Philips Healthcare, Best, The Nether-

lands) with an 8-channel coil. The morphological protocol consisted of 3D T1 weighted MR

images acquired using the magnetization prepared rapid gradient echo (MPRAGE) imaging

(TR = 8.20 ms, TE = 3.5 ms, TI = 982 ms, α = 7˚, FOV = 256 mm, voxel size = 1 mm3, 180

slices) and Fast Fluid-Attenuated Inversion-Recovery (FLAIR) images (TR = 11000 ms,

TE = 140 ms, TI = 2800 ms, FOV = 230 mm, matrix = 325X352, 45 axial slices, 3-mm thick).

The single-shot diffusion weighted EPI DTI sequence included 20 directions (TE = 60 ms,

TR = 11676 ms, matrix = 144X144, 75 slices, 1.6-mm thickness, b = 1000 s/mm2).

Image processing and analysis

MRI processing. T1-weighted MRI images were processed using the pipeline of the vol-

Brain system (http://volbrain.upv.es). This preprocessing pipeline consisted of a denoising

step [31] and an affine registration [32] into the Montreal Neurological Institute (MNI) space.

DTI processing. Diffusion MRI images were processed using an in-house pipeline (dti-

Brain). First, diffusion-weighted images were denoised [33] to improve the signal-to-noise

ratio. Head displacement and distortions induced by eddy currents were then corrected by

performing affine registration followed by non-linear registration of all diffusion-weighted

images to the b0 image. The direction table was updated with the estimated registration matri-

ces. A non-rigid registration of diffusion-weighted images to the subject’s T1-weighted images

in the MNI space was used to compensate for EPI distortions. Finally, a diffusion tensor model

was fit at each voxel using FSL 5.0.3 (http://fsl.fmrib.ox.ac.uk/fsl) to estimate the fractional

anisotropy (FA) and mean diffusivity (MD) maps.

Regions of interest.

• Lobule segmentation: The spatially unbiased atlas template of the cerebellum and brainstem

(SUIT) toolbox 3.0 (SPM 8) was used for cerebellar lobule segmentation [34–36]. The soft-

ware enables the standardization of lobule size to drive a reliable segmentation by capturing

inter-individual variability. First, cerebellums were isolated from brains on 3D T1w in the

MNI space, and a non-linear registration of the cropped T1w images over the SUIT template

using Dartel was performed [37]. FA and MD maps in the MNI space were transformed into

the SUIT space using the deformation field estimated on the T1w images. Moreover, dedi-

cated regions of interest (ROI) were defined in each cerebellar lobule from VI to VIIIb to

avoid susceptibility artefacts at the border of the posteriorly located lobules that could artifi-

cially modify diffusivity parameters. To define these ROIs, spheres with a radius of 8 mm,
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adapted to the lobular anatomy, were manually drawn on SUIT cerebellum atlas labels using

MRIcron, version 4.8.2014. ROIs were positioned inside the inner part of the posterior lob-

ules in order to minimize CSF partial volume and outer layer artefacts and were replicated

for each patient’s lobules to obtain a reproducible and representative sample of FA and MD

values per lobule (Fig 1B).

• Peduncle segmentation: Finally, because the SUIT toolbox did not include cerebellar

peduncle masks, a dedicated pipeline was developed to segment these structures. To do that,

we registered FA and MD maps in the MNI space by using affine and non-linear registration

(FNIRT, FSL 5.0) with the JHU-ICBM-FA-1mm template as a reference. Then, we used the

JHU ICM DTI 81 WM atlas to create binarized masks for each cerebellar peduncle (superior

cerebellar peduncle, SCP; medium cerebellar peduncle, MCP; inferior cerebellar peduncle,

ICP). Finally, the binarized masks were warped on the FA and MD maps to calculate mean

values for each cerebellar peduncle. Therefore, diffusion metrics of superior (SCP), medium

(MCP) and inferior cerebellar peduncles (ICP) were independently estimated within ROI

determined by the JHU-ICBM-DTI-81 WM atlas (Fig 1C).

The average values of the diffusivity parameters were then calculated in each ROI in cerebellar

lobules and peduncles.

Statistical analyses

All data were analysed with the R package ‘stats’ (version 3.1.3). The normal distribution was

tested for all variables with the Shapiro-Wilk test.

Sex and educational level were compared using Chi-square tests. Quantitative clinical and

imaging data were compared between PwCIS, PwCIAMS and HS with ANOVA or Kruskal-

Wallis tests depending on their distributions. For post hoc analyses, Tukey’s or Nemenyi tests

Fig 1. A: Detailed image processing used to obtain lobular and peduncular diffusity data. Cropping and non-

linear registration of T1w images over the SUIT template and ROI delineation. B: Registration of the diffusivity

map using the transformation estimated with the T1w, diffusivity estimation into ROI. C: Non-linear registration

of diffusivity maps and estimation within ROI determined by the JHU-ICBM-DTI-81 WM atlas (FSL).

https://doi.org/10.1371/journal.pone.0182479.g001
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were used to compare two subgroups when ANOVA or Kruskal-Wallis tests showed signifi-

cant results.

Z scores were calculated according to the formula: (patient’s raw score–HS mean score /

HS standard deviation (SD)) from a population of 69 HS. When a cognitive domain was composed

of multiple tests, the mean z score of each test was considered. Cognitive impairment was

defined with z scores below -1.5 in a domain. Z score comparisons between PwCIAMS and

PwCIS were obtained with the t-test (or Mann-Whitney U tests). A significance threshold of

0.05 was applied.

According to the variable distribution, Spearman or Pearson’s correlations between imag-

ing and cognitive outcome in all patients (CIS and MS) were used. Bonferroni correction for

multiple comparisons was applied (p<0.002).

Linear regression analyses were used to predict cognitive outcome, including three hierar-

chical blocks: 1) clinical data, 2) lobular data, and 3) peduncle data. Each cognitive domain

was studied in an independent model. Two prediction models were defined (FA and MD mod-

els). The dependent variable and residual normal distributions were checked using the Shapiro

test and histograms. Independent variables were entered in the models only if the p value was

below 0.10 in univariate analyses.

Results

Demographic, clinical data and cognitive assessment

We included 37 PwCIS, 32 CIPwMS and 69 HS. There were no differences for sex, median age

and educational level between groups, either when considering the whole HS group or only

the HS subgroup that underwent MRI. Table 1 describes the population demographics and

clinical characteristics. The mean attention, working memory and IPS z scores were signifi-

cantly decreased in CIPwMS versus PwCIS. No differences were detected for executive

Table 1. Characteristics of the population.

HS (n = 69) CIS (n = 37) MS (n = 32)

Median age (range) a 36 (21–60) 36 (19–59)ns 42 (29–50) ns

Sex: % of womenb 50 (72.46%) 29 (78.38%) ns 23 (71.88%)ns

Median EDSS (range)b . 1.00 (0–6) 3.00 (0–8)***

Mean disease duration (SD) in monthsc . 4.25 (± 1.98) 106.11 (± 61.44)***

Median MSSS (range)c . 2.44 (0.67–9.74) 3.55 (0.21–9.09)***

Educational levelb 54 (78.26%) 25 (67.57%) ns 21 (65.62%)ns

Mean attention z score (SD)/ % impairedc . -0.13 (± 0.44) 0 -0.33 (± 0.70)* 6.25

Mean working memory z score (SD)/ % impairedc . -0.32 (± 0.73) 5.41 -0.97 (± 0.78)** 25

Mean EF z score (SD)/ % impairedc . -0.54 (± 0.69) 8.11 -0.75 (± 0.83) ns 15.3

Mean IPS z score (SD)/ % impairedc . -0.57 (±1.06) 13.51 -2.11 (± 1.02)*** 71.77

a: Results for ANOVA between HS, CIS and MS;
b: Results for Fisher’s exact test;
c: Results for t tests between CIS and MS patients.

Differences between groups:
ns: not significant; p>0.05;

*: p�0.05;

**: p�0.01;

***: p�0.001

EF: Executive functions, IPS: Information Processing Speed

https://doi.org/10.1371/journal.pone.0182479.t001
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functions. Table 1 shows the z scores for the different cognitive domains for the two groups.

IPS slowness occurred in 13.51% of PwCIS and in 71.77% of CIPwMS. Depression scores were

higher in CIS (BDI median score = 9 [0–26]; p<0.001) and MS (14 [0–26]; p<0.001) compared

to HS (4 [0–23]). Anxiety scores were increased in PwCIS (STAI-S median score = 34 [20–64];

p<0.001) but not CIPwMS compared to HS. No correlation was found between cognitive

assessment and anxiety or depression scales.

DTI metrics analyses

Significant differences in the DTI metrics between groups are described in Tables 2 and 3.

No significant differences were found regarding diffusivity metrics between PwCIS and HS.

FA was reduced in a majority of cerebellar substructures in MS compared to CIS and to HS,

especially on the right side (Table 2). CIS patients tended to display slightly higher FA values,

compared to HS, but this usually did not reach statistical significance. MD was increased in

the vermis Crus II, Left VIIb, lobules VIIIb and cerebellar peduncles in CIPwMS compared to

HS and to PwCIS.

Correlations between cognitive outcome and imaging data

Correlations between diffusion metrics and cognitive outcomes are listed in Tables 4 and 5.

For the entire patient group, working memory was positively correlated with the FA in the

Table 2. Comparisons of FA between CIS, MS and HC.

HS (n = 36) CIS (n = 37) MS (n = 32)

Mean ± SD Mean ± SD Mean ± SD

Median (range) ¤ Median (range) ¤ Median (range) ¤
Left VI 0.23 ± 0.03 0.23c** ± 0.03 0.20b** ± 0.03

Vermis VI 0.12 ± 0.02 0.14a** c*** ± 0.02 0.12 ± 0.02

Right VI 0.19 ± 0.03 0.19c* ± 0.03 0.17 ± 0.04

Left Crus I 0.23 ± 0.04 0.23c* ± 0.04 0.21b* ± 0.03

Right Crus I 0.19 ± 0.03 0.19c** ± 0.03 0.16b* ± 0.03

Vermis VIIb ¤ 0.16 (0.11–0.31) 0.17c** (0.11–0.26) 0.15 (0.11–0.23)

Right VIIb 0.18 ± 0.03 0.20c* ± 0.02 0.17 ± 0.03

Vermis VIIIa 0.17 ± 0.03 0.19c* ± 0.04 0.17 ± 0.02

Right VIIIa 0.18 ± 0.03 0.20a* ± 0.04 0.18 ± 0.03

Right VIIIb 0.16 ± 0.03 0.18c* ± 0.04 0.16 ± 0.04

SCPL 0.55 ± 0.03 0.55c*** ± 0.03 0.52b** ± 0.03

SCPR ¤ 0.55 (0.46–0.59) 0.53c** (0.49–0.63) 0.52b** (0.42–0.56)

MCP 0.48 ± 0.02 0.48c*** ± 0.02 0.46b*** ± 0.03

ICPL 0.47 ± 0.03 0.48c*** ± 0.03 0.45b* ± 0.04

ICPR 0.47 ± 0.03 0.46c* ± 0.03 0.44b** ± 0.03)

a. Comparison between CIS and HC;
b. Comparison between MS and HC;
c. Comparison between CIS and MS

Differences between groups:

*: p�0.05;

**: p�0.01;

***: p�0.001
¤ Kruskal-Wallis test used because of non-linear distribution

SCPL: Superior cerebellar peduncle, left and right (SCPR); MCP: Medium cerebellar peduncle; ICPL: Inferior cerebellar peduncle, left and right (SCPR)

https://doi.org/10.1371/journal.pone.0182479.t002
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Table 3. Comparisons in MD between CIS, MS and HC.

HS (n = 36) CIS (n = 37) MS (n = 32)

Mean ± SD Mean ± SD Mean ± SD

Median (range) ¤ Median (range) ¤ Median (range) ¤
Vermis Crus II 1.21E-03

± 8.91E-05

1.18E-03b***
± 1.21E-04

1.30E-03a**
± 1.65E-04

Left VIIb ¤ 1.08E-03

(8.93E-04–1.61E-03)

1.07E-03b*
(8.82E-04–1.36E-03)

1.13E-03a*
(7.61E-04–1.50E-03)

Left VIIIb 1.22E-03

± 1.83E-04

1.27E-03

± 1.92E-04

1.40E-03a*
± 2.70E-04

Vermis VIIIb 1.13E-03

± 1.29E-4

1.11E-03b*
± 1.24E-04

1.20E-03

± 1.56E-04

Right VIIIb ¤ 1.06E-03

(6.42E-04–1.24E-03)

1.07E-03

(8.37E-04–1.31E-03)

1.13E-03a*
(8.80E-04–1.38E-03)

SCPL 1.42E-03

± 9.01E-05

1.40E-03b***
± 9.05E-05

1.54E-03a***
± 1.67E-04

SCPR 1.42E-03

± 1.04E-04

1.40E-03b***
± 9.49E-05

1.53E-03a**
± 1.91E-04

MCP 1.06E-03

± 3.96E-05

1.06E-03b***
± 3.46E-05

1.11E-03a***
± 6.27E-05

ICPL ¤ 1.03E-03

(9.38E-04–1.13E-03)

1.03E-03b*
(9.57E-04–1.13E-03)

1.08E-03a**
(1.01E-03–1.27E-03)

ICPR 1.02E-03

± 3.02E-05

1.03E-03b**
± 3.09E-05

1.07E-03a***
± 4.82E-05

a Comparison between MS and HC;
b. Comparison between CIS and MS

Differences between groups:

*: p�0.05;

**: p�0.01;

***: p�0.001
¤ Kruskal-Wallis test used because of non-linear distribution

SCPL: superior cerebellar peduncle, left, SCPR: superior cerebellar peduncle, right (SCPR); MCP: medium cerebellar peduncle; ICPL: inferior cerebellar

peduncle, left; SCPR: inferior cerebellar peduncle, right

https://doi.org/10.1371/journal.pone.0182479.t003

Table 4. Correlations between FA and cognitive outcome.

Patients (n = 69)

Working memory

SCPL 0.54***

SCPR 0.47***

IPS

Left VI 0.47***

Right VIIIa 0.42**

Right VIIIb 0.43**

MCP 0.47***

ICPL 0.39*

Differences between groups:

*: p�0.05;

**: p�0.01;

***: p�0.001

https://doi.org/10.1371/journal.pone.0182479.t004
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superior cerebellar peduncles, whereas the IPS was positively correlated with FA in the Left VI,

Right VIIIa and right VIIIb, and with MD in the vermis Crus II.

The results from multiple hierarchical regression analyses are presented in Tables 6 and 7.

FA in the left lobule VI and in the left superior peduncle explained 31% of the variance in the

working memory z score. Working memory was also associated with MD in the vermis Crus

II. FA in the left VI and right VIIIa also predicted some of the IPS z scores. The microstructure

of cerebellar peduncles had an impact on cognitive outcome in almost all tested domains.

Discussion

Our study highlights that microstructural alterations in the posterior cerebellar substructures

are associated with impairment in different cognitive domains in MS.

Microstructural alterations at different stages of MS

We observed that microstructural damages are detected by DTI in posterior lobules and cere-

bellar peduncles in the MS subgroup but not in CIS. A post-mortem study found an associa-

tion in MS between DTI metrics (FA and MD) and myelin content and axonal count or gliosis

to a lesser proportion, suggesting that DTI is a reliable method for analysing microstructural

Table 5. Correlations between MD and cognitive outcome.

Patients (n = 69)

IPS

Vermis Crus II -0.45**

SCPL -0.41**

MCP -0.38*

SCPL: Superior cerebellar peduncle, left and right (SCPR); MCP: Medium cerebellar peduncle; ICPL:

Inferior cerebellar peduncle, left and right (SCPR); Differences between groups:

*: p�0.05;

**: p�0.01

https://doi.org/10.1371/journal.pone.0182479.t005

Table 6. Multivariate analysis model 1 –Cognitive prediction and FA analysis.

Estimate (B) Standard Error P value Adjusted R2

Attention

None

Working Memory

Intercept -8.43 1.47 3.39E-7 0.31

Left VI 5.63 2.75 0.05

SCPL 12.27 2.79 4.45E-5

Executive functions

Intercept -4.45 1.37 0.002 0.10

SCPR 7.13 2.57 0.007

IPS

Intercept -10.75 2.22 9.93E-6 0.31

Left VI 11.54 4.83 0.02

Right VIIIa 11.15 4.45 0.02

SCPR 9.03 4.07 0.03

https://doi.org/10.1371/journal.pone.0182479.t006

Diffusion imaging in cerebellum in multiple sclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0182479 August 8, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0182479.t005
https://doi.org/10.1371/journal.pone.0182479.t006
https://doi.org/10.1371/journal.pone.0182479


damage in this disease [38]. However, depending on the DTI-metrics profiles observed, several

types of alterations should be discussed.

Concordant with studies in supratentorial brain [17–19,39,40], FA was reduced in most of

the cerebellar substructures in CIPwMS compared with PwCIS and HS. Change in MD could be

observed in concordance or not with this FA reduction. MD increased in cerebellar peduncles,

concordant with FA reduction. This concordant profile is the most frequent when analysing

structured bundles of white matter and is associated with fiber loss and alteration of structural

barriers limiting water molecular motion. [41]. By contrast, FA decrease was associated with

MD preservation in the left VI, left and right Crus I and FA preservation with MD decrease in

the vermis Crus II, left VIIb and left and right VIIIb. This discordance has previously been

shown in other diseases (post-lacunar Wallerian degeneration and thalamic microstructural

changes in Parkinson disease) but is not fully understood [42,43]. FA decrease associated with

unmodified MD level is considered to be the consequence of a secondary Wallerian degenera-

tion with axonal loss and changes in neurons integrity accompanied by gliosis or extracellular

matrix modifications [42,43]. This process may occur preferentially in regions where fibre tracts

are crossing and cellularity is higher than it is in WM. Moreover, an isolated MD upholding

could occur when fibre loss is associated with an insufficient cellular reaction to alter directional

anisotropy metrics. It has also been observed that glial proliferation could decrease both MD

and FA, highlighting a preponderance of tissue damage over tissue repair [41].

In our cohort, FA in CIS tended to rise in comparison to HS. DTI studies in CIS yielded

contradictory results, showing either an increase or a decrease of FA in WM and GM accord-

ing to previous studies [44–46]. This phenomenon has already been described within struc-

tures including GM in MS and could be related to the stripping of selective dendrites or iron

accumulation [47–50]. More recently, in post-mortem samples undergoing DTI imaging and

histological study, this phenomenon has been associated with tissue compaction related to

neurodegeneration rather than microglial activation [51].

Involvement in cognitive impairment

Several DTI studies have focused on the peduncle abnormalities which are now rather well

defined in contrary to lobular ones. An association between cognitive impairment (especially

Table 7. Multivariate analysis model 2 –Cognitive prediction and MD analysis.

Estimate (B) Standard Error P value Adjusted R2

Attention

Intercept 1.45 0.58 0.02 0.11

Right Crus I -1635.62 570.94 0.006

Working Memory

Intercept 3.75 1.03 0.0006 0.21

Vermis CrusII -1660.84 804.76 0.04

SCPR 6237.24 2532.75 0.02

SCPL -7812.16 2562.06 0.003

Executive functions

Intercept 5.61 1.63 0.001 0.18

ICPL -5927.83 1540.53 0.0003

IPS

Intercept 1.16E1 2.92 0.0002 0.27

Age -4.75E-2 1.52E-2 0.003

MCP -1.02.E4 2.63E3 0.0003

https://doi.org/10.1371/journal.pone.0182479.t007
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IPS assessed by the SDMT and verbal learning) and abnormal superior cerebellar peduncles

diffusion parameters has been reported [52]. Reduced FA was also found in cerebellar paren-

chyma in cognitively impaired patients [19]. Our results showed that cognitive z scores were

partly predicted by microstructural alteration in cerebellar peduncles contributing to the dis-

connection between the supra-tentorial associative areas and the cerebellum. This confirmed

the important role of the peduncles in cognitive processes and above all IPS and working

memory. Although some researchers studied the correlation between microstructural damages

and CIAMS, none have analysed the particular involvement of the cerebellum sub-structures.

Interestingly and contrary to some fMRI studies in HS [24,25], we found no evidence of a strict

cognitive map arrangement that would link a specific lobule to a cognitive domain. Indeed,

multivariate analysis demonstrated that the domain z score could be predicted by different

substructure alterations depending on the diffusion parameter that is considered. For example,

the attention z score was only correlated with MD in the right Crus I, working memory with

FA in the left lobule VI and MD in the vermal Crus II and IPS was strongly correlated with FA

in the left lobule VI and right VIIIa.

These results echo the study that we recently reported about GM volumetric analysis in the

same group of patients [53]. In that previous work, we showed a correlation between GM vol-

ume within posterior lobules and especially vermis VI and IPS. These results showed that both

macro and microstructural damages, especially in lobules VI, are associated with cognitive

impairment in MS. However, the wider range of structures for which microstructural abnor-

malities were associated with cognitive deficits suggest that DTI could detect early processes

before the development of atrophy.

Our results corroborate fMRI studies showing that working memory should be supported

by the lobules VI and VII, for example [25,54]. However, an overlap between working memory

and IPS is demonstrated for left lobule VI, indicating a non-formal cognitive map in the poste-

rior cerebellum. The lack of strict mapping is in agreement with Schmahmann’s assumption

that the posterior cerebellum “regulates the speed, capacity, consistency, and appropriateness

of mental or cognitive processes” [8,9,55] Indeed, the main role of this anatomical structure is

to generate an automatized response from high level cognitive load processed in the cortical

associative areas. It has been shown that MS patients are unable to activate the usual cerebello-

frontal network associated with fastest responses to a given task, consequently activating a sub-

stitute compensatory network, involving the prefrontal cortex [23]. IPS represents best this

preferential phenomenon of global optimisation and automation which has been previously

highlighted by clinical and fMRI studies in MS. [12,23].

Study limitations

Our study is not without limitations. First, infratentorial lesions have not been considered,

although both grey and white matter lesions in the cerebellum could have an impact on cor-

tico-cerebellar disconnection [56]. However, lesions impact DTI metrics, and their effect is

therefore included within the variables. Second, in our analysis, ROIs included both grey and

white matter. Therefore, the average diffusivity parameters reflected a nonlinear heteroge-

neous cerebellar anatomy with a risk of statistical bias. Indeed, cerebellar diffusion-weighted

imaging is even more challenging than anatomical imaging because of the technical difficulties

and anatomical heterogeneity (principally grey and white matter tangles). Volume atrophy

leading to DTI parameters modification is another concern. Indeed, cerebellar atrophy was

not taken into account in our analysis. Moreover, PwCIS and PwMS were included from two

different studies and some tests used for neuropsychological assessment were different. How-

ever, the majority of cognitive domains were assessed in the same way between PwCIS and
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PwMS and divergent tests were roughly equivalent and were always associated to a common

test in order to obtain relevant cognitive domains.

Conclusion

In conclusion, we report the predictive value of DTI metrics in posterior cerebellar lobules and

peduncles in cognitive outcome at different stages of MS. IPS and working memory seemed to

be more significantly impacted than executive functions and attention, corroborating the idea

of cerebellar cognitive regulation and optimization through the cortico-cerebellar loop rather

than a cognitive substrate per se.
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