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Abstract

Background: Previous research has shown that the human brain can be repre-

sented as a complex functional network that is characterized by specific topo-

logical properties, such as clustering coefficient, characteristic path length, and

global/local efficiency. Patients with psychotic disorder may have alterations in

these properties with respect to controls, indicating altered efficiency of network

organization. This study examined graph theoretical changes in relation to dif-

ferential genetic risk for the disorder and aimed to identify clinical correlates.

Methods: Anatomical and resting-state MRI brain scans were obtained from 73

patients with psychotic disorder, 83 unaffected siblings, and 72 controls. Topo-

logical measures (i.e., clustering coefficient, characteristic path length, and

small-worldness) were used as dependent variables in a multilevel random

regression analysis to investigate group differences. In addition, associations

with (subclinical) psychotic/cognitive symptoms were examined. Results:

Patients had a significantly lower clustering coefficient compared to siblings

and controls, with no difference between the latter groups. No group differ-

ences were observed for characteristic path length and small-worldness. None of

the topological properties were associated with (sub)clinical psychotic and cog-

nitive symptoms. Conclusions: The reduced ability for specialized processing

(reflected by a lower clustering coefficient) within highly interconnected brain

regions observed in the patient group may indicate state-related network alter-

ations. There was no evidence for an intermediate phenotype and no evidence

for psychopathology-related alterations.

Introduction

The human brain as a complex system has been analyzed

extensively using functional MRI (fMRI). At present,

resting-state fMRI research has predominantly focused on

functional connectivity, that is, temporal correlation

between spatially distinct regions, in specific brain net-

works (Friston and Frith 1995; Rotarska-Jagiela et al.

2010; Ma et al. 2012). Studies have shown that the

spontaneous, low frequency (0.1 Hz) fluctuations of the

blood-oxygenation-level-dependent (BOLD) signal mea-

sured in the absence of a goal-directed task, show a high

degree of coherence and spatial organization and

correspond to functionally relevant resting-state networks

(Fornito et al. 2010). Therefore, it has been postulated

that the resting state represents an intrinsic property of

the functional brain organization.

There are two general methods to measure resting-state

functional connectivity: (1) seed-based correlation analy-

sis, which is hypothesis-driven; and (2) independent
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component analysis (ICA), which is a multivariate,

model-free, data-driven method (Karbasforoushan and

Woodward 2012). More recently, another method for

analyzing resting-state fMRI at a whole brain level has

been introduced, called graph theory. In graph theory, the

human brain is described and analyzed as a graph (net-

work) with brain regions as graph nodes and the func-

tional connection between nodes as graph edges (Bassett

and Bullmore 2006; Bullmore and Sporns 2009; Newman

2010; Fan et al. 2011); also known and for the first time

described as the human connectome (Sporns et al. 2005).

Studies using graph analysis have shown that the human

brain demonstrates small-world properties, meaning that

the network has a highly clustered local connectivity

(greater than in a random network) and that there is a

shorter path length (in terms of shortest distance)

between brain regions than would be expected in a regu-

lar network (Watts and Strogatz 1998; Achard et al.

2006). Small-world networks support both local special-

ization and global integration, and confer resilience

against pathological influences (Achard and Bullmore

2007), but also maximize the efficiency of information

processing at a low wiring cost (Ding et al. 2011). This

small-world construction is noticeable in both structural

and functional brain networks at the whole brain level

(Ding et al. 2011; Alexander-Bloch et al. 2013a).

Recently, graph theoretical methods have been applied

to better understand the brain and its dysconnectivity in

psychiatric disorders, such as schizophrenia (Karbas-

foroushan and Woodward 2012). These few studies have

shown that patients with schizophrenia have alterations in

diverse topological properties of the functional human

brain network with respect to controls (Liu et al. 2008;

Bullmore and Sporns 2009; Alexander-Bloch et al. 2010;

Ma et al. 2012). That is, functional networks of patients

with schizophrenia have been characterized by reduced

small-worldness, and reduced clustering coefficient and

local efficiency (i.e., reduced specialized local information

processing) (Liu et al. 2008; Alexander-Bloch et al. 2010;

Lynall et al. 2010; Yu et al. 2011; Fornito et al. 2012). In

addition, a longer characteristic path length and lower

global efficiency (i.e., reduced ability to specialized paral-

lel information processing between dispersed brain

regions) have been found in schizophrenia (Liu et al.

2008; Yu et al. 2011) but there are also reports of shorter

path length and higher global efficiency (Alexander-Bloch

et al. 2010; Lynall et al. 2010). In other words, the evi-

dence to date suggests that functional brain networks

have a more random organization in patients with

schizophrenia than in healthy controls. There are not

many family or twin studies with a graph theoretical net-

work design. A study in healthy monozygotic and dizy-

gotic twins has shown that brain network functional

connectivity has heritable cost-efficient properties (For-

nito et al. 2011). In addition, a graph theoretical network

study of patients with schizophrenia and first-degree rela-

tives of patients has shown similar functional network

randomization between these two groups, suggesting that

this represents a marker of familial risk (Lo et al. 2015).

The thus far more frequently used traditional methods

(seed-based correlation, ICA) consistently showed that

unaffected siblings/first-degree relatives share functional

connectivity network alterations with their affected sib-

lings (e.g., Whitfield-Gabrieli and Ford 2012; Fornito

et al. 2013; Su et al. 2013), with only a few exceptions,

for example, (Repovs et al. 2011; Khadka et al. 2013).

Furthermore, insight into the role of functional brain net-

work may yield (intermediate) phenotypes derived from

clinical-behavioral correlations of these topological mea-

sures. Previous research suggests that the complex clinical

presentations (psychotic symptoms and cognitive alter-

ations) of schizophrenia may be related to abnormal inte-

gration between spatially distinct brain areas and

inefficient information processing (Bullmore et al. 1997;

Friston 1998; Stephan et al. 2006; Wang et al. 2012)

which, from a graph theoretical network perspective,

would be supported by reduced clustering coefficient,

reduced local efficiency, longer path length, and lower

global efficiency. To date, only few studies investigated

the association between topological organization and

symptoms of schizophrenia (Liu et al. 2008; Lynall et al.

2010; Yu et al. 2011). Two of these studies did not find

an association between topological measures and clinical

correlates, but Yu et al. (2011) reported that negative

symptoms were associated with a longer characteristic

path length and lower global efficiency, whereas no asso-

ciation with positive symptoms was found.

Following from the above, we hypothesized that

patients with psychotic disorder and unaffected siblings

would reveal abnormalities in topological properties of

brain network connectivity (i.e., reduced small-worldness,

reduced clustering coefficient, and increased path length).

In addition, exploratory analyses were performed to

investigate the associations between topological measures

and symptomatology (i.e., positive and negative symp-

toms, disorganization, excitement, emotional distress, as

well as neuro- and social cognition).

Methods

Participants

Data pertain to baseline measurements of a longitudinal

MRI study in Maastricht, the Netherlands. For recruit-

ment and inclusion criteria of patients, their siblings and

healthy controls, see Habets et al. (2011). Diagnosis was
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based on the Diagnostic and Statistical Manual of Mental

Disorder-IV (DSM-IV) criteria (American Psychiatric

Association, 2000), assessed with the Comprehensive

Assessment of Symptoms and History (CASH) interview

(Andreasen et al. 1992). The CASH was also used to con-

firm the absence of a diagnosis of nonaffective psychosis

in the siblings and absence of a lifetime diagnosis of any

psychotic disorder or current affective disorder in the

healthy controls. The occurrence of any psychotic disor-

der in first-degree family members also constituted an

exclusion criterion for the controls. Before MRI acquisi-

tion, participants were screened for the following exclu-

sion criteria: (1) brain injury with unconsciousness of

>1 h, (2) meningitis or other neurological diseases that

might have affected brain structure or function, (3) car-

diac arrhythmia requiring medical treatment, and (4) sev-

ere claustrophobia. In addition, participants with metal

corpora aliena were excluded from the study, as were

women with an intrauterine device and (suspected) preg-

nancy.

The sample comprised 73 patients with psychotic disor-

der, 83 siblings of patients with psychotic disorder, and

72 controls. Forty-six families participated: 25 families

with one patient and one sibling, three families with one

patient and two siblings. One family with two patients,

six families with two siblings, and two families with one

patient and three siblings. In the control group, there

were nine families with two siblings. In addition, 41 inde-

pendent patients, 34 independent siblings, and 54 inde-

pendent controls were included.

Patients were diagnosed with: schizophrenia (n = 47),

schizoaffective disorder (n = 9), schizophreniform disor-

der (n = 4), brief psychotic disorder (n = 2), and psy-

chotic disorder not otherwise specified (n = 11). Ten

controls and 16 siblings were diagnosed (lifetime) with

major depressive disorder, but none of them presented in

a current depressive state.

The standing ethics committee approved the study, and

all the subjects gave written informed consent in accor-

dance with the committee’s guidelines and with the Dec-

laration of Helsinki (Nylenna and Riis 1991).

Clinical assessment

The positive and negative syndrome scale (PANSS) (Kay

et al. 1987) was used to measure recent symptomatology.

The Five Factor Model by van der Gaag (2006) was used,

dividing the PANSS in Positive symptoms, Negative

symptoms, Disorganization symptoms, Excitement, and

Emotional Distress (van der Gaag et al. 2006). Siblings

and healthy controls were assessed with the Structured

Interview for Schizotypy-revised (SIS-R) (Vollema and

Ormel 2000) to assess schizotypy.

Educational level was defined as highest accomplished

level of education. Handedness was assessed using the

Annett Handedness Scale (Annett 1970).

Neuropsychological assessment

Attention/vigilance was assessed using a Continuous Per-

formance Test (CPT-HQ) with working memory (WM)

load, also known as CPT-AX (Nuechterlein and Dawson

1984) (longer reaction times reflecting worse perfor-

mance). The Wechsler Adult Intelligence Scale (WAIS)-III

(Wechsler 1997) subtest Arithmetic was used to measure

WM, which addresses both verbal comprehension and

arithmetic skills. Two areas of social cognition that have

been associated with psychotic symptoms were investi-

gated, that is, facial emotion processing and theory of

mind (ToM) (Penn et al. 2008; de Achaval et al. 2010).

Facial emotion processing was measured with the

Degraded Facial Affect Recognition task (DFAR) using

the overall proportion of correct answers (van ‘t Wout

et al. 2004), whereas ToM was assessed using the raw

scores of the hinting task (Versmissen et al. 2008). The

hinting task assesses the mentalizing-capacity required to

comprehend real intentions behind indirect speech. For

the Arithmetic, DFAR and hinting task, higher scores

indicate better performance.

Substance use

Substance use was measured with the Composite Interna-

tional Diagnostic Interview (CIDI) sections B, J, and L

(WHO, 1990). Use of cannabis and other drugs was based

on the lifetime number of instances of drug use. CIDI fre-

quency data on lifetime cannabis use were available for

220 participants (4% missing data). Data on other drug

use were available for 223 participants (2% missing data).

Data on cigarette smoking and alcohol use were available

for 212 participants (7% missing data) and 206 partici-

pants (9% missing data), respectively.

Antipsychotic medication use

In the patient group, antipsychotic medication use was

determined by patient reports and verified with the treat-

ing consultant psychiatrist. Best estimate lifetime (cumu-

lative) antipsychotics (AP) use was determined by

multiplying the number of days of AP use with the corre-

sponding haloperidol equivalents and summing these

scores for all periods of AP use (including the exposure

period between baseline assessment for the G.R.O.U.P.

study and the moment of baseline MRI scanning), using

the recently published conversion formulas for AP dose

equivalents described in Andreasen et al. (2010).
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MRI acquisition

Functional and anatomical MRI images were acquired

using a 3T Siemens Magnetom Allegra head scanner

(Siemens Medical System, Erlangen, Germany). The func-

tional resting state data were acquired using an echo-

planar imaging (EPI) sequence: number of volumes: 200;

echo time (TE): 30 msec; repetition time (TR):

1500 msec; voxel size: 3.5 9 3.5 9 4 mm3; flip angle 90°;
total acquisition time: 5 min. During the scan, partici-

pants were instructed to lie with their eyes closed, think

of nothing in particular, and not fall asleep. In addition,

anatomical MRI scans had the following acquisition

parameters: (1) Modified Driven Equilibrium Fourier

Transform (MDEFT) sequence: number of slices: 176;

voxel size: 1 mm isotropic; TE: 2.4 msec; TR: 7.92 msec;

inversion time: 910 msec; flip angle: 15°; total acquisition
time: 12 min 51 sec; (2) Magnetization Prepared Rapid

Acquisition Gradient-Echo (MPRAGE; Alzheimer’s Dis-

ease Neuroimaging Initiative) sequence: number of slices:

192; voxel size: 1 mm isotropic; TE: 2.6 msec; TR:

2250 msec; inversion time: 900 msec; flip angle 9°, total
acquisition time: 7 min 23 sec. The matrix size was

256 9 256 and field of view was 256 9 256 mm2. Two

sequences were used because of a scanner update during

data collection. The MPRAGE and MDEFT are very simi-

lar, but to prevent systematic bias, the total proportion of

MPRAGE scans (44%) was balanced between the groups.

Data preprocessing and analysis

Image preprocessing was carried out on a Macintosh using

the fMRI Signal Processing Toolbox (SPT v1.1), University

of Cambridge as described in Jo et al. (2013) and Patel

et al. (2014). The first four volumes of each resting state

data set were removed to eliminate the nonequilibrium

effects of magnetization. Preprocessing steps included

slice-time correction, temporal despiking, temporal band-

pass filtering (0.02–0.1 Hz), coregistration to structural

scan, spatial normalization, and spatial smoothing (6-mm

full-width at half-maximum Gaussian kernel). This tool-

box corrects for motion by regressing out motion parame-

ters, their first temporal derivatives, and cerebrospinal

fluid (CSF) signal from ventricular regions.

The fMRI data were segmented into 90 regions (45 for

each hemisphere) using the anatomically labeled template

(AAL) reported by Tzourio-Mazoyer et al. (2002). Regio-

nal mean time series over all voxels in each of the regions

were computed and constituted the set of regional mean

time series used for Pearson correlation analysis. Func-

tional connectivity was then estimated by calculating the

correlation between the mean time series of each pair of

brain regions for each subject. A Fisher’s r-to-z

transformation was used on the Pearson correlation

matrix in order to improve the normality of the Pearson

correlation coefficients. Binary graphs were constructed

by thresholding each subject’s correlation matrix using a

minimum spanning tree (MatLab BGL toolbox, http://

dgleich.github.io/matlab-bgl/) followed by global thresh-

olding (Alexander-Bloch et al. 2010). In this sense, edges

represented the correlations that were greater than the

threshold, whereas no edges existed when the threshold

was not surpassed. Graphs were constructed over a range

of network costs, ranging from 0.1 to 0.9 at intervals of

0.05. The network cost refers to the number of edges in

proportion to all possible edges included in the graph,

such that at a cost equal to one there would be edges

from each node to every other node (Alexander-Bloch

et al. 2013b). Group differences on topological properties

were measured using a summary statistic following

Alexander-Bloch et al. (2010), that is, the mean of each

topological measure was calculated over the range of costs

from 0.3 to 0.5 (Fig. 1). Reasons to choose this range

were: (1) previous work suggests that above a cost of 0.5

graphs become more random (Humphries et al. 2006),

and less small-world; and (2) topological measures are

rather constant over this range (Alexander-Bloch et al.

2010).

Topological properties of the brain functional network

were calculated with the Brainnetome toolkit (BRAT:

http://www.brainnetome.org/brat). The topological mea-

sures that were used for group analyses included the (1)

clustering coefficient (extent of the local density or

cliquishness of a network), (2) shortest characteristic path

length, and (3) small-world properties (Liu et al. 2008;

Rubinov and Sporns 2010) (see Data S1 for detailed

description of these measures).

Statistical analyses

For every participant, the topological measures (i.e., clus-

tering coefficient, shortest characteristic path length, and

small-world properties) were exported to STATA version

12 (StataCorp., 2011).

Group differences in topological measures were ana-

lyzed by fitting multilevel random regression models

(Goldstein 1987) given hierarchical clustering, occasioned

by the fact that participants were clustered in families,

compromising statistical independence of the observa-

tions. This was done using the XTREG command in

STATA (StataCorp 2011). Topological measures were the

dependent variables and group was the independent vari-

able. Group was entered as linear and dummy variables

(controls = 0, siblings = 1, patients = 2). Analyses were

adjusted for the a-priori hypothesized confounders: age,

sex, handedness, and level of education. In separate
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Figure 1. Topological measures of each

group. Mean clustering coefficient (A),

characteristic path length (B) and small-

worldness (C) for patients with psychotic

disorder (red squares), siblings of patients

with psychotic disorder (green triangles)

and controls (blue diamonds) as a function

of cost. Error bars correspond to standard

error of the mean. The dotted lines

represent the cost range (i.e., 0.30–0.50)

that was used to calculate the mean of

each topological measure.
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analyses, correction for the additional confounders

tobacco, alcohol, cannabis, and other drugs was applied.

Although not previously investigated, these confounders

may affect the topological measures since studies have

shown that these substances have an influence on func-

tional connectivity (Volkow et al. 2008; Roberts and Gar-

avan 2010; Tomasi et al. 2010; Ma et al. 2011; Ding and

Lee 2013). The patient population included 26 patients

with a diagnosis other than schizophrenia. Planned sensi-

tivity analyses were conducted by excluding these individ-

uals from the analyses. Furthermore, to examine whether

participants of the combined sibling and control group

with higher schizotypy scores would be more similar to

patients with respect to the topological outcome mea-

sures, analyses were repeated with a low and high schizo-

typy group (based on the median score). Schizotypy was

based on SIS-r mean scores on referential thinking, suspi-

ciousness, magical ideation, illusions, psychotic phenom-

ena, derealization/depersonalization, social isolation,

introversion, sensitivity, restricted affect, disturbances in

associative and goal-directed thinking, poverty of speech,

and eccentric behavior were entered in the analyses.

Associations between topological measures (independent

variable) and (subclinical) psychotic symptoms/(social)

cognitive performance (dependent variable) were exam-

ined. In patients, the association between three topological

measures and five PANSS psychotic symptoms (positive,

negative, disorganized, excitement, and emotional distress)

was corrected for age, sex, lifetime AP exposure, and illness

duration. In siblings and controls the association between

topological measures and subclinical psychotic symptoms

(SIS-r) was corrected for group, age, and sex.

Associations with (social) cognitive performance were

investigated in the combined group (of patients, siblings,

and controls). To examine whether the association

between topological measures and (social) cognitive per-

formance (dependent variable) would be conditional on

group, interactions were tested between group and three

topological measures. In case of significant interactions,

stratified effect sizes for the topological measures were

calculated for each group using the Stata MARGINS rou-

tine. Analyses with (social) cognitive performance were

corrected for group, age, sex, handedness, and educational

level. Since these analyses were exploratory in nature, in

order to generate hypotheses, we used a statistical signifi-

cance level of P < 0.05 (uncorrected).

Associations between AP medication and topological

measures were analyzed in patients, with AP medication

as independent variable and age, sex, and illness duration

as confounders.

To control for type I error, significant P-values were

subjected to correction for multiple testing using the

Simes method (Simes 1986). The Simes method avoids

overcorrection associated with the Bonferroni correction

if the statistical tests are not independent, as was the case

in this study.

Results

Descriptive analyses

Table 1 shows the characteristics of the three groups.

There were more men than women in the patient group,

whereas the opposite held for the control group. Patients

Table 1. Demographic characteristics of participants.

Patients

(N = 73)

Siblings

(N = 83)

Controls

(N = 72)

Age at scan 27.8 (6.6) 29.6 (9.1) 30.0 (10.8)

Sex n (%) male 49 (65%) 45 (54%) 26 (36%)

Handedness 72.1 (63.9) 80.1 (53.8) 73.5 (61.2)

Level of education 4.2 (2.0) 5.2 (1.9) 5.4 (1.8)

PANSS positive 9.7 (4.1) 7.4 (1.5) 7.3 (1.2)

PANSS negative 11.9 (6.1) 8.5 (2.2) 8.2 (1.0)

PANSS

disorganization

12.0 (3.3) 10.4 (1.0) 10.2 (1.2)

PANSS excitement 9.9 (2.9) 8.6 (1.4) 8.3 (1.1)

PANSS emotional

distress

12.7 (5.2) 9.9 (2.7) 9.3 (2.1)

SIS-r-positive

subscale

0.6 (0.4) 0.5 (0.5)

SIS-r-negative

subscale

0.3 (0.3) 0.3 (0.2)

WAIS-III arithmetic 12.5 (4.2) 15.3 (3.7) 15.5 (4.1)

CPT-HQ reaction

time

442.3 (91.8) 414.9 (76.6) 412.3 (82.7)

DFAR 71.2 (10.4) 71.8 (8.4) 73.0 (8.6)

Hinting task 18.0 (2.9) 19.2 (1.3) 19.3 (1.1)

Cannabis use1 37.2 (99.5) 6.7 (41.4) 6.0 (43.8)

Other drug use2 21.2 (68.3) 0.5 (4.4) 5.2 (43.5)

Cigarettes use3 11.4 (11.0) 2.6 (6.2) 1.9 (6.1)

Alcohol use4 6.7 (13.0) 10.1 (17.7) 5.1 (7.2)

Age of onset

(years)

21.4 (6.8)

Illness duration

(years)

6.4 (3.7)

Lifetime exposure

to AP1
7022.9 (6711.3)

SD, standard deviation; PANSS, positive and negative syndrome scale;

SIS-r, Structured Interview for Schizotypy-revised; WAIS, Wechsler

Adult Intelligence Scale; CPT-HQ, continuous performance test; DFAR,

degraded facial affect recognition; AP, antipsychotics.

Means (SDs) are reported.
1Number of times past year.
2Number of times past year.
3Average number of daily consumptions over the last 12 months.
4Average number of weekly consumptions over the last 12 months.
5Cumulative exposure to AP medication, expressed in haloperidol

equivalents.
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had lower educational level than controls and siblings.

The study comprised a relatively stable patient group as

reflected by the low PANSS scores. Patients had lower

scores on the arithmetic and hinting task compared to

controls and siblings, indicating worse WM and ToM.

Patients had a longer reaction time on the CPT-HQ com-

pared to controls, reflecting a worse span of attention/vig-

ilance. No differences in performance were observed for

the DFAR task (emotion processing).

Out of 73 patients, 64 used AP medication at the time

of scanning (second generation: n = 60; first generation:

n = 4). The mean current dosage of AP medication in

terms of standard haloperidol equivalents was 5.3 mg

(SD = 4.8 mg). Furthermore, 12 patients used antidepres-

sants, three used benzodiazepines, five used anticonvul-

sants, and one used lithium. Two siblings and two

controls used antidepressants, and one control used ben-

zodiazepines.

Associations between group and topological
measures

Figure 1 supports the abovementioned reasons for choos-

ing the range of costs applied in this study to calculate

each topological measure. In two of the three measures,

patients were significantly different from controls, with a

lower clustering coefficient and shorter path length com-

pared to siblings and controls. The siblings did not differ

significantly from controls and did not have intermediate

values in any of these measures. With regard to small-

worldness: although networks in all groups were small-

world (r > 1), which may indicate that they generally

had greater than random clustering but a near-random

path length, small-worldness was not significantly differ-

ent between the three groups.

The significant findings for the clustering coefficient were

upheld after Simes correction (Psimes < 0.01) (Table 2).

Repeating the analyses correcting for additional con-

founders (tobacco, alcohol, cannabis and other drugs) or

including only patients with a diagnosis of schizophrenia

did not affect the pattern of results (Tables S1 and S2).

Additionally, results did not change when topological

measures of the patient group were compared with those

of the high and low schizotypy group, that is patients had

a reduced clustering coefficient compared to the high and

low schizotypy group, whereas the latter two did not dif-

fer from each other (Table 3).

No group differences were found for small-worldness

and characteristic path length after Simes correction

(Psimes < 0.01) (Table 3).

Association between topological measures
and PANSS scores in patients with psychotic
disorder

There was a significant negative association between the

clustering coefficient and negative symptoms, although

statistically imprecise by conventional alpha (clustering

coefficient: B = �32.118, P = 0.017) after Simes correc-

tion (Psimes < 0.003). No associations were found for the

positive, disorganized, excitement, or emotional distress

PANSS symptom domains (Table 4).

In the combined sibling and control group, there were

no significant associations between topological measures

and subclinical positive or negative symptoms.

Association between topological measures
and cognitive symptoms

No significant group 9 topological measure interactions

in the models of cognitive symptoms (i.e., WM, attention,

emotion processing, ToM) were found (Table 5). In the

whole group, there were no significant associations

between topological measures and cognitive symptoms.

Association between topological measures
and AP medication

There was no significant association between lifetime AP

use and any of the topological measures: clustering

Table 2. Associations between group and topological outcome measures.

Average cost

range 0.3–0.5

Mean (SD) of topological measures per group Group differences on topological measures

Patients Siblings Controls Linear trend P vs. C S vs. C P vs. S

Small-worldness 1.173 (0.097) 1.170 (0.106) 1.152 (0.096) 0.015 (0.078) 0.030 (0.075) 0.028 (0.077) 0.002 (0.876)

Clustering coefficient 0.628 (0.062) 0.649 (0.044) 0.642 (0.048) �0.012 (0.006)* �0.024 (0.006)* 0.003 (0.760) �0.027 (0.001)*

Path length 1.662 (0.063) 1.678 (0.066) 1.674 (0.060) �0.011 (0.047) �0.021 (0.047) �0.001 (0.885) �0.020 (0.044)

SD, standard deviation; S vs. C, siblings versus controls; P vs. C, patients versus. controls; P vs. S, patients versus siblings.

Reported are Bs and P-values (in brackets). Bs represent the regression coefficients of the multilevel regression analyses.

*Represent topological measures which are significant after Simes correction (PSimes < 0.01).
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coefficient (B < 0.000, P = 0.775), path length

(B < 0.000, P = 0.335), and small-worldness (B < 0.000,

P = 0.888).

Discussion

Resting-state functional brain networks were constructed

and it was examined whether the topological properties

of these networks would present possible brain (endo)

phenotypes associated with psychotic disorder. Results

showed that patients with psychotic disorder had a lower

clustering coefficient compared to siblings and controls,

which was trend-significantly associated with negative

symptoms. No significant group differences were found

for path length, and small-worldness.

Altered topological properties in patients
with psychotic disorder

The functional brain network of patients with psychotic

disorder showed disturbed topological properties (i.e.,

lower clustering coefficient) compared to siblings and

controls, which is consistent with prior fMRI and EEG

studies on functional brain networks in patients with

schizophrenia and healthy controls (Liu et al. 2008; Rubi-

nov et al. 2009; Alexander-Bloch et al. 2010; Lynall et al.

Table 3. Associations between patient-schizotypy groups and topological measures.

Average cost

range 0.3–0.5

Mean (SD) of topological measures per group Group differences on topological measures

Patients

(n = 73) HS (n = 72) LS (n = 83) Linear trend P vs. LS HS vs. LS P vs. HS

Small-worldness 1.173 (0.097) 1.167 (0.101) 1.158 (0.103) 0.007 (0.389) 0.015 (0.374) 0.002 (0.902) 0.013 (0.448)

Clustering coefficient 0.628 (0.062) 0.646 (0.049) 0.646 (0.044) �0.012 (0.005)* �0.025 (0.003)* 0.002 (0.773) �0.027 (0.001)*

Path length 1.662 (0.063) 1.675 (0.059) 1.677 (0.067) �0.009 (0.056) �0.020 (0.046) 0.001 (0.947) �0.021 (0.045)

SD, standard deviation; P vs. LS: patients versus; low schizotypy; HS vs. LS: high schizotypy versus low schizotypy; P vs. HS: patients versus high

schizotypy.

Reported are Bs and P-values (in brackets). Bs represent the regression coefficients of the multilevel regression analyses.

*Represent topological measures which are significant after Simes correction (PSimes < 0.01).

Table 4. Associations between topological measures and psychotic symptoms.

Average cost range 0.3–0.5 Positive Negative Disorganized Excitement Emotional distress

Small-worldness �7.178 (0.230) �2.345 (0.786) �5.171 (0.285) �4.947 (0.250) �10.199 (0.178)

Clustering coefficient 8.222 (0.401) �32.118 (0.017) 1.853 (0.814) �1.315 (0.853) �0.168 (0.989)

Path length 8.920 (0.303) �14.459 (0.240) 1.747 (0.804) 1.799 (0.774) 2.588 (0.816)

No interactions were significant after Simes correction (PSimes < 0.003).

Reported are Bs and P-values (in brackets).

Table 5. Associations between topological measures and cognitive performance and topological measures 9 group interactions on cognitive

performance.

Main effect Interaction

Arithmetic Attention

Emotion

processing

Theory of

mind (ToM) Arithmetic Attention

Emotion

processing ToM

B P B P B P B P v2 P v2 P v2 P v2 P

Small-

worldness

�2.90 0.244 85.96 0.155 6.76 0.320 0.66 0.614 2.16 0.340 1.26 0.534 0.08 0.961 0.28 0.868

Clustering

coefficient

0.64 0.892 �131.45 0.246 �21.70 0.084 0.70 0.779 1.20 0.549 0.04 0.982 1.18 0.554 1.91 0.386

Path length 3.77 0.339 �124.50 0.174 �9.59 0.351 0.13 0.949 3.30 0.192 3.36 0.187 0.05 0.975 1.29 0.525

The B-values represent the regression coefficients from multilevel random regression analysis in Stata; P values refer to between group differences;

the v2 and corresponding P-values represent the results of the Wald test.

Brain and Behavior, doi: 10.1002/brb3.508 (8 of 13) ª 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Cerebral Connectivity in Psychotic Disorder S. C. T. Peeters et al.



2010; Micheloyannis 2012). The clustering coefficient is a

measure of functional segregation, which is the ability for

specialized processing to occur within highly intercon-

nected brain regions (Rubinov and Sporns 2010). Thus,

the present results indicate that the functional network of

patients with psychotic disorder has fewer functional

interconnections and as a consequence is less efficient in

local information transfer. Research suggests that the

association of regions within clusters is highly suitable for

efficient recurrent processing (Sporns et al. 2004), as well

as efficient information exchange (Latora and Marchiori

2001). It is speculated that in networks of patients with

psychotic disorder disrupted local information transfer

may be associated with rigid communication between

brain regions, clinically expressed as suboptimal function-

ing (e.g., reduced cognitive performance).

The characteristic path length is the most commonly

used measure of functional integration, that is, the ability

to quickly combine specialized information from dis-

persed brain regions (Rubinov and Sporns 2010). The

similar characteristic path length that was found in the

three groups suggests that the interactions between and

across cortical regions are preserved and consequently the

information transfer between brain regions is similarly

fast and efficient in patients with psychotic disorder com-

pared to siblings and controls. These results contrast pre-

vious research reporting a shorter characteristic path

length (Alexander-Bloch et al. 2010; Lynall et al. 2010) or

the reverse (longer characteristic path length) (Liu et al.

2008; Yu et al. 2011) in patients with psychotic disorder

compared to healthy controls. Of note, the sample size of

this study (N = 228) was considerably higher compared

to other studies (N < 62). Besides dissimilarities in sam-

ple size, differences in results between studies could be

due to variability in the methods used to threshold the

data. For example, in the studies conducted by Liu et al.

(2008) and Yu et al. (2011) thresholds were chosen based

on a small-world regime, whereas Alexander-Bloch and

this study used an alternative method for thresholding

the data (i.e., global thresholding based on a minimum

spanning tree). In conclusion, the current evidence sug-

gests that patients with psychotic disorder have functional

network alterations although methodological differences

across studies preclude definite conclusions. Therefore,

using more standardized methods across symptom-based

and/or intermediate phenotypes may help to improve the

level of evidence.

Contrary to our hypothesis, there were no small-world

group differences. Small-world networks support both

local specialization and global integration, possibly con-

ferring resilience against pathological influences (Achard

and Bullmore 2007). However, it has to be noted that

resilience to attack (i.e., removal of nodes from the

network) is associated with a heavy-tailed degree distribu-

tion (i.e., suggesting the presence of “hubs”), which was

not found in the small-world model of Watts and Stro-

gatz (1998). Functional integration and functional segre-

gation are two major organizational values of the

functional human brain. Once the balance between func-

tional segregation (local specialization) and functional

integration (global integration) is disturbed, small-world

organization may become more random (Rubinov and

Sporns 2010). In other words, if a network has a lower

average clustering coefficient and shorter characteristic

path length (reduced small-worldness) it has a higher

resemblance to random networks (Watts and Strogatz

1998). Previous graph theoretical studies have shown

reduced small-world organization in patients with

schizophrenia (Liu et al. 2008; Alexander-Bloch et al.

2010). The contrast between previous and current find-

ings may be attributed to the similar functional integra-

tion (characteristic path length) between patients and

controls found in this study. It could be hypothesized

that decreased small-worldness may arise if either the

increase or decrease in path length comes at the cost of a

disproportionate decrease in clustering (Alexander-Bloch

et al. 2010) (representing a consequential shift in the bal-

ance between functional integration and segregation

which was not noticeable in this study). However,

although the small-world measure provides insight into

the organization of the functional brain network, it

should not be regarded as a substitute for specific topo-

logical measures of integration (clustering coefficient) and

segregation (path length) (Rubinov and Sporns 2010).

In conclusion, the present results indicate that the net-

works of patients with psychotic disorder are less effec-

tively organized for local communication (i.e., reduced

clustering coefficient) but with similar global communica-

tion (i.e., similar path length) as siblings and healthy con-

trols. Thus, the reduced ability for local specialized

processing only observed in the patient group may indi-

cate state-related network alterations.

Topological properties in siblings of
patients with psychotic disorder

Siblings of patients with psychotic disorder did not reveal

similar topological alterations as patients with psychotic

disorder, which is consistent with results from our previ-

ous study, using the same sample but another graph theo-

retical outcome measure (Peeters et al. 2015). In that

study, there was no conclusive evidence for an endophe-

notype at the whole brain level. However, additional sen-

sitivity analyses revealed that participants with high

schizotypy scores had intermediate values between

patients and the low schizotypy group at a hemispheric
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level (Peeters et al. 2015). A recent graph theoretical net-

work study of patients with schizophrenia and first-degree

relatives of patients did reveal a reduced clustering coeffi-

cient in both groups with respect to controls (Lo et al.

2015). In comparison with this study, a smaller sample

size (n = 79) was used, as well as absolute wavelet corre-

lation matrices to construct binary undirected graphs.

Although this study provided evidence that, at a whole

brain level, patients (but not siblings) can be distin-

guished from controls, it does not exclude the possibility

that topological intermediate phenotypes are more subtly

distributed throughout the brain (only detectable at the

level of specific brain circuits). Therefore, we are currently

investigating the brain’s modular community structure,

which is linked to network development (Alexander-Bloch

et al. 2010), in order to examine developmental network

endophenotypes of psychotic disorder (which was beyond

the scope of this study).

Association between topological measures
and clinical/subclinical symptoms

To examine the effects of the investigated topological

measures on behavior, this study examined the associa-

tions between the topological measures and (subclinical)

psychotic/cognitive symptoms. There was no conclusive

proof for associations between any of the measures and

psychosis-related symptomatology, although the associa-

tion between negative symptoms and lower clustering

coefficient in patients with psychotic disorder was trend-

significant after Simes correction. This may indicate that

more severe negative symptoms are associated with less

efficient local information transfer, either or not due to

AP medication use. However, a previous graph theoretical

study found an association between negative symptoms

and different topological properties (i.e., characteristic

path length and global efficiency) which was not observed

in this study (Yu et al. 2011). These inconsistencies may

be due to the analyzing techniques used by the two stud-

ies. That is, this study used Pearson correlation analysis

to construct the functional connectivity matrices, whereas

Yu et al. (2011) constructed functional connectivity

matrices via partial correlation of ICA time courses. Also,

in the latter study an uncorrected P-value was used which

raises concern about an elevated Type I error rate.

A possible explanation for the absence of conclusive

findings may be that (subclinical) psychotic/cognitive

problems are related to more specific brain circuits and

therefore may not be observed at a whole brain level.

Consequently, future endeavors should focus on associa-

tions between symptomatology and topological properties

in specific networks or modules. Another explanation for

the inconclusive findings may be that most patients were

in clinical remission, as reflected by the relatively low

PANSS scores with little variance.

Methodological considerations

Particular strengths of this study are as follows: (1) the

large sample size; (2) the inclusion of patients that are

representative of the general population; (3) the inclusion

of unaffected siblings of patients with psychotic disorder;

(4) the availability of (sub)clinical symptom measures.

The average illness duration of the patients included in

this study was 6.4 years and patients were in a relatively

stable clinical state, which may make it difficult to gener-

alize the present results to a more chronic or severely ill

group of patients.

Most of the patients in this study were receiving sec-

ond-generation AP medication at the time of scanning.

The effect of AP medication on topological network mea-

sures has, to our knowledge, only been investigated in

healthy subjects (Achard and Bullmore 2007). This study

acquired and analyzed fMRI data from younger volun-

teers (n = 51) and older volunteers (n = 11), each

scanned using a resting-state on two different occasions

(placebo or sulpiride 400 mg). Results showed that dopa-

mine antagonists reduced local and global efficiency of

the network. However, in this study there was no main

effect of AP on any of the topological measures.

Multiple choices are currently available for estimating

the functional connectivity between brain areas, such as

partial correlation, Pearson correlation, mutual informa-

tion, and wavelet correlation. To our knowledge, only

one study has investigated the effect of different correla-

tion metrics on functional brain networks. They indicated

that brain networks have efficient small-world properties

regardless of the correlation metric used, but significant

differences exist in both global and regional topological

parameters, with Pearson correlation analyses revealing

the most reliable results (Liang et al. 2011). Additional

studies are needed to address this question, such that

future studies can use a uniform correlation metric,

which would enhance the comparison between studies.
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