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The underlying pathologies of psychiatric disorders, which
cause substantial personal and social losses, remain
unknown, and their elucidation is an urgent issue. To clarify
the core pathological mechanisms underlying psychiatric
disorders, in addition to laboratory-based research that
incorporates the latest findings, it is necessary to conduct
large-sample-size research and verify reproducibility. For
this purpose, it is critical to conduct multicenter collabora-
tive research across various fields, such as psychiatry, neu-
roscience, molecular biology, genomics, neuroimaging,
cognitive science, neurophysiology, psychology, and phar-
macology. Moreover, collaborative research plays an impor-
tant role in the development of young researchers. In this
respect, the Enhancing Neuroimaging Genetics through
Meta-Analysis (ENIGMA) consortium and Cognitive Genetics

Collaborative Research Organization (COCORO) have played
important roles. In this review, we first overview the impor-
tance of multicenter collaborative research and our target
psychiatric disorders. Then, we introduce research findings
on the pathophysiology of psychiatric disorders from
neurocognitive, neurophysiological, neuroimaging, genetic,
and basic neuroscience perspectives, focusing mainly on
the findings obtained by COCORO. It is our hope that multi-
center collaborative research will contribute to the elucida-
tion of the pathological basis of psychiatric disorders.
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The World Health Organization (WHO) estimates that more than
264 million people of all ages suffer from depression worldwide.
Twenty million people are estimated to have schizophrenia
(SZ) worldwide. An estimated 46 million people in the world have
bipolar disorder (BD). Much effort is devoted to the treatment of psy-
chiatric disorders; however, there is a gap between clinical practice
guideline evidence and clinical training that results in inadequate
medical care for those with psychiatric disorders. Thus, the dissemi-
nation, education, and verification of clinical practice guidelines is
required.1 Psychiatric disorders have a significant economic impact,

and the estimated cost to the global economy in lost productivity is
enormous (https://ourworldindata.org/mental health). Therefore, it is
necessary to conduct translational research to elucidate the pathophys-
iology of psychiatric disorders and to develop new therapeutic and
diagnostic techniques. In general, translational research includes a
wide range of research, from nonclinical to clinical research and
development, to enable the actual clinical application of new findings
found by researchers in academia through basic research. Psychiatric
disorders are syndromes associated with social dysfunction caused by
both genetic and environmental factors. Vulnerability genes for
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psychiatric disorders do not directly increase the risk of developing
the disorder, but they are related to endophenotypes of psychiatric
disorders (e.g. 2). Therefore, translational research in psychiatric dis-
orders at the gene, amino acid/protein, cell, neural circuit, brain, and
cognition/behavior levels is critical. Although many translational stud-
ies have been performed at each level, most of them are small-scale
studies and not reproducible, and there have been no large-scale stud-
ies with high reproducibility with diagnostic or clinical usefulness.

To overcome this problem, in 2014, we established the Cognitive
Genetics Collaborative Research Organization (COCORO) with the aim
of elucidating the pathogenesis of psychiatric disorders and the molecular
mechanisms of brain function through bidirectional translational research
between basic neuroscience and clinical research (Fig. 1). Currently,
38 research institutes are participating in COCORO, including major
Japanese research institutions (Fig. 2). Researchers in various fields, such
as neuroscience, molecular biology, genomics, psychiatry, neuroimaging,
cognitive science, neurophysiology, psychology and pharmacology, have
discussed translational research in psychiatry and reported novel findings,
as mentioned in the current review. The research resource database col-
lected by COCORO is the largest in the Japanese psychiatry field and
one of the best databases for psychiatry in the world. This research
resource database includes over 10 000 subjects, including those with
SZ, BD, major depressive disorder (MDD) and autism spectrum disorder
(ASD), and healthy comparison subjects. There are multiple research
resources, such as genomic DNA, blood RNA, plasma, serum,
lymphoblastoid B-cell lines and induced pluripotent stem cells (iPSCs),

for more than 20 000 subjects, along with detailed clinical information,
cognitive data, neurophysiological data, neuroimaging data and personal-
ity trait data for each individual.

COCORO is primarily focused on SZ research, since SZ is the
most frequently investigated disease in psychiatry. In COCORO, using
large samples of individuals with SZ, we have discovered novel find-
ings and reproduced previous findings. Based on the established find-
ings in SZ research, future studies will explore the heterogeneity
among psychiatric disorders. In addition, we are conducting our
research projects with as little burden on each institute as possible, as
not all institutes collect data, such as cognitive function, eye movement,
and structural MRI data, with all approaches. By taking into account
the characteristics of each participating institute, COCORO has created
a system that maximizes the sample size obtained at each institute.

In the following sections, after discussing multicenter collabora-
tive research, we provide an overview of major psychiatric disorders
and introduce a wide range of findings from genetic to cognitive stud-
ies, focusing on research results obtained by COCORO.

Multicenter Research System (System, Ethics,
Education and Training)
Multicenter research is essential for the investigation of the patho-
physiology of psychiatric disorders, and the establishment of an orga-
nized system is one of the most important issues to be addressed. In
this regard, in COCORO, we have been working on (i) balancing
interinstitutional research independence and complementarity;
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Fig 1 Schematic of bidirectional translational research (forward translation and reverse translation) between clinical research and basic neuroscience in psychiatry.
Clinical research needs to detect novel biomarkers, by focusing on specific targets (hypothesis-driven) or using big data (data-driven), that are translatable to basic
research. Basic research needs to detect novel animal models that would be useful for preclinical testing. These clinical and basic studies need to be performed bidi-
rectionally through forward translation and reverse translation to achieve patient-centered translational therapeutic research. (Figure made by Yoji Hirano)
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(ii) developing a collaborative research ethics system; and
(iii) establishing a common measurement system, which is always an
issue in multi-institutional collaborative research. First, to secure the
compatibility of research independence and complementarity among
institutions in clinical research, it is critical to examine the reproduc-
ibility of data obtained from samples at one institution using data
from other institutions.3,4 For example, in COCORO, in addition to
using data from other institutions to test reproducibility, we also con-
duct studies to confirm the generality of well-known findings using a
large sample from multiple institutions5 and then use some of the col-
lected data to conduct spin-off studies for secondary analysis at vari-
ous institutions (e.g. 6). Second, regarding the ethics system for joint
research, to simplify complicated procedures, Osaka University plays
the main role as the COCORO representative organization and unifies
the ethical procedures for joint research within each institution.
Finally, to establish a common measurement system in COCORO, we
created an innovative standard protocol for brain magnetic resonance
imaging (MRI), and each institution switched to this standard proto-
col. Regarding cognitive social function, since there was no simple
battery of tests, a simple 15-min method to measure cognitive dys-
function using a simplified version of the Wechsler Adult Intelligence
Scale, Third Edition (WAIS-III), intelligence test7 was developed in
COCORO. A presymptomatic intelligence test (Japanese Adult Read-
ing Test [JART])8,9 has also been used in COCORO studies. Regard-
ing tests of neurophysiological function, six facilities have conducted
eye movement tests using a common protocol with the Eyelink sys-
tem (SR Research, Ontario, Canada), and data were uploaded to a
common server every month for quality control and data sharing.

To elucidate the pathogenesis of psychiatric disorders, it is very
important to have close collaboration between researchers in the fields

of basic and clinical research and to secure researchers in each field.
Thus, the development of investigators in clinical and biological psy-
chiatry is a matter of urgency. To this point, multicenter research pro-
vides a great opportunity for educating young researchers through
new educational resources to integrate cutting-edge research technol-
ogy with several data sets in each field, which can lead to novel trans-
lational research. To accomplish these missions, (i) we must increase
the engagement and participation of midcareer investigators; and
(ii) we must help or provide educators with a robust neuroscience
background for young researchers, medical students, and residents. In
COCORO, we have tried hard to provide such opportunities for the
development of young investigators.10,11 For example, we have pro-
vided some MRI data to the Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA) consortium (see Koshiyama
et al.,4 Thompson et al.12). In turn, COCORO is developing research
based on ideas from the ENIGMA consortium. Through these mutual
international collaborations, we encourage young researchers and pro-
vide opportunities for them to be involved in cross-institutional col-
laborations. As COCORO is composed of the parent organizations,
the permission of the participation in COCORO by the responsive
person in the parent organization is necessary for all young people.
Thus, it is hard to manage the conflict between the parent organiza-
tion and COCORO.

Description of Targeted Psychiatric Disorders
Schizophrenia is a psychiatric disorder characterized by positive
symptoms (hallucinations, delusions, and disorganized speech), nega-
tive symptoms (blunted affect, avolition, anhedonia, and asociality)
and impairments in various domains of cognition such as executive
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Fig 2 Institutions of the Cognitive Genetics Col-
laborative Research Organization (COCORO). The
Cognitive Genetics Collaborative Research Organi-
zation (COCORO) consists of many psychiatric
facilities in Japan. COCORO means “mind” in
Japanese. There are 38 institutes participating in
COCORO, which have been updated from
Koshiyama et al4 The purpose of COCORO is to
elucidate the mechanisms of psychiatric disorders
and brain functions. Abbreviations: Med, Medical;
NCNP, National Center of Neurology and Psychia-
try; NIPS, National Institute for Physiological Sci-
ences; Psy Cen, Psychiatric Center; QST, National
Institutes for Quantum and Radiological Science
and Technology; Riken BSI, Riken Brain Science
Institute; Tokyo Metro Inst, Tokyo Metropolitan
Institute of Medical Science; Univ, University;
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functions, memory, and processing speed.13 The prevalence of SZ in
the world population is approximately 1%, and SZ is among the top
10 global causes of disability.14 Antipsychotics are effective for
reducing psychotic symptoms in the acute phase of SZ and for
preventing a relapse of the disease. Psychosocial interventions includ-
ing social-skills training, cognitive-behavioral therapy, and supported
employment are also important for the management of the negative
symptoms or cognitive impairments associated with SZ.15 A recent
review revealed that approximately half of patients with SZ recovered
or significantly improved over the long term.16 Combinations of phar-
macotherapy and psychosocial interventions can improve outcomes in
individuals with SZ.

Major depressive disorder affects an individual’s functional
capacity through depressive symptoms such as sadness, emptiness,
irritable mood, somatic changes, and cognitive impairments. It was
reported that the 12-month and lifetime prevalences of adult MDD
based on Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5), criteria were 10.4% and 20.6%, respectively, and
the mean age at adult MDD onset was 29.1 years in the USA.17 In
contrast, in Japan, the 12-month prevalence of MDD was lower
(2.9%) than that in the USA.18 Regarding sex differences, the lifetime
prevalence of MDD in women (26.1%) is approximately twice that in
men (14.7%).17 BD is characterized by repeated depressive and manic
episodes. The essential features of mania or hypomania are increased
energy or activity along with elevated, expansive, or irritable mood.19

BD is classified as BD type I (BD I), with severe manic and depres-
sive episodes, and BD type II (BD II), with hypomanic and depres-
sive episodes. The lifetime prevalence of BD I is approximately 1%
worldwide.20 It was reported that the median onset ages were
24.3 years for BD I and 30.1 years for BD II.21 There is no clear sex
difference in the prevalence of BD.22 MDD and BD are multifactorial
disorders that are caused by complex interactions of genetic and envi-
ronmental factors.23,24 The treatment of MDD is based on environ-
mental adjustments and pharmacotherapy with antidepressants. In
addition to pharmacotherapy, cognitive-behavioral therapy and inter-
personal therapy are effective in preventing relapse after the mood
state has stabilized.25 In contrast, since BD has a high relapse rate
and often becomes chronic, it is important to promote an understand-
ing of the disorder among patients and the people around them
through psychological education.26 Mood stabilizers with relapse-
preventing effects are the mainstay of pharmacotherapy for BD.27

Individuals with MDD and BD have been reported to show declines
in various measures of cognitive function (e.g. 28). Moreover, suicide
prevention is extremely important, as MDD and BD are high-risk fac-
tors for suicidal thoughts or behaviors in psychiatric patients.19,29,30

Autism spectrum disorder is characterized by difficulty with
social communication, repetitive behavior, and highly restricted inter-
ests or activities.31 Four separate disorders, including autistic disorder,
childhood disintegrative disorder, Asperger syndrome, and pervasive
developmental disorder, were integrated into the single entity of ASD
in DSM-5. The estimated prevalence of ASD was reported to be 14.5
per 1000 children aged 8 years and was reported to be approximately
4–5 times higher in boys than in girls (23.4 vs. 5.2 per 1000) in
2012.32 Nearly 75% of patients with ASD have comorbid psychiatric
disorders, including attention-deficit/hyperactivity disorder (ADHD),
anxiety disorder, BD, sex dysphoria, obsessive-compulsive disorder,
SZ, and tic disorders.33 Although medication is not available to treat
the core features of ASD, medical treatments as well as psycho-
education can be effective for secondary symptoms such as difficul-
ties with emotion regulation.33,34

Neurocognition
Neurocognitive impairments have been reported in a variety of psy-
chiatric disorders, including SZ,35 BD36 and MDD.37 In patients with
developmental disorders, substantial variation of cognitive domains,
but not impairment, have been reported.38 In many psychiatric disor-
ders, neurocognitive impairment has been reported to be an

independent predictor of social functioning39–41 and recognized as an
important therapeutic target.42 Based on this background, COCORO
has focused on cognitive impairment in psychiatric disorders.

First, Fujino and colleagues investigated the degree of estimated
cognitive decline in patients with SZ.43 A total of 446 patients with
SZ (228 males, 218 females), consisting of three sample sets obtained
from 11 psychiatric facilities, and 686 healthy controls, participated
in this study. Fujino and colleagues found that the IQ decline, which
is the mean difference between premorbid IQ estimated from the
JART 25 and current IQ estimated from the full IQ (FIQ) from the
WAIS-III, was 10 points or greater in 70% and 20 points or greater in
40% of subjects with SZ. This report was the first to show changes in
cognitive function from before to after illness in Japanese patients
with SZ. A ten-point decrease in IQ must have a significant impact
on the daily life of subjects. The data also showed that the distribution
of IQ decline in subjects with SZ followed a normal distribution and
was not bimodal or distorted. The results from this study showed that
it is important to assess not only the current cognitive impairment but
also the change in cognitive function when considering whether to
target cognitive dysfunction as a therapeutic target in clinical practice
and how much recovery can be expected during treatment.

As a second approach to the study of cognitive dysfunction,
Sumiyoshi and colleagues investigated whether IQ declines predicted
the social functioning of patients.44 One hundred forty patients with
SZ and 156 healthy volunteers were enrolled in the study. The logistic
regression analyses were conducted with work hours dichotomized
into four categories (0, 10, 20, or 30 h per week) as dependent vari-
ables. Sumiyoshi and colleagues showed that the model that included
IQ decline, social functioning and psychotic symptoms predicted the
ability to work. The results of this study showed that IQ decline is a
useful predictor of social functioning in patients with SZ. The results
also showed that scores of only two tests on the WAIS-III (similarities
and symbol search) predicted full-battery WAIS-III scores with high
precision.7 In this study, WAIS-III data were obtained from
150 patients with SZ and 221 healthy controls. First, exploratory fac-
tor analysis was used to test the representativeness of the IQ structure,
and multiple regression analyses were conducted to test the predict-
ability of the FIQ. Then, candidate tests were nominated based on the
consistency of subtests across versions. Finally, the optimality of can-
didate tests was evaluated in terms of sensitivity to functional out-
come measures and conciseness in administration time. To integrate
cognitive dysfunction treatment into daily clinical practice, it is cru-
cial to measure cognitive dysfunction with a concise and reliable
method. The results of this study indicated that the IQ decline in
patients, which may predict their ability to work, could be estimated
in only 15 min in daily clinical practice. To implement this test in the
real world, we held regular training sessions on this procedure at
workshops of various scientific meetings.

The third approach to the study of cognitive dysfunction is a bio-
logical approach. Koshiyama and colleagues investigated the relation-
ships between subcortical structure volumes and neurocognitive
indices. Using subcortical structure volume data from 163 patients
with SZ, they showed that the right nucleus accumbens (NAc) volume
was significantly correlated with the digit symbol coding score from
the WAIS-III.45 In another study, using the subcortical structure vol-
umes from 173 patients with SZ and their scores on the Wechsler
Memory Scale-Revised (WMS-R), it was found that the NAc volume,
as well as hippocampal volume, was correlated with immediate and
delayed recall scores from the verbal memory test on the WMS-R.46

A previous study showed an association between intrinsic motivation
and cognitive test performance in patients with SZ.47 Because the
NAc is a part of the brain reward system,48 our findings support the
importance of motivation in the cognitive functioning of patients with
schizophrenia in terms of brain structural abnormalities. More
recently, Yasuda and colleagues compared brain structures and func-
tional connectivity among 633 healthy controls, 54 patients with SZ
without cognitive impairment, and 111 patients with SZ with cogni-
tive impairment.6 In this study, Yasuda and colleagues found a
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significant decrease in cortical thickness in the whole brain and in
broad areas in the frontotemporal lobe and a significant increase in
the volumes of the lateral ventricle, basal ganglia and hippocampus in
patients with SZ with cognitive impairment compared to the controls
and patients with SZ without cognitive impairment. They also found
significant hyperconnectivity between the thalamus and a broad range
of brain regions in patients with SZ with cognitive impairment com-
pared to controls and significant hyperconnectivity between the
accumbens and the superior and middle frontal gyri in patients with
SZ without cognitive impairment compared with patients with SZ
with cognitive impairment. The results of this study showed that both
brain structure and functional connectivity were extensively impaired
in patients with SZ with cognitive impairment, suggesting that cogni-
tive function subgroups could be useful to elucidate brain pathophysi-
ology in patients with SZ.

As we have shown in this section, COCORO has continued to
take a comprehensive approach to cognitive dysfunction using a vari-
ety of research methods and techniques. It is noteworthy that the close
network of diverse researchers and the smooth exchange of data
among more than 23 000 individuals at multiple institutions in
COCORO make these efforts possible.

Neurophysiology
Eye movement measures
Eye movement abnormalities are often reported in various psychiatric
disorders, including SZ, BD, MDD, and ASD. Eye movement abnor-
malities are currently recognized as one of the endophenotypes of
psychiatric disorders.49–52 In SZ, several studies have attempted to
distinguish patients with SZ from healthy controls and/or individuals
with other mental illnesses.53–60 Eye movement studies in COCORO
began with a study to develop an integrated eye movement score as a
neurophysiological marker of SZ based on relatively small data sam-
ples.59 A subsequent study replicated this initial finding using twice
the sample size and showed that a discriminant analysis using three
eye movement measures, the scanpath length during a free viewing
test, the horizontal position gain during a smooth pursuit test, and the
duration of fixations during a fixation stability test, distinguished SZ
patients from healthy controls with 82.5% accuracy.60 The researchers
proposed a newer and more sophisticated version of the score that
can be obtained from only a few examinations taking approximately
15 min.

Eye movement performance (scanpath length and integrated eye
movement score) is associated with cognitive functions measured
using WAIS scores and social activities measured as work hours per
week in SZ patients.61,62 A potential mechanism has been suggested
in which decreased eye movement performance leads to reduced cog-
nitive performance (perceptual organization) that eventually results in
reduced social activities.61 Some research investigating biological
mechanisms underlying eye movement abnormalities in patients with
SZ has revealed genetic associations with the performance of smooth
pursuit eye movements63 and an association between cortical thick-
ness and scanpath length during free viewing.64 The detailed history
and progress of eye movement research in COCORO through 2020
are summarized elsewhere.65 The latest discoveries in the studies in
COCORO have involved differences in eye movement performance
between individuals with SZ and individuals with ASD,66 the associa-
tion between abnormal scanpath length during free viewing and a dis-
ruption of attentional control in SZ patients,67 and abnormal eye
movements in MDD patients.68 In COCORO, a large database of eye
movements, with over 800 subjects, including patients with various
psychiatric disorders and healthy subjects, allows us not only to
obtain novel findings but also to evaluate the reproducibility of find-
ings. Takahashi et al.69 provided robust and reproducible findings
showing the influences of age on eye movements in healthy individ-
uals. Thus, studies using databases in COCORO will contribute not
only to psychiatry but also to neuroscience.

Electroencephalography and magnetoencephalography
studies
Electroencephalography (EEG) and magnetoencephalography (MEG)
are noninvasive neurophysiological methods with excellent temporal
resolution in the millisecond range that have revealed novel insights
into cognitive and sensory abnormalities in individuals with psychiat-
ric disorders, especially in patients with SZ.70–72 Auditory-related
symptoms (especially auditory hallucinations) are known to be promi-
nent compared to other sensory modality symptoms in SZ, and
auditory-related deficits can be found even at the early sensory
processing level (e.g. tone matching), which could contribute directly
to impairments in cognitive and social functioning.73 Accordingly,
auditory-related EEG/MEG indices such as mismatch negativity
(MMN)74 and gamma oscillations, including the auditory steady-state
response (ASSR),74 have been used as highly reproducible bio-
markers in SZ. MMN is a neurophysiological event-related potential
EEG/MEG measure of early auditory information processing that is
hypothesized to reflect abnormal predictive coding in SZ.74–76 Many
studies have repeatedly shown that the amplitude of MMN, especially
in the duration MMN paradigm, is reduced in first-episode SZ and
chronic SZ patients as well as in clinical high-risk subjects.77,78 Phys-
iologically, since N-methyl-D-aspartate (NMDA) receptor antagonists
reduce the MMN amplitude78,79 MMN has the potential to be a thera-
peutic biomarker for identifying abnormal NMDAR-mediated neuro-
transmission in SZ.

Recent studies have shown that the brain is spontaneously active
and periodically becomes activated in particular patterns, even with-
out exposure to external stimuli.80 External stimuli not only induce
neural responses from the brain’s static state but also play a role in
selecting a specific phase of neural activity from the ever-changing
rhythmic dynamic state of the brain. As a result, brain activity is
maintained and is continuously rewriting the intrinsic information in
the brain. This intrinsic and rhythmic periodic activity of neurons is
called neural oscillation. Neural oscillations in the gamma range (30–
100 Hz) generated in the neocortex by interactions among neurons
and interneurons in local circuits are reliable and important translat-
able neurophysiological biomarkers of SZ.70 Aberrant gamma oscilla-
tions have been observed and studied extensively in SZ using evoked
activity paradigms, especially with the ASSR task, which is highly
reproducible.81,82 Many studies have reported a decreased phase syn-
chronization and evoked power of 40-Hz ASSRs (elicited by 40-Hz
steady click sounds) in both the early and chronic states of SZ.83–86

In addition to reduced stimulus-locked 40-Hz ASSR oscillations
(phase-locking factor and evoked power), recent studies have shown
increased (non-phase-locked) spontaneous gamma oscillations
(induced power) during click-sound stimulation in patients with SZ,85

along with lower primary auditory cortex volume.87 Progressive
reductions in auditory-evoked gamma oscillations are also observed
over time in first-episode SZ patients but not in clinical high-risk sub-
jects, indicating that evoked gamma oscillations may manifest pro-
gressively abnormal neural function that occurs after the onset of
psychosis.88 When considering these neurophysiological phenomena,
basic research has shown that the mutual balance between excitation
and inhibition within local neural networks is crucial for generating
gamma oscillations.80 Accordingly, intact neuronal informational pro-
cesses depend on a proper excitability/inhibitory balance (E/I bal-
ance), and the loss of this mutual balance has been hypothesized to
induce gamma oscillation deficits in SZ85,89,90 Importantly, our previ-
ous findings of increased spontaneous broadband gamma power dur-
ing auditory stimulation in patients with SZ85 resembled the increased
spontaneous broadband gamma power often reported in NMDA-R
hypofunction (i.e. increased E/I imbalance) animal models of SZ
(e.g. 91,92). Therefore, it is proposed that spontaneous gamma oscil-
lations have great potential as a translatable neurophysiological bio-
marker for SZ.

Given the noninvasiveness and versatility of clinical EEG
systems, which can be found in most medical facilities, EEG is very
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suitable for multicenter studies to detect useful functional biom-
arkers of psychiatric disorders. For example, the Boston CIDAR
study (https://bricweb.bidmc.harvard.edu/bostoncidar/) and Bipolar-
Schizophrenia Network on Intermediate Phenotypes (B-SNIP: http://
b-snip.org/) study have successfully confirmed some of the previous
EEG findings in SZ patients and individuals at high clinical risk with
larger sample EEG data (e.g. 88,93,94). In Asia, in addition to the
Asian Consortium on MRI studies in Psychosis (ACMP) (http://asia-
mri-consortium.net/), researchers have been working to organize the
Asian Consortium on EEG studies in Psychosis (ACEP), which will
consist of seven university hospitals and four psychiatric hospitals.
ACEP’s main focus is to detect novel oscillatory EEG functional
biomarkers, which could be used to redefine the classifications of
psychosis and be valuable for translational research. The consortium
hopes that this multicenter EEG study can contribute to the under-
standing of the underlying pathology of psychosis and lead to novel
neurofunction-based treatments.

Neuroimaging
Recent neuroimaging evidence from international collaborative large-
scale MRI studies, particularly those of the ENIGMA consortium, has
demonstrated structural and functional abnormalities in major neuro-
psychiatric disorders (e.g. SZ, mood disorders, and ASD).12

COCORO has developed a framework of multisite neuroimaging
studies in partnership with the ENIGMA consortium for standard
imaging protocols and data sharing95,96 and has successfully repli-
cated and extended their work as detailed below. However, potential
confounding factors that could affect brain morphology/function
(e.g. illness chronicity and medication) and low disease specificity of
the brain changes in these disorders prevent the clinical application
(e.g. diagnosis or the prediction of treatment response on the basis of
biological findings) of these findings.97 Further research, including
ongoing COCORO neuroimaging projects such as a study across
major psychiatric disorders, a biotype study using brain-based bio-
markers, and a clustering of SZ heterogeneity on the basis of distinct
brain morphological and functional patterns using a large database of
more than 8000 patients with various psychiatric disorders and
healthy controls, could provide neuroimaging evidence that could lead
to a better understanding of the neurobiology of psychiatric disorders
and to the clinical application of neuroimaging research findings.

Structural MRI
The COCORO structural MRI working group replicated the subcorti-
cal findings of the ENIGMA consortium on the basis of T1-weighted
MR images from 1680 healthy individuals and 884 patients with SZ,
obtained with 15 imaging protocols at 11 sites within COCORO,
using FreeSurfer; the patients were characterized by smaller volumes
of the hippocampus, amygdala, thalamus, and accumbens but larger
volumes of the caudate, putamen, and pallidum.95,98 Hippocampal
atrophy and pallidum expansion in SZ patients were partly attribut-
able to antipsychotic medications regardless of medication type
(i.e. typical or atypical), where the pallidum volume was also posi-
tively associated with illness duration.99 Based on a subsequent study
using the Multiple Automatically Generated Templates (MAGeT)
brain segmentation algorithm,100 thalamic volume reduction and its
relation to cognitive deficits in SZ patients had a subdivision specific-
ity (in particular, the medial dorsal and ventral lateral nuclei), whereas
no thalamic reduction was exhibited in individuals with a high clini-
cal risk for developing psychosis when compared with healthy sub-
jects. These subcortical findings may partly reflect state abnormalities
and could change during the course of SZ.

Regarding cortical changes in SZ, a voxel-based morphometric
study of 1252 healthy subjects and 541 patients with SZ with data
from seven different scanners/parameters demonstrated that the
patients exhibited gray matter reduction predominantly in the frontal
and temporolimbic regions and that such a brain morphological char-
acteristic could successfully differentiate SZ patients from control

subjects despite the use of MRI data collected using different set-
tings.5 Interestingly, our genome-wide association study (GWAS)
focusing on the superior frontal gyrus volume in 158 patients with SZ
and 378 healthy subjects revealed a significant contribution of genetic
variants in the eukaryotic translation initiation factor 4 gamma,
3 (EIF4G3) gene on 1p36.12.101 The gross brain morphology proba-
bly reflects prenatal brain development; sulcogyral patterns of the
orbitofrontal cortex were significantly different between 155 SZ
patients and 375 healthy subjects.102 Because gyrification patterns
generally remain stable after birth, this finding supports the early neu-
rodevelopmental pathology of SZ.

Taken together, the findings from SZ structural MRI studies
from the COCORO consortium demonstrated subcortical/cortical and
gross morphological changes in a large multicenter cohort of SZ
patients, which may reflect both neurodevelopmental and state-related
abnormalities associated with the illness as well as other influencing
factors (e.g. medications). However, the causes, timing and course of
these findings remain unclear. Cortical findings in SZ, which are at
least partly genetically controlled, could contribute to the diagnosis
with favorable classification accuracy, but it remains unknown
whether these findings are specific to SZ or more generally observed
across various neuropsychiatric disorders.

Diffusion tensor imaging
Recent large-scale multisite studies from the ENIGMA consortium
reported white matter microstructural alterations in neuropsychiatric
diseases, including SZ, BD, depressive disorders, and 22q11 deletion
syndrome. A meta-analysis that was conducted with 1963 patients
with SZ and 2359 healthy controls from 29 independent international
studies identified widespread microstructural alterations, including
alterations in the anterior corona radiata, corpus callosum, cingulum,
fornix, and uncinate fasciculus, in patients with SZ.103 Another meta-
analysis demonstrated altered white matter connectivity within the
corpus callosum, cingulum, and fornix in BD patients.104 Further-
more, a meta-analysis found that alterations in the corpus callosum
and corona radiata were reported in patients with MDD relative to
healthy subjects.105 Additionally, widespread white matter alterations
in the corona radiata, corpus callosum, superior longitudinal fascicu-
lus, posterior thalamic radiations, and sagittal stratum were identified
in 22q11.2 deletion carriers.106 The ENIGMA-ADHD and ENIGMA-
ASD groups are currently working on diffusion tensor imaging (DTI)
analyses.107 However, the similarity and specificity of white matter
microstructural alterations across these psychiatric disorders remain
unclear.

In a COCORO study, a mega-analysis of white matter micro-
structural alterations across four major psychiatric disorders in
696 patients with SZ, 211 with BD, 126 with ASD, 398 with MDD,
and 1506 healthy comparison subjects from 12 sites in Japan was per-
formed using the ENIGMA-DTI imaging analysis protocol.108 The
results showed that patients with SZ demonstrated widespread alter-
ations in white matter regions, including the anterior corona radiata,
corpus callosum, fornix, and uncinate fasciculus; SZ and BD patients
featured similar changes in the limbic system, such as the fornix and
cingulum, compared to healthy subjects; and SZ, BD and ASD
patients shared similar white matter microstructural differences in the
body of the corpus callosum relative to healthy subjects. Regarding
SZ and BD, data sets from both the ENIGMA consortium and
COCORO showed similar results, and there were no significant differ-
ences in a direct comparison between SZ and BD in the COCORO
study.108 Given the confirmed findings from two sets of large-scale
studies from the ENIGMA consortium and COCORO as well as the
cross-disorder study by COCORO,108 both patients with SZ and those
with BD have similar regional alterations in brain white matter.
Regarding MDD, whereas the COCORO study did not show signifi-
cant differences in patients relative to healthy subjects,108 van Velzen
et al.105 showed alterations in the anterior corona radiata and corpus
callosum in MDD patients. The difference in sample size may have
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contributed to the inconsistencies. While van Velzen et al.105 reported
a Cohen’s d effect size of �0.25 for fractional anisotropy (FA) in the
anterior corona radiata in 921 MDD patients relative to 1265 healthy
subjects, the COCORO study reported an effect size of �0.19.108

While the ENIGMA groups are currently working on DTI analysis in
patients with ASD,107 the COCORO study showed white matter
microstructural alterations in the body of the corpus callosum in those
patients.4 Additionally, Villal�on-Reina et al.106 reported white matter
alterations in the corpus callosum in 22q11.2 deletion carriers. Taken
together, these findings show that while alterations in tracts con-
necting neocortical areas (e.g. the uncinate fasciculus) were observed
only in patients with SZ, white matter alterations in the corpus cal-
losum and the limbic system (i.e. the fornix and cingulum) may be
common in patients with SZ and those with BD. Furthermore, white
matter alterations in the corpus callosum may be widely common in
individuals with psychiatric disorders, including 22q11.2 deletion
carriers.

Regarding the clinical implications of white matter microstruc-
tural alterations, the role of structural connectivity in the anterior
corona radiata and corpus callosum in social functioning was reported
by another COCORO study from an archival subsample cohort of
149 patients with SZ.109 The findings are consistent with the results
from Kochunov et al.,110 who demonstrated associations of structural
connectivity in the anterior corona radiata and corpus callosum with
working memory and processing speed in 166 patients with
SZ. However, associations of white matter microstructural alterations
with clinical implications for other neuropsychiatric diseases are
largely unknown. The associations can be widely investigated across
neuropsychiatric disorders using pooled DTI data and clinical mea-
sures in COCORO.4

Functional MRI
Neuroimaging research using functional MRI (fMRI) consists of task-
based fMRI and resting-state fMRI (rsfMRI). Recent multicenter joint
research in psychiatric diseases by fMRI mainly uses rsfMRI.
RsfMRI is a very convenient method to evaluate brain function in var-
ious networks, for example, the visual, sensorimotor, executive con-
trol, salience, dorsal attention, auditory, and default mode
networks.111

A meta-analysis of rsfMRI data from SZ patients and healthy
controls indicated impaired functional connectivity in the limbic,
frontoparietal executive, default mode, and salience networks, with
reductions in gray matter volume in the insula, lateral postcentral cor-
tex, striatum, and thalamus, in the SZ patients compared to the
healthy controls.112 An ENIGMA study of SZ patients demonstrated
the effects of ketamine and midazolam on functional connectivity in
rsfMRI.113 Hyperconnectivity between the thalamus and a broad
range of brain regions in SZ patients with deteriorated cognition has
been reported; this hyperconnectivity was less evident in patients with
SZ with preserved cognition.6 These findings are consistent with
those of another study that showed aberrant thalamocortical func-
tional connectivity in chronic SZ.114 In addition to SZ, the ENIGMA
consortium reported impaired functional connectivity in various psy-
chiatric disorders, such as ADHD/ASD107 and epilepsy,115 as well as
in patients with a cyst compressing the cerebellum.116 These findings
suggested that evaluating the extent of impairment in various net-
works could contribute to elucidating the pathophysiology of psychi-
atric disorders.

Positron emission tomography studies
In neuropsychiatric disorders, an investigation of the living brain by
high-resolution positron emission tomography (PET) and magnetic
resonance spectroscopy (MRS), combined with appropriate pharma-
cokinetic and physiological analyses, enabled us to provide important
quantitative information on abnormal brain functions. PET has been
used to examine the distribution of neurotransmitters in the human
brain. Compared to other functional imaging methods, PET enables

the qualitative and quantitative evaluation of changes in the distribu-
tion of tracers, making it possible to determine pathophysiology as
well as diagnostic information in many psychiatric disorders. For
example, in SZ patients, PET studies have demonstrated a hypofrontal
pattern in patients with chronic SZ with a predominance of negative
symptoms117,118 but not in younger patients with predominantly posi-
tive symptoms,119 suggesting that frontal lobe activity changes
throughout the course of the disease and becomes more prominent in
the chronic phase. In terms of neural circuits, Andreasen120 showed
dysfunctional prefrontal-thalamic-cerebellar circuitry in SZ subjects.
Laterality differences in SZ are another investigated topic, and several
PET studies have reported that SZ subjects have increased metabo-
lism and perfusion in the left hemispheric brain structures relative to
the right hemispheric brain structures in the resting state (e.g. 121). In
addition, the severity of symptoms has been associated with the
degree of the hyperactivation of the left hemisphere but not with the
degree of the hypofrontal pattern.

Importantly, PET studies have also assessed the effects of thera-
peutic interventions (e.g. medication) on brain pathophysiology in SZ
patients. Pharmacokinetic PET studies have shown that in early treat-
ment with antipsychotics, there is high dopamine D2 receptor occu-
pancy, particularly in the basal ganglia. This D2 receptor occupancy
is dose dependent and associated not only with the therapeutic effects
of antipsychotics but also with the incidence of side effects such as
extrapyramidal syndromes.122 Thus, it has been recognized that PET
studies are essential for establishing the optimal dosage of antipsy-
chotic drugs. Recent PET studies have also revealed that neu-
roinflammation appears to be one of the hallmarks of various
psychiatric disorders.123 Using the most commonly imaged biomarker
of neuroinflammation, the 8 kDa translocator protein (TSPO), many
PET studies have consistently found elevated TSPO binding in MDD
patients123; in contrast, a recent meta-analysis demonstrated reduced
TSPO binding in SZ patients.124 This disease-specific pattern high-
lights the relevance of validating neuroinflammation biomarkers for
each psychiatric condition separately when targeting neu-
roinflammation treatments for each condition.

To our knowledge, no multicenter PET study has been con-
ducted for psychiatric disorders except dementia,125 which limits the
pharmacokinetic and physiological findings in psychiatric disorders.
Recently, an investigation of the glutamatergic neurotransmitter sys-
tem has attracted substantial attention in the pathophysiology and
treatment of neuropsychiatric diseases126; however, clinical translation
of knowledge on glutamate and AMPA that accumulated in a number
of studies has been limited due to the inability to visualize AMPA
receptors in the living human brain. As first reported,127 a novel PET
tracer for glutamate AMPA receptors in the human brain ([11C]K-2)
has been developed. Furthermore, in Japan, a multicenter cross-
disease AMPA-PET study is in progress to investigate AMPA recep-
tor abnormalities in various psychiatric disorders (SZ, BD, MDD and
ASD) to elucidate the relationships between AMPA receptor density
in the brain and psychiatric symptoms and their outcome. It is hoped
that the findings of this multicenter cross-disease AMPA-PET study
can contribute to the development of novel drugs and treatments for
psychiatric disorders.

MRS studies
MRS has become a valuable tool for investigating the biochemical
bases of psychiatric disorders such as SZ128,129 1H MRS has revealed
alterations in glutamate and glutamine levels in the brains of patients
with SZ relative to those of healthy controls; glutamate and glutamine
levels are generally interpreted as biomarkers of glutamatergic dys-
function in SZ. A recent comprehensive meta-analysis showed that
SZ is associated with elevations in glutamatergic metabolites across
several brain regions, including the thalamus, basal ganglia and
medial temporal lobe. It was also concluded that there were no
regions showing a consistent reduction in glutamate metabolites in
the patient group.128 These findings supported the hypothesis that SZ
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is related to excess glutamatergic neurotransmission in several limbic
regions and further suggested that chemical compounds that reduce
glutamatergic transmission may have therapeutic potential, especially
in the acute phase of the illness.79 While the assessment of the excit-
atory neurotransmitter glutamate in vivo by1H MRS is straightforward
due to its high cerebral concentration, the low level of the inhibitory
neurotransmitter γ-aminobutyric acid (GABA) makes it challenging
to assess in vivo. Thus, the number of GABA-MRS studies is limited,
and most experiments were conducted by spectral editing methods
such as Mescher-Garwood point resolved spectroscopy (MEGA-
PRESS) at 3 T130–132 and recently at 7 T.133 A recent comprehensive
meta-analysis demonstrated that there were no significant SZ-
associated changes in GABA levels in the medial prefrontal cortex
(MPFC) or dorsolateral prefrontal cortex (DLPFC). Interestingly, after
excluding the outlier studies, GABA levels in the frontal cortex were
lower in SZ patients than in controls. In the anterior cingulate cortex
(ACC), a significant group difference was found in patients with
lower GABA levels, which was more pronounced in first-episode SZ
patients.129

To our knowledge, few multicenter MRS studies have been con-
ducted for psychotic disorders (e.g. 134,135), but the results of those
that have enabled us to confirm previous evidence linking higher
levels of glutamate in the ACC with a poor antipsychotic response by
showing that the association is evident before the initiation of treat-
ment. Further investigations to detect abnormal biochemical bases of
psychosis by multicenter MRS studies are needed for possible
improvements in outcomes associated with early intervention in
psychosis.

Genetic and Other Biological Studies
Epidemiological studies have shown that genetic factors make sub-
stantial contributions to the etiology of ASD, SZ, and BD. Recent
molecular genetic studies have provided evidence that many genetic
variants, including rare variants with large effects and common vari-
ants with small effects, contribute to the risk of these disorders.136–139

The results of these studies have also suggested that genetic overlap
is common among psychiatric disorders.140 In COCORO, GWASs of
psychiatric disorders were performed in the Japanese population. The
Japanese population is genetically homogeneous compared to other
populations with recent admixture. Therefore, the COCORO sample
has the advantage of a minimized risk of population bias, and these
GWASs have contributed to the elucidation of the genetic basis of
these disorders. Studies of rare copy number variations (CNVs) for
ASD and SZ were performed using array comparative genomic
hybridization.141,142 Approximately 8% of patients with such disor-
ders had clinically significant or pathogenic CNVs, which were previ-
ously associated with a risk for psychiatric disorders. Some of these
CNVs showed a statistically significant association with disorders, for
example, deletions at 1q21.1, 22q11.2, and 47,XXX/47,XXY
(SZ) and duplication at 22q11.2 (ASD). Consistent with the genetic
overlap among psychiatric disorders, pathogenic CNVs at approxi-
mately 30 loci were common to these disorders. Phenotypic analysis
indicated an association between pathogenic CNVs and treatment
resistance to antipsychotics in SZ patients or intellectual disability
comorbidity in SZ or ASD patients. Enrichment analysis based on
gene ontology suggested that multiple biological pathways
(e.g. synapse/neuron projection, oxidative stress response, small
GTPase signaling) are common to the two disorders.141 Furthermore,
in-depth functional analysis of pathogenic CNVs using patient-
derived iPSCs, mouse models, and postmortem brains has provided
important clues to the pathophysiology and led to the identification of
drug targets143–147{Torii, 2020 #86}.

For common variants, GWASs have identified common single
nucleotide polymorphisms (SNPs) for SZ and BD in the Japanese
population.148,149 The SZ study identified 15 novel loci, including a
top-hit SNP of SPHKAP (P = 6.3 � 10�9, odds ratio [OR] = 1.63).
This gene encodes a family of A-kinase anchor proteins that interact

with a protein kinase, suggesting signal transduction implications in
the pathophysiology of SZ. An analysis of the polygenic risk score
(PRS), an aggregate measure of genetic variants (i.e. SNPs) with
small effect sizes, revealed that the genetic risk of SZ is shared across
populations (Japanese and European populations) and across diseases
(SZ and BD). In the BD GWAS, a novel association signal was iden-
tified at a locus of the FADS1/2/3 gene (P = 6.4 � 10�9,
OR = 1.18).149 As of these genes are implicated in the regulation of
plasma lipid levels, the results suggest the involvement of lipid abnor-
malities in the pathophysiology of BD. PRS analysis supported the
polygenic nature of BD, which is shared between the Japanese and
European populations.

Genetic variants contribute to interindividual differences in med-
ication response and toxicity. The elucidation of the genetic basis of
interindividual differences in medication response and toxicity will
facilitate precision medicine in psychiatry. Among others, it is impor-
tant to identify genetic variants associated with the risk for clozapine-
induced agranulocytosis or granulocytopenia, as they are potentially
life-threatening conditions observed in approximately 1% of patients
on clozapine treatment. In COCORO, a pharmacogenomic study of
clozapine-induced agranulocytosis or granulocytopenia identified a
significant association with HLA-B*59:01 (P = 3.81 � 10�8,
OR = 10.7).150

In addition to genetic variants, epigenetic mechanisms, including
DNA methylation and histone modification, are suggested to be
involved in the pathogenesis of psychiatric disorders.151 One of the
most studied epigenetic alterations is DNA methylation at CpG sites
of the SLC6A4 gene, which encodes the serotonin transporter
(5-HTT), which has been implicated to be involved in mood and anx-
iety disorders and amygdala reactivity.152 Considering the high preva-
lence of depressive symptoms in SZ patients, one study in COCORO
examined DNA methylation of SLC6A4 in SZ patients.153 This study
identified significant hypermethylation of a CpG site in SLC6A4 in
three independent cohorts of male patients with SZ and demonstrated
that DNA methylation at this CpG site diminished the promoter activ-
ity of SLC6A4. Low-activity alleles of the 5-HTT-linked polymorphic
region (5-HTTLPR) were associated with hypermethylation, and there
was a negative correlation between DNA methylation levels and left
amygdala volumes. These results suggested a pathophysiological role
of epigenetic alterations of SLC6A4 in SZ. There is accumulating evi-
dence that metabolic abnormalities are implicated in the pathophysiol-
ogy of psychiatric disorders.154 Carbonyl stress, which results from
an increase in reactive carbonyl compounds (RCCs) or a decrease in
the detoxification of RCCs, is associated with SZ.155,156 While
patients with SZ have higher levels of advanced glycation end prod-
ucts (AGEs), which are markers of carbonyl stress, the biological
underpinnings remain unclear. One study in COCORO found that
patients with SZ have significantly lower endogenous secretory recep-
tor for AGEs (esRAGE) levels, which alleviates the burden of car-
bonyl stress.157 This study also identified functional variants in the
AGER gene associated with a marked decrease in esRAGE levels.
Another study showed that measuring blood metabolites may be a
useful objective tool for evaluating the severity of MDD.158 In this
study, metabolomic analysis of blood plasma from patients with
MDD was conducted using liquid chromatography mass spectrometry
(LC–MS), and five metabolites were associated with the severity of
MDD regardless of the presence or absence of medication and diag-
nostic differences. Furthermore, several metabolites were indepen-
dently associated with symptoms of MDD, including suicidal
ideation.

Collaborative efforts in COCORO have resulted in the accumula-
tion of more than 29 000 biological materials, including genomic
DNA, blood RNA, immortalized lymphoblasts, serum and plasma.
COCORO has been actively involved in collaborations with interna-
tional genetics consortia. For instance, in collaboration with the
Autism Sequencing Consortium (ASC), the largest exome sequencing
analysis (N > 35,000) to date was conducted for ASD, and 102 risk
genes were identified at a false discovery rate of 0.1.159 Most of these
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genes were enriched in excitatory and inhibitory neuronal lineages,
supporting the implications of an E/I imbalance in ASD. In another
collaborative study with the ASC, postzygotic variants were analyzed
in exome sequencing data from ASD trios (N = �6,000).160 While
the contribution from de novo variants was already established, the
study revealed that 7.5% of these variants are actually postzygotic
variants, highlighting the importance of postzygotic variants in ASD.

Basic Neuroscience
Modeling psychiatric disorders using patient iPSC-
derived neurons
To date, a large number of studies have been conducted to elucidate
the molecular and cellular etiology of psychiatric disorders using
brain imaging and postmortem and animal model studies. Given the
importance of the use of neurons that carry the genetic information of
the patients, findings from studies with iPSC technology are expected
to complement those of these existing studies. iPSC-derived neurons
from patients with SZ were first shown to have impaired neural func-
tion in 2011.161 To date, dozens of SZ studies with iPSC-derived neu-
rons have been reported.162 A series of these studies have elucidated
potential disease-relevant molecular and cellular phenotypes in patient
iPSC-derived neurons.162 However, the details of the molecular and
cellular etiology of these disorders remain unclear. Psychiatrists in
COCORO have gathered detailed patient information, including
genetic, cognitive function, personality trait, neurophysiological and
brain imaging data, which enables targeted modeling of specific clini-
cal features with patient iPSC-derived neurons. Given the heterogene-
ity of psychiatric disorders, to simplify the interpretation of the
experimental results, this patient information would be beneficial for
selecting patients for iPSC reprogramming.

Although many SZ studies with iPSC technology have been
published,162 there are a few pharmacological studies using iPSC-
derived neurons from patients with SZ.163 Recently, a pair of mono-
zygotic twins with treatment-resistant SZ and discordant responses to
clozapine, a drug for treatment-resistant SZ, was recruited by
COCORO. Monozygotic twins with treatment-resistant SZ and dis-
cordant responses to clozapine are extremely rare. The estimated inci-
dence of such cases is only approximately 0.13 to 0.33 pairs per
million patients with SZ.164 iPSCs were generated from their
lymphoblastoid B-cell lines and differentiated into excitatory neurons
by neurogenin 2 overexpression to analyze the molecular mechanisms
underpinning the twins’ discordant responses to clozapine. The
expression level of genes encoding a cell adhesion molecule in iPSC-
derived neurons was different between these patients, suggesting dif-
ferential cell adhesion function as a potential candidate for the molec-
ular mechanism of discordant responses to clozapine.164 In
pharmacological studies using iPSC-derived neurons from patients
with BD, lithium treatment rescued the hyperexcitability of iPSC-
derived neurons from lithium responders but not lithium nonre-
sponders.165,166 Using iPSC-derived neurons from pairs of monozy-
gotic twins with schizoaffective disorder and SZ, lithium treatment
rescued the increased density of inhibitory synapses in iPSC-derived
neurons from patients.167 The findings from these studies clearly
show that patients’ clinical information is indeed indispensable for
not only selecting patients for iPSC reprogramming but also inter-
preting the results, which contributes to the understanding of the
molecular mechanisms behind the interindividual variability in drug
response.

iPSC technology is emerging as a promising tool to analyze
disease-associated rare variants with high penetrance. One such strong
genetic risk factor is 22q11.2 deletion.141 Studies using iPSC-derived
neurons from patients with 22q11.2 deletion revealed that the deletion
resulted in impaired balance from neurogenic to gliogenic compe-
tence, reduced tolerance to ER stress and impaired F-actin
dynamics.168,169

In summary, iPSC technology provides an important approach
for not only elucidating the molecular and cellular etiology of

psychiatric disorders but also developing biomarkers for diagnosis
and treatment efficacy, ultimately leading to molecular and cellular
mechanism-based stratification of patients with psychiatric disorders.
One limitation of iPSC technology is that iPSC-derived neurons do
not provide insight into higher brain function, such as emotion and
cognition. Comprehensive studies using patients’ clinical information,
iPSC-derived neurons from patients and corresponding animal disease
models are valuable for understanding the molecular and cellular eti-
ology of psychiatric disorders.170,171

Translational research on neural circuit function
Mental functions are controlled by neural circuits, and it is necessary
to consider neural circuit mechanisms in the pathogenesis of psychiat-
ric disorders. The basal ganglia, a subcortical structure, consists of
four neuronal nuclei, namely, the striatum/NAc, globus pallidus, sub-
thalamic nucleus, and substantia nigra, which form a loop circuit with
the cerebral cortex and thalamus.172 The pathway from the striatum/
NAc to the substantia nigra reticulata (SNr), which is the output
nucleus to the thalamus, can be divided into a direct pathway, which
projects directly to the SNr, and an indirect pathway, which projects
to the SNr via the globus pallidus and subthalamic nucleus. Neural
circuit manipulation methods, such as optogenetics and reversible
neurotransmission blocking, have been developed to specifically tar-
get the direct and indirect pathways of the basal ganglia in mice, and
it has been shown that the direct and indirect pathways play different
roles in decision making and cognitive learning.172,173 It is assumed
that circuit alterations occur in psychiatric pathologies, resulting in
abnormalities in cognitive behavior and decision making.174

Human imaging studies of subcortical structures in COCORO
have revealed enlargement and asymmetry in the globus pallidus in
SZ patients.98 To investigate the biological significance of these find-
ings, a neural circuit study of the globus pallidus was conducted as a
COCORO basic research project.175 The ventral pallidum, which is
located in the ventral part of the globus pallidus, receives input from
the NAc and has been suggested to be involved in cognitive learning
and mental functions.174 It has been reported that a population of neu-
rons in the ventral pallidum expresses the neuropeptide enkephalin.176

Selective inhibition of enkephalin-positive neurons in the ventral pal-
lidum by reversible neurotransmission blockade had no effect on
reward/avoidance learning. In contrast, selective excitation of
enkephalin-positive neurons in the ventral pallidum by designer
receptors exclusively activated by designer drugs (DREADDs) did
not affect Pavlovian reward learning but impaired inhibitory avoid-
ance learning. The direct pathway of the NAc is specifically involved
in Pavlovian reward learning, while the indirect pathway of the NAc
is specifically involved in inhibitory avoidance learning.172,173 This
suggests that enkephalin-positive neurons in the ventral pallidum
functions downstream of the indirect pathway of the NAc. Although
the neural circuit mechanisms of the ventral pallidum in cognitive
learning have been clarified, the role of the ventral pallidum in the
pathogenesis of SZ remains unclear. Further neural circuit studies will
elucidate the pathogenesis of psychiatric disorders.174 It is necessary
to understand the anatomical and functional characteristics of neural
networks at the whole-brain level. Whole-brain imaging methods in
animals, such as a high-speed serial-sectioning imaging system
named FAST (block-face serial microscopy tomography), will accel-
erate bidirectional translational research between imaging studies in
human patients and neurocircuitry studies in animals.177

Conclusions
Big data analysis with collaborative efforts is necessary for reliable
and reproducible biological evidence in psychiatric disorders. Transla-
tional research to elucidate the pathologies of psychiatric disorders
must be performed based on reliable and reproducible biological evi-
dence in patients. More importantly, clinical, and basic research needs
to be performed bidirectionally through forward translation and
reverse translation to achieve patient-centered translational therapeutic
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research (Fig. 1). We have introduced the activities of COCORO and
highlighted the advantages of collaborative large-scale data analyses
for testing the reproducibility and robustness of the findings.
COCORO is always open for collaboration using a large data set to
contribute to the elucidation of the pathological basis of psychiatric
disorders and overcoming their obstacles.
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