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Abstract: Core–shell acrylic copolymer latexes containing bio resourced itaconic acid with different
compositions in respect with the core and shell segments were synthesized, characterized, and
applied as coating materials for leather. The purpose of the study was to evidence the high coating
performance of the latexes when the ratio of the core/shell differed from 90/10 to 50/50 wt %.
The copolymers were prepared via emulsion copolymerization technique and the products were
isolated and characterized by means of structure identity, thermal behavior (DSC and DMTA), coating
performance. The particle size of the latexes varied from 83 to 173 nm with the variation of the ratio
of core/shell segments. The influence of the composition of soft part and hard part was highlighted
in the thermal and coating properties. The optimal composition giving the best coating performance
could be determined as DS 60/40. Further increase of the hard segment content, resulted in decreased
emulsion stability and the coating performance on the leathers. The use of itaconic acid seemed to
increase the emulsion stability as well the adhesion of the latexes to the substrate.

Keywords: copolymers; core–shell; acrylate; latex; coating; leather finishing

1. Introduction

Leather finishing is regarded as a stepwise process occurring in the final stage of
leather manufacturing, and it is considered very important, as the final properties of leather
goods such as appearance, coverage of surface defects and scratches, glossiness, feel, touch,
color uniformity, fashionable effects, and patterns as well as mechanical and weathering
resistance properties are defined. There are several factors that influence the finishing
process, such as the characteristics of the leather, chemical products and formulation
employed, and operating systems. However, the main factor effecting the appearance and
performance of the leather surface is the coating composition. For this purpose, many
categories of chemical products are used, i.e., pigments, waxes, binders, lacquers and other
auxiliaries. Among these, acrylic latexes play the major role on leather properties, as they
are the most widely used binders responsible for the film formation and binding the other
additives to leather surfaces. In recent years, there have been many studies on improving
the properties of leather coatings, as the demands for performance levels of leather surfaces
are increasing [1–15].

It is known that the physical properties of latex polymer films depend closely on the
macromolecular structure, the molecular weight, molecular inter- and intra-chemical crosslink-
ing network structure, as well as the size and morphology of the latex particles [16,17].
Composite latex particles with well-defined particle morphology are used to improve the
mechanical properties of polymers, to enhance adhesion properties and to modify the latex
viscosity by varying the degree of neutralization [18]. These latexes usually offer better
properties than conventional polymeric latexes and/or blending of two or more polymer
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components. These kinds of latexes are commonly known as core–shell or composite
latexes and are usually made by two or multi-step emulsion polymerization where in the
first step a seed latex (core) is formed using a monomer composition and in the second step
another monomer composition is polymerized over the core to form the shell [19–21]. The
composite polymeric latexes with two or more distinct phases may have various composi-
tions that lead to different properties, such as high and low glass transition temperatures,
hydrophobicity, reactivity, etc., which affect the properties of the final polymer. Several
studies were reported on the preparation of composite latexes for various purposes [22–34].
Among these studies Limousin et al. [22] synthesized hybrid latex particles containing
a hard, high Tg seed (styrene(S)/acrylamide (AM), Tg = 101 degrees C) and a low Tg
(methyl methacrylate (MMA)/butyl acrylate (BA)/styrene(S), Tg = 13 degrees C) second
phase polymer. They showed that the morphology of hybrid latex particles influenced
the mechanical strength of polymer films. Lara et al. [26] also prepared core–shell latex-
based adhesives to improve the adhesion of aluminum to poly (ethylene terephthalate)
(PET) films and enhance the permeability of the final laminate to oxygen and water by
using a soft acrylic component (the shell in core–shell particles) to improve adhesion, and
occasionally a hydrophobic core to enhance the permeability. Zhang et al. [29] prepared
PVAc-based inverted core/shell (ICS) structured latex adhesive with improved water- and
heat-resistance by a copolymerizing-grafting sequential reaction approach for wood bond-
ing. They reported that the wood bonding performance under heat and water conditions
were effectively improved with core–shell morphology. Core–shell particles consisting of
polybutyl acrylate (PBA) rubbery core and polymethyl methacrylate (PMMA)/polystyrene
(PS) shell were synthesized via seeded emulsion polymerization by Roshanali et al. [34].
They also prepared silica loaded core–shell hybrid particles and examined the effect of
addition of core–shell particles on mechanical properties of Bis-GMA/TEGDMA dental
resins. They found that the composite containing 5 wt % Si-PBA-PMMA/PS particles
showed 35% improvement in fracture toughness with respect to the neat matrix, without
sacrificing flexural strength and flexural modulus.

The composite latex morphology can also be designed to obtain latex particles consist-
ing of soft core and hard shell. The soft polymer may form a coherent film under ambient
conditions, leading to a continuous film with a dispersed phase of hard polymer, which
enhances the mechanical properties [35]. These types of latexes can be used, particularly, to
improve the performance of water-based acrylic coatings to bring them closer to solvent
based systems and/or polyurethane based coatings.

Itaconic acid (2-methylidenebutanedioic acid) is an unsaturated di-carbonic acid with
broad application spectrum in the industrial production of resins and is used as a building
block for acrylic plastics, acrylate latexes, super-absorbents, and anti-scaling agents [36].
Compared with citric acid the production of itaconic acid requires a cheaper technology,
thus being considered a monomer from renewable resources. Liu et al. [37] reported poly(n-
butyl acrylate)-poly(methyl methacrylate-itaconic acid) (PBA-P(MMA-ITA)) core–shell
latex particles (CSR) synthesized via pre-emulsion and semi-continuous seeded emulsion
polymerization process. The group studied the influence of itaconic acid content on the
matrix toughness, having a soft core of poly(butylacrylate) and hard shell of poly(methyl
methacrylate). The higher the content of itaconic acid, the tougher the polymer was. The
COOH of itaconic acid seemed to modify the chain’s flexibility due to the extra hydrogen
bonds formed between the polymeric chains. So, an amount of 6% would produce a tough
polymer which is not always desired.

The present study refers to the synthesis and characterization of poly(ethylacrylate-co-
itaconic-co-methyl methacrylate) copolymers with soft core of poly(ethylacrylate-co-itaconic
acid) (PEA-co-IA) and poly(methyl methacrylate) (PMMA) as hard shell. The novelty of
the present study is to contribute to the synthesis of composite latex binders with different
ratios of soft/hard segments and to investigate their effect on coating performance in a
specific industrial application. The study also constitutes a challenge of using itaconic
acid as an acidic monomer unit in the composition to increase the functionality of the final
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polymer. Itaconic acid was added as a double carboxyl functional monomer in low portion
to the monomer composition to contribute to particle stability of the emulsion, to increase
the hydrogen bonding capacity and to give functionality for further crosslinking reactions
to the final polymer. The expected outcome of the study could be to provide a route for the
synthesis of soft core/hard shell latexes to optimize the performance and hardness levels
of coatings especially used for soft surfaces.

2. Materials and Methods
2.1. Materials

Acrylic monomers such as methyl methacrylate (MMA, 99%), ethyl acrylate (EA, 99%)
and itaconic acid (IA, 99%) were purchased from Sigma-Aldrich, Schnelldorf, Germany and
used to synthesize the polymers via emulsion copolymerization. Disponil FES 77, sodium
lauryl sulphate SLS 101 and Texapon P, products of BASF (Ludwigshafen, Germany) were
used as co-emulsifiers special for the manufacture of finely dispersed and electrolyte–stable
emulsions. Sodium bicarbonate (NaHCO3 > 99%, Sigma-Aldrich, Steinheim, Germany),
ammonium persulfate (APS, >98%, Sigma-Aldrich, Steinheim, Germany) were used as
reaction constituents as buffer agent and initiator, respectively. All chemicals were used as
received without any further purification. Distilled water was used to as solvent to perform
the reactions. The synthesis experiments were performed in a 4 necked 250 mL glass reactor
equipped with a condenser, mechanical mixer, nitrogen inlet and dropping funnel.

2.2. Synthesis of Core–Shell Acrylic Copolymer Emulsions

Core–shell acrylic copolymers with a monomer content of 25 wt % were synthesized
via two stage seeded emulsion polymerization technique as similarly described in previous
papers [11,31]. Different compositions were set-up for the core–shell parts of the copolymers
to evaluate their effect on the properties of final product and its application on leather as
finishing material. For the synthesis, given amounts of emulsifiers and NaHCO3 were
dissolved in water at room temperature and added in the reactor and mixed. IA, prior
to be added inside the reactor, was dissolved in 70 ◦C water, then cooled down to room
temperature. A total of 3.5 g of EA were added to the reactor and mixed to seed the
reaction and form the pre-emulsion. The temperature was raised to 75 ◦C and APS was
added to initiate the radical polymerization to form the seed. The reaction was continued
by transferring the remaining EA monomer for 1h forming the soft core of copolymer.
Subsequently, the hard shell phase was formed by transferring MMA for 30–45 min.
Parallel, APS was dropped inside the system to provide new radicals for two hours. After
all the transfers were completed, the system was maintained for another 2 h to complete
the reaction. The conversion of the reaction was gravimetrically verified periodically, and
final conversions were obtained over 99%. After cooling down the system particle free
and blue-like emulsions were obtained, except for the DS 50/50 composition where some
coagulum was formed. The final emulsions with a pH around 2 were neutralized to pH 5–6
with 30 wt % NaOH solution to be compatible with the other finishing constituents and
pH of the leather. Table 1 shows the details of the experiments. Syntheses were performed
in two parallels for each sample.

2.3. Characterization of the Copolymers

The synthesized polymers were characterized in terms of their particle size and poly-
dispersity index by using a NanoZS zetasizer instrument (Malvern Instruments, Worcester-
shire, UK). The particle size measurements were performed with three parallel samples
prepared for each latex and average values have been presented.

The structure was confirmed by FT-IR spectra of the copolymer films which were
recorded with a Bruker VERTEX 70 spectrometer (Bruker, Billerica, MA, USA) by scanning
in the range of 600–4000 cm−1.



Polymers 2021, 13, 3521 4 of 12

Table 1. Experimental set-up and reaction parameters for copolymer emulsion.

Sample Code Experimental Set-Up Results

Seed (g)
(EA + IA)

Core (g)
(EA)

Shell (g)
(MMA) APS (g) Solid

wt %
Conversion

%

DS 90/10 3.5 1 36.00 4.50 0.35 25 99

DS 80/20 3.5 1 31.50 9.00 0.35 25 99

DS 75/25 3.5 1 29.25 11.25 0.35 25 99

DS 60/40 3.5 1 22.50 18.00 0.35 25 99

DS 50/50 3.5 1 18.00 22.50 0.35 25 99

Thermal properties of the polymeric films were tested via Differential scanning
calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The DSC ther-
mographs were recorded with a Differential Scanning Calorimeter Shimadzu 60 Plus
(Kyoto, Japan) at a heating rate of 10 ◦C/min under N2 atmosphere from −70 to 250 ◦C.
Dynamic mechanical measurements were carried out using an Anton Paar MCR 301 Dy-
namic Mechanical Analyzer (Graz, Austria) equipped with CTD450, in the temperature
range from 60 to 110 ◦C, under N2 atmosphere, with a heating rate of 3 ◦C/min, at 1 Hz
frequency. All measurements were performed in extension mode and the storage modulus
E′, the loss modulus E′′, and the value of the tan δ (tan δ = E′′/E′) were determined for all
temperature range.

2.4. Application of Latexes in Leather Finishing

The synthesized core–shell polymer emulsions were used as pigment binders in leather
finishing application to evaluate the effect of their composition on coating performance. The
finishing mixture formulation was given in Table 2. Crust upper leathers were cut into
(40 × 40 cm squares and used for finishing trials. The application of finishing mixtures was
done via spray coating followed by drying and hot plating at given intervals. The finishing
performance of the emulsion was evaluated by standard methods performed on finished
leathers, such as Flexing endurance (ISO 5402–1:2011); color fastness of leather to To and Fro
rubbing (ISO 11640:2012); color fastness to water spotting (ISO 15700:1998). The evaluation of
all the tests related to color change was done according to the Grey Scale Standard method
(IUF 131–132) and following the standard ISO 105 A02: 1993/ISO 105 A03: 1993 which
provides a rating between 1 and 5 (5: means no color change, and 1: means failure).

Table 2. The finishing formulation applied on the leathers.

Components Application Steps Descriptions

Basecoat (I)
(Parts Per Unit)

Topcoat (II)
(Parts Per Unit)

Water 35 20 Spray I × 3 times

Pigment 10 Hot plate 90 ◦C/100 bar

Wax 5

Core–shell Latex 30 Spray I × 2 times

Polyurethane Emulsion 5 Hot plate 90 ◦C/70 bar

Casein Emulsion 5

Isopropyl alcohol 0.5

Aqueous NC Lacquer 10 Spray II × 1 time



Polymers 2021, 13, 3521 5 of 12

3. Results and Discussion
3.1. Particle Size Analysis

The average values of the particle size and polydispersity index (PDI) values of the
latexes were presented in Table 3.

Table 3. Average particle size diameter and polydispersity index values of the latexes.

Sample Code Size (nm) Polydispersity Index (PDI)

DS 90/10 113.9 ± 2.35 0.0570 ± 0.008

DS 80/20 119.7 ± 2.37 0.1280 ± 0.013

DS 75/25 83.1 ± 5.56 0.0148 ± 0.005

DS 60/40 140.4 ± 4.53 0.0021 ± 0.0011

DS 50/50 173.3 ± 2.75 0.0580 ± 0.006

The particle size of the latexes varied from 83 to 173 nm in terms of copolymer
composition. The results showed that an increasing average size of particles was obtained
with the increase of hard–shell ratio, except DS 75/25. This can be due to the higher water
solubility of MMA monomer and faster polymerization rate that decreases the control on
the particles. However, to understand the phenomenon better further investigations on the
correlation of particle size and MMA content is needed. On the other hand, the particle
size and the PDI values were found to be low, promoting good pigment binding ability for
coating applications. Other authors have also obtained controlled particle growth and a
small risk of coagulation for latex particles obtained by seeded emulsion polymerization,
the synthesis method used in the present study [38]. Moreover, itaconic acid with a double
carboxyl functional side groups contributes to the anionic stability of the final emulsions.
Figure 1 is an example of the particle size distribution of latexes.

Figure 1. Size distribution as function of peak’s intensity for the DS 60/40 latex.

3.2. FTIR Analysis

The structural identity was evaluated and confirmed by the ATR–FTIR spectra of the
monomers and their polymers by comparison, as presented in Figure 2.

The FTIR spectra qualitatively proved the monomers conversion into the polymers
by the disappearance of the band assigned to the vinyl groups in the polymers’ spectra
(from 1640 cm−1). Figure 2 shows the main absorbance peaks of the copolymers observed
at 2800–3000 cm−1 due to the –CH stretching, at 1730 cm−1 C=O stretching vibrations, at
1450–1386 cm−1 –CH2, –CH3 and –CH deformation stretching, at 1160 cm−1 stretching
vibration of ester groups (O–C–). The characteristic peaks of the itaconic acid due to the
stretching vibrations of –OH at 3000–3500 cm−1, –OH deformation at 1440–1390 cm−1,
–C–O– at 1320 cm−1 and R–OH groups at 750 cm−1 were identified on the polymers’ spectra
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confirming the success of the copolymerization between the selected monomers as similarly
observed by Loginova et al. [39].

Figure 2. ATR–FTIR spectra of polymers as films and their pure monomer.

3.3. Mechanical and Thermal Analyses

Dynamical Mechanical Thermal Analysis (DMTA) was performed to assess the ther-
momechanical behavior of the latex films with different core/shell ratios. The analysis on
latex film DS 50/50 could not be performed due to its brittleness as the test requires films to
be deformed. The storage modulus (E′), loss modulus (E′′) and tan δ’s values as a function
of temperature were plotted in Figure 3 for the other latex films. From the results it can be
seen that the plateau of storage moduli dropped sharply at the glass transition temperature
(Tg). Another observation was that as the hard–shell ratio increased, the storage moduli of
the films increased proportionally. The latex film DS 60/40 showed much higher storage
modulus values than others, while the lowest values were obtained for DS 90/10 as ex-
pected. By decreasing the amount of elastomeric EA, the modification of E′ was induced by
a gradual change in the elastic contribution, therefore the stiffness of the material increased.
The E′ curves continuously decreased with increasing of testing temperature as the latexes
start softening. Very similar trends were also observed for loss moduli of the films. Tan δ

can provide information on the overall flexibility of studied materials and the interactions
between the components. The tan δ maximum peaks corresponding to the synthesized
latexes were close to their E′′ peaks and points where E′ began to drop, similar situation
was reported by Zhang et al. for copolymers of poly (butyl acrylate) (PBA) and poly (ethyl
acrylate) (PEA) with isoprene (IP) [40]. By following the evolution of tan δ values of latex
films function of temperature (Figure 3c), an asymmetric double–peak structure can be
observed mainly for DS 60/40 and slightly for DS 70/30 and DS 80/20, with a maximum at
lower temperature and a shoulder at higher temperature. Core–shell polymeric materials
with high shell Tg and low core Tg compositions have been produced also for medical
applications in order to synthesize core–shell polymers that could be triggered by heat [41].
Thus, the shell can be selectively weakened by increasing temperature, while leaving the
core exposed with the aim to release its encapsulations at a specific moment in a given
targeted area.
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Figure 3. DMTA curves of the copolymer films function of temperature. (a) Storage modulus E′ (b) Loss modulus E′′ (c) Tan δ.

The peaks observed within 0–25 ◦C temperature range exhibited the glass transition
of the soft–core phase. However, shifts of the Tg to higher temperatures were obtained
for all samples related to theoretical values which were estimated by using the Flory–Fox
equation, a simple empirical formula that relates molecular weight to the glass transition
temperature of a polymer system. Moreover, differences between the peak temperatures
and their intensities were also observed for core–shell latex films, as similarly reported by
Xu et al. [42]. The decrease in peak intensity was proportional to the increase in hard-shell
ratio as expected. On the other hand, the differences in peak temperatures may possibly be
due to different interactions between soft and hard segments. From Figure 3c it could be
also observed that tan δ values showed an upward trend after the first transition due to the
second transition of hard–shell phase, however, could not reach to the transition until the
end of analysis temperature.

The area under the tan δ curve reduces with decreasing the amount of soft core (from
DS 90/10 to 60/40), indicating less molecular mobility. Therefore, it could be mentioned
that improved damping properties, meaning that the material can better absorb and
dissipate energy, were recorded for latexes with higher amount of soft core. This finding
agreed with the flexing endurance results, as discussed below in leather application section.

The DSC curves of the latex films were plotted in Figure 4. Tg of the films were
depicted from the thermograms. The glass transitions of soft-core phase were clear and
the Tg values were found to be between 16 and 12 ◦C for all samples which were close
to theoretical value of −20 ◦C of poly(ethyl acrylate). Very close values of transition
temperature for PEA within acrylic copolymers were found such as −18 ◦C by Zhang
et al. [40], −21 ◦C [43] and −24 ◦C by Fytas et al. [44].
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Figure 4. DSC curves of the acrylic copolymers with different compositions.

From the thermograms the transitions of the harder domains could also be observed.
For the samples DS 90/10 and DS 50/50 the transitions were clear and found to be 31 and
57 ◦C, respectively. For the other copolymers the hard phase transition was small and
observed near 50 ◦C. This kind of variation in transitions can occur due to the interactions
at interfaces between the layers and may form intermediate interlayer phases as observed
by Mu et al. [45]. The same outcome was also reported by Liu et al. [37], where the
transition temperature was shifted between the values of the two components of the
core–shell. In particular, they used itaconic acid in the shell part and observed that the
functional monomer itaconic acid with polar group participated in the copolymerization
reaction. The interaction between polar groups (–COOH) from itaconic acid’s structural
unit enhanced the interaction force between the macromolecular chains, even the P (MMA–
ITA) copolymer produced a slight physical cross-linking due to the intermolecular force
and the hydrogen bond.

3.4. Leather Application

The performance results of the finished leathers are summarized in Table 4. The flexing
endurance test was performed to assess the resistance of the finishing layer to stretching
and pressing actions such as shoes exposed during walking.

The results showed that with the increase of MMA shell ratio the flexing endurance
seemed to decrease as well. For instance, the leather coated with DS 50/50 showed large
grain cracks with damaged areas whereas the leather with DS 90/10 showed no visible
damage. This result was expected, as the increase of MMA shell ratio also enhances the
brittleness of the final film resulting in lower flexibility. The rub fastness results of the
leathers are also given in Table 4 and leather samples are shown in Figure 5.
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Table 4. The physical test results applied on finished leathers.

Leather
Sample.

Flexing
Endurance
(×200,000)

Fastness Level—Grey Scale

100 Rubs
(Dry)

500 Rubs
(Dry)

10 Rubs
(Wet)

25 Rubs
(Wet)

Water Spotting
(16 h)

Leather Felt Leather Felt Leather Felt Leather Felt Leather

DS 50/50 Large Grain
Cracks 5 5 4/5 4 2 1 1 1 5

DS 60/40 Fine Grain
Cracks 5 5 5 5 4/5 5 4 4 5

DS 75/25 Fine Grain
Cracks 5 5 4/5 5 4/5 4/5 3 2 5

DS 80/20 Fine Grain
Cracks 5 5 4/5 5 4/5 4 3 2/3 5

DS 90/10 Excellent 5 5 5 5 1 3 1 1/2 5

Figure 5. Images of the leather specimens after rubbing test with dry (left) and wet (right) felt. (Samples from left to right:
DS 90/10, DS 80/20, DS 75/25, DS 60/40, DS 50/50).

After 100 times of rubbing (rubs) under dry conditions, for all samples, no failure was
observed; therefore, the test was kept till 500 rubs. As it can be seen, all leathers finished
with core–shell latexes as binders showed good rub fastness values after 500 rubs. The
rubbing test was also performed using wet felt for 10 and 20 times. The results showed
that even after ×10 rubbing action considerable damage on the leather finish and coloring
of felt was observed for leathers processed with DS 50/50 and DS 90/10. Even though, the
leathers processed with the other core–shell ratios gave better performance to wet rubbing,
the best considered results were obtained for leather DS 60/40. Usually, the performance
of a finish layer to wet rubbing action improves with increasing film hardness. Therefore,
a proportional enhancement for wet rubbing fastness was observed with the increase of
hard segment to an extent. In the case of the sample DS 50/50, the polymeric layer might
be too hard so that the adhesion of finishing layer was significantly reduced, leading to
incompatibility with the substrate and the fastness values decreased accordingly.

Water spotting test was also performed to assess the behavior of leathers to water.
During the test, two drops of water were placed on the leather specimens (Figure 6). After
30 min the residual water of one spot was gently removed by filter paper and physical
effects were observed. For the other spot leather was left to stand 16 h to assess the change
in color with the grey scale. After 30 min, it was observed that all the water drops remained
on the leather surface, and no physical damage or change was observed after removing the
drop. Similarly, no change in color was observed on the leathers after 16 h, showing that
all the leathers exhibited good performance to the water spotting.
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Figure 6. The images of the leather specimens during water spotting test after 30 min. (Samples from left to right: DS 90/10,
DS 80/20, DS 75/25, DS 60/40, DS 50/50).

4. Conclusions

Composite polyacrylate latex series based on poly (ethylacrylate–co–itaconic acid/
polymethyl metacrylate with different soft core/hard shell ratios (from 90/10 to 50/50)
were synthesized successfully via two stage seeded emulsion polymerization technique.
Most of the latexes had good stability with low average particle size and narrow size
distributions. The increase of the hard-shell ratio did not have a significant effect on
particle size and distributions; however, at high shell ratios (DS 50/50) the stability was
slightly affected, as some coagulum was observed at the end of the reaction. The two
different polymer phases of the latex were confirmed by thermal and mechanical analyses.
The obtained latexes were further used as binders in leather finishing application and the
effect of phase ratios on coating performance was evidenced with physical tests performed
on leathers. The evaluation of overall results showed that the increase of hard-shell ratios
had positive effect on mechanical and especially wet performance of the coating. On the
other hand, the flexibility of the coating was decreased as expected, which is important for
coating of soft and flexible surface materials. Moreover, a further increase in the ratio of
hard segments such as DS 50/50 makes the final film too brittle for flexible coatings, causing
reduction in performance levels. The use of itaconic acid moiety within the monomer
composition seemed to increase the stability of the emulsions, as they most latexes were
obtained coagulum free. Moreover, itaconic acid with double carboxyl functional groups
also increases hydrogen bonding capacity of the coating, thus promoting the adhesion with
to the substrate, as very good results obtained for rubbing fastness. It can be concluded
that the increase of the hard-shell phase ratio has positive effects on coating performance
levels up to a certain ratio and the composition should be adjusted carefully according to
the substrate and desired coating properties.
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