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Abstract

Background: The use of cluster randomized trials (CRTs) is increasing, along with the

variety in their design and analysis. The simplest approach for their sample size calcula-

tion is to calculate the sample size assuming individual randomization and inflate this by

a design effect to account for randomization by cluster. The assumptions of a simple

design effect may not always be met; alternative or more complicated approaches are

required.

Methods: We summarise a wide range of sample size methods available for cluster

randomized trials. For those familiar with sample size calculations for individually

randomized trials but with less experience in the clustered case, this manuscript provides

formulae for a wide range of scenarios with associated explanation and recommenda-

tions. For those with more experience, comprehensive summaries are provided that

allow quick identification of methods for a given design, outcome and analysis method.

Results: We present first those methods applicable to the simplest two-arm, parallel

group, completely randomized design followed by methods that incorporate deviations

from this design such as: variability in cluster sizes; attrition; non-compliance; or the

inclusion of baseline covariates or repeated measures. The paper concludes with meth-

ods for alternative designs.

Conclusions: There is a large amount of methodology available for sample size calcula-

tions in CRTs. This paper gives the most comprehensive description of published meth-

odology for sample size calculation and provides an important resource for those design-

ing these trials.
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Introduction

Cluster randomized trials

In a cluster randomized trial, groups or clusters, rather

than individuals, are randomly allocated to intervention

groups. This approach may be deemed necessary; if ran-

domization at individual level is impractical, to avoid con-

tamination between treatment groups, i.e. individuals in

the control arm being exposed to the intervention; or for

administrative or cost advantages. The rationale for

cluster randomized trials has been described in detail

elsewhere.1–10

The responses from individuals within a cluster are

likely to be more similar than those from different clusters.

This is because individuals within a cluster may share

similar characteristics or be exposed to the same external

factors associated with membership to a particular cluster.

This lack of independence introduces complexity to the

design and analysis. The degree of similarity, or clustering,

is commonly quantified by the intracluster correlation

coefficient (ICC) denoted in this article as q.

Obtaining a good sample size estimate is particularly

important in cluster randomized trials due to the large cost

that can be associated with recruiting an additional cluster

as compared with recruiting an additional subject in an

individually randomized trial. Equally important are the

ethical implications of over- or under-recruitment where

the addition or loss of one cluster may equate to a large

number of individuals potentially being exposed to the risk

of treatment, or lost.

A simple approach to sample size calculation

A consequence of clustering is that the information gained

is less than that in an individually randomized trial of the

same size, making randomization by cluster less efficient.

This inefficiency was identified in the seminal paper by

Cornfield that sparked the development of methodology

for the design and analysis of cluster randomized trials.11

It has been proposed by Donner, Birkett and Buck that a

sample size calculated assuming individual randomization

can be inflated by a Design Effect (DE) to reach the

required level of statistical power under cluster randomiza-

tion:12

DE ¼ 1þ ðn� 1Þq (1)

where n is the number of individuals per cluster and q the

ICC.

Therefore for a comparison of means, in a two-arm trial

with equal allocation the required the number of individu-

als per group, m, is calculated as:

m ¼
ðZ1�a=2 þ Z1�bÞ2 2r2

D2

�
1þ ðn� 1Þq

�
(2)

where Zx is the x’th percentage point of the standard nor-

mal distribution, D the clinically important difference in

treatment means and r2 the variance in the outcome.

Analyses may be conducted at either the cluster or indi-

vidual level (see Eldridge and Kerry for a full discussion of

analysis methods1)

In cluster-level analyses, a cluster-level summary is cal-

culated for each cluster, effectively reducing the data to

one observation per cluster. The observations can then be

treated as independent, and standard statistical analysis

methods applied. The main advantages of cluster-level

analyses are their simplicity and applicability to different

types of outcomes. Disadvantages of this approach are that

individual-level covariates cannot be included and the

number of observations per group may be small. However,

the two-sample t-test has been shown to be quite robust to

deviations from normality and a small number of clusters

per treatment group.13

Methods that use individual-level data but adjust for

clustering can be used for analysis, such as the adjusted

chi-square method for binary data, the adjusted two-

sample t-test2 or the non-parametric clustered Wilcoxon

test for continuous data.14 In this article, these are referred

to as adjusted tests. The main drawback to these methods

is that they do not allow for the inclusion of covariates.

Commonly individual-level analyses are conducted

using a regression model that accounts for the clustered

nature of the data and may include either cluster or

Key Messages

• There is a large body of literature on sample size calculations for cluster randomized trials.

• There are relatively simple and accessible methods to allow for design complexities such as variable cluster sizes;

time-to-event outcomes; incorporation of baseline values and cross-over, stepped-wedge and matched designs.

• This is the most comprehensive resource to date for sample size methods for cluster randomized trials.

• There is scope for further methodological development.
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individual level covariates. Mixed effects regression models

are a cluster-specific method (henceforth referred to as

mixed models) and Generalised Estimating Equations

(GEE), a type of population-averaged or marginal method.

Both approaches require a sufficient number of clusters for

optimal performance; when the number of clusters is small,

the mixed model is less biased than the GEE. The differ-

ence between these two approaches lies in the interpreta-

tion of the estimated treatment effect.1

In general, sample size requirements depend upon the

proposed analysis method. In this paper we describe each

sample size method alongside the analysis method for

which it was designed. However, alternative analysis

approaches may also be suitable. For example, with con-

tinuous outcomes a cluster-level analysis is equivalent to

an individual-level analysis if all the clusters are the same

size. When cluster size is variable, the assumptions under-

lying the cluster-level t-test are not met and a weighted

t-test must be used to achieve adequate power and preci-

sion. Individual-level analyses naturally incorporate this

weighting and so are more efficient than cluster-level anal-

yses weighted by cluster size.4 For continuous outcomes

and equal-sized clusters, the cluster-specific and popula-

tion-averaged methods for individual-level analyses are

mathematically equivalent.

For binary outcomes, due to the transformation of the

data onto the logistic scale, the treatment effects calculated

under the cluster-specific and population-averaged meth-

ods are different. For binary outcomes, Austin et al.15 com-

pared the performance of three cluster-level methods: the

t-test, the Wilcoxon rank-sum test and the permutation

test, and three individual-level methods: the adjusted chi-

square test, the mixed effects model and the GEE model.

In the scenarios investigated, which included variable clus-

ter sizes, the difference in power between these methods

was negligible.

Measuring variability between clusters

A key parameter common to all sample size calculations for

cluster randomized trials is the extent of similarity between

units within a cluster. The measure used in the majority of

sample size methodology is the ICC, usually denoted by the

Greek letter q. The ICC can be interpreted as the proportion

of variance due to between-cluster variation. When q ¼ 0

there is statistical independence between members of a clus-

ter, whereas when q ¼ 1, all observations within a cluster

are identical. A review of estimators for calculating the ICC

for continuous and dichotomous outcomes can be found in

the papers by Donner16 and Ridout,17 respectively.

Properties of the ICC have been widely investigated and

patterns in ICCs18–22 and sources of ICC estimates5,23–26 are

available in the literature and have been summarized by

Eldridge and Kerry.1 An alternative measure to the ICC is

the coefficient of variation in the outcome, denoted by k.

This is calculated as the between-cluster standard deviation

divided by the parameter of interest, i.e. the proportion, rate

or mean, within each cluster.27 This measure is particularly

useful when the primary outcome variable is a rate, as an

ICC cannot be calculated.27

When choosing an estimate of the ICC, in addition to

the method of calculation, it is also important to identify

whether the estimate has been adjusted for covariates. This

can impact on its value and hence on the calculated sample

size. Inclusion of the baseline value of an outcome as a

covariate is arguably the strongest factor to reduce the

ICC. However, this level of detail is not always explicitly

reported alongside the ICC estimate.

Comparison of ICC and coefficient of variation

Sample size calculations often make the assumption that

the measure of correlation, be it the ICC or k, is the same

in each treatment group. However, if the coefficient of var-

iation is the same in each treatment group the ICC will not

be, and vice versa.4 Therefore the use of these different

measures will produce different sample size requirements.

The assumption of a constant ICC is reasonable if the

intervention effect is likely to be constant across clusters.

The assumption of a constant k is reasonable if the inter-

vention effect is likely to be proportional to the cluster

mean.1

Similarly for binary outcomes, different sample

size requirements are calculated depending upon whether

the ICC or coefficient of variation is used in the calcula-

tion. For binary outcomes there is an additional compli-

cation that the between-cluster variance also depends

upon the value of the overall outcome proportion. The

use of the ICC is recommended for sample size calcula-

tions of binary outcomes, unless the proportion is very

small.1

Trial design features that impact on sample size

The most common and simplest design choice for a cluster

randomized trial is the completely randomized, two-arm

parallel-group design with fixed cluster sizes. In this paper,

the methods appropriate for this design are discussed first.

Variations to this design may be somewhat outside the

investigator’s control, such as variability in cluster size or

attrition, or more within the investigator’s control, such as

choice of outcome measure or analysis method. With these

variations, the assumptions of constant cluster size, binary

International Journal of Epidemiology, 2015, Vol. 44, No. 3 1053



or continuous outcomes, and ICC underpinning the use of

the simple design effect,(1) may not be met; appropriate

approaches are presented. The paper concludes with the

presentation of methods for alternative design choices such

as the cross-over, stepped-wedge, matched and three-level

designs.

Sample size methodology covering some of these aspects

has been summarized1–5,27 and Campbell et al. have dis-

cussed some of the complexities including: methods for

survival data; allowing for imprecision in the estimate of

the ICC; allowing for varying cluster sizes; sample size re-

estimation; empirical investigations of design effect values;

and adjusting for covariates.28 However, currently there is

no single resource for researchers designing cluster

randomized trials that provides a comprehensive descrip-

tion of existing published sample size methodology. Our

work is based on an assessment of the literature. A descrip-

tion of how the papers were identified and included can be

found in our online appendix (available as Supplementary

data at IJE online). This article aims to provide both a

summary of methods and practical guidance around the

use of different methods.

Results: sample size methods

Where possible, sample size formulae have been re-

expressed to use consistent terminology for ease in compa-

rability. Due to limited space within this manuscript, if

implementing some of the more complex methods or those

whose components require detailed description, readers

are advised to refer to original papers for further informa-

tion and to ensure correct implementation and understand-

ing of the methodology.

Sample size methods are now presented, starting with

the standard parallel-group trial, followed by variations to

this design and concluding with alternative designs.

Standard parallel-group, two-arm design

Continuous and binary outcomes

Table 1 summarizes the methodology available for the

standard parallel-group trial with equal sized clusters.

The standard design effect or equivalent has been

developed for continuous and binary outcomes, analysed

at the cluster-level, or at individual level using a GEE

model.

For continuous outcomes, the number of individuals

per arm, m, is calculated as12,29

m ¼
ðZ1�a=2 þ Z1�bÞ2 2r2

D2
½1þ ðn� 1Þq� (3)

where Zx is the x’th percentage point of the standard nor-

mal distribution, D represents the clinically important dif-

ference in treatment means, r2 the total variance in the

outcome, n the cluster size and q the ICC.

Alternatively, the number of clusters per arm, c, for a

cluster-level analysis can be estimated using direct esti-

mates of the between- and within-cluster variances, r2
b and

r2
w.30–32

c ¼
ðZ1�a=2 þ Z1�bÞ2 2ðr2

b þ
r2

w

n Þ
D2

(4)

Rosner and Glynn33 present sample size methods for non-

normally distributed continuous outcomes analysed with

Table 1. Sample size methods for the standard two-arm, parallel group, equal allocation, fixed cluster sizes

completely randomized design

Standard trial design Outcome measure Analysis Reference

Two-arm, parallel-group,

completely randomized design

Continuous Cluster-level 12,27,30–32

Adjusted test 33

Mixed model 76

GEE 29

Binary Cluster-level 11,12,27,30–32

Mixed model 78

GEE 29

Count GEE 34

Ordinal GEE 35

Mixed model 36

Time-to-event Cluster-level 39, 103

Mixed model 40

Marginal model 43

Marginal model 42

Rate Cluster-level 27
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an adjusted test, the clustered Wilcoxon test. This method

requires a large number of calculations but can be imple-

mented using SAS macros provided by the authors.

For binary outcomes, the number of individuals

per arm, assuming a cluster-level analysis, is calculated

as12

m ¼
ðZ1�a=2 þ Z1�bÞ2 ½P1ð1� P1Þ þ P2ð1� P2Þ�

D2

�½1þ ðn� 1Þq�
(5)

where P1 is the probability of an event in the control

group, and P2 the probability of an event in the treatment

group, and D represents the clinically important difference

in treatment proportions, P1 � P2. The design effect can

also be used to inflate the variance for the treatment effect

described by a log odds ratio and assuming a GEE

analysis.29

Alternatively, the number of clusters per group, assum-

ing a cluster-level analysis can be calculated as30,31

c ¼
ðZ1�a=2 þ Z1�bÞ2 ½2r2

b þ
P1ð1�P1ÞþP2ð1�P2Þ

n �
D2

(6)

Simple methods are available for continuous and binary

outcomes that use the coefficient of variation in outcome

as a measure of correlation and assume a cluster-level

analysis.27 For continuous outcomes where l1 and l2

are the means in the control and intervention group,

respectively, and r1 and r2 the associated within-cluster

standard deviations, the number of clusters per group is

shown as

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2

ðr2
1
þr2

2
Þ

n þ k2ðl2
1 þ l2

2Þ
h i
ðl1 � l2Þ2

(7)

Similarly for binary outcomes where P1 and P2 are the pro-

portions in the control and intervention group, respec-

tively,

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2 P1ð1�P1Þ

n þ P2ð1�P2Þ
n þ k2ðP2

1 þ P2
2Þ

h i
ðP1 � P2Þ2

(8)

One cluster per group has been added to account for the

use of the normal approximation in the sample size

calculation.

Count outcomes

For count outcomes, multiplication of the sample size cal-

culation for ordinary Poisson regression by the standard

design effect can be used to calculate the number of

individuals per group, m, assuming fixed cluster size, and

an analysis by GEE34

m ¼
½Za=2

ffiffiffi
2
p
þ Zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ e�

~b�
q

�2

eb0 ~b2
½1þ ðn� 1Þq� (9)

where b0 represents the event rate in the control group and
~b is the treatment effect.

Ordinal outcomes

A method for correlated ordinal outcomes assuming a GEE

analysis has been proposed.35 This method has been

described in the context of longitudinal data where the

number of repeated measurements (or cluster size) is small

and the number of clusters large. Its performance for

smaller numbers of larger clusters is unknown and its

implementation is best done via computer. More recently,

Campbell and Walters36 suggest multiplication of

Whitehead’s sample size calculation for ordinal outcomes

in individually randomized trials by the design effect37

m ¼
6½z1�a=2 þ z1�b�2=ðlog ORÞ2h

1�
XI

i¼1

pi
3
i ½1þ ðn� 1Þq� (10)

pi is the mean proportion expected in ordinal category i

calculated as pi ¼ ðp1i þ p2iÞ=2 where p1i and p2i are the

proportions in category i for the control and intervention

groups. The treatment effect is given by the log odds ratio

and a mixed model analysis is assumed.

Time-to-event outcomes

Methods have been suggested for time-to-event outcomes

that adapt the formulae for individual randomization pro-

vided by Schoenfeld.38

The required number of individuals per group given by

Schoenfeld’s formula for individually randomized trials

assuming equal allocation is

m0 ¼
2ðZ1�a=2 þ Z1�bÞ2

log2
eh ð1� PðCÞÞ

(11)

where PðCÞ is the probability of being censored and h

denotes the hazard ratio.

The standard design effect can be used to inflate the for-

mula of Schoenfeld assuming the cluster-level weighted

log-rank test.39

Jahn-Eimermacher et al.40 present a simple formula

for time-to-event outcomes adjusting Schoenfeld’s formula

and using the coefficient of variation in outcome as a meas-

ure of clustering and assuming a mixed model analysis

using a shared frailty model, a popular method for the
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analysis of clustered time-to-event data. The number of

clusters per group is given by

C � m0 þ ðZa=2 þ ZbÞ2k2 1þ h2

ð1� hÞ2
(12)

where m0 is the required number of clusters per group

assuming uncorrelated data according to Schoenfeld (11)

and k is the coefficient of variation in outcome.

Alternatively, Freedman’s formula41 for the number of

events required under individual randomization can be

multiplied by the design effect42

E ¼ ðZ1�a=2 þ Z1�bÞ2
ð1þ hÞ2

ð1� hÞ2
½1þ ðn� 1Þq� (13)

where n is the average cluster size, and analysis by mar-

ginal model is assumed.

Manatunga43 considers time-to-event outcomes also

assuming a marginal model, although the method does not

provide a simple explicit formula.

Rate outcomes

The number of clusters per group, c, for rate outcomes in

an unmatched design with cluster-level analysis is27

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2 r1þr2

y þ k2ðr2
1 þ r2

2Þ
h i

ðr1 � r2Þ2
(14)

where y is the number of person-years in each cluster

(assumed equal), k the coefficient of variation in the out-

come and r1 and r2 the rates in the control and intervention

group, respectively.

Variations to the standard parallel-group design

Table 2 provides a summary of all sample size methodol-

ogy for variations to the standard parallel group trial. The

key methods in each area are presented and discussed here.

Uncertainty around the estimate of the ICC

There is often large uncertainty around the estimate of the

ICC, leading to wide confidence intervals. As the value of

the ICC has a large impact upon the required sample size,

it is sensible to consider the impact of its uncertainty.

An informal method to address this problem has been to

use a conservative estimate of the ICC in the sample size

calculation; this provides a quick gauge of the impact of

the ICC but could lead to unnecessarily large trials. Several

authors have proposed formal methods of incorporating

ICC uncertainty into the sample size calculation by making

distributional assumptions for one or many previously

observed ICC values and then calculating the correspond-

ing distribution for the power.44–47 Several of these meth-

ods adopt a Bayesian perspective but assume the analysis

will follow a frequentist approach. Incorporating uncer-

tainty about the ICC into the sample size calculation pro-

duces larger sample sizes than using a single estimate.

There may be situations where there are no good

estimates of the ICC available for sample size calculations.

This occurred in a trial of mental illness because the out-

come measure was a newly adaptive questionnaire with

unknown properties.48 In these situations, several

approaches might be considered: an educated estimate could

be gained from assessment of published ICCs and known

patterns in their behaviour for different outcome types and

clusters; graphical methods that compare competing designs

without requiring knowledge of the ICC49; or an internal

pilot could be considered (see later section).

Variable cluster sizes

The use of the standard design effect assumes that the num-

ber of observations from each cluster to be included in the

analysis is the same. In some situations such as ophthalmol-

ogy studies where the cluster is a person and measurements

are taken on eyes, this may be a reasonable assumption.

However, in trials of primary care where the cluster may be

a general practice or drop out may occur within clusters, it

is more likely that clusters of variable size will be present in

the analysis, and it is good practice to consider the potential

impact of this at the design stage. If cluster sizes are variable,

the use of the mean cluster size in the simple design effect

will underestimate the required sample size, more so as the

variation in cluster sizes increases. Use of the maximum

cluster size as an alternative may be overly conservative.

Methods to account for variable cluster size are recom-

mended when cluster size variability is large, i.e. the coeffi-

cient of variation of cluster size, defined as the ratio of the

standard deviation of cluster size Sn to mean cluster size n, is

greater than 0.23.50

The available methods to account for variable cluster

size can be divided into two groups: I, those that require

the size of each cluster to be known and II, those that

require the mean and standard deviation of the distribution

of cluster size.

Methods that require the size of each cluster to be known:

Here the design effect is given by

DE ¼ ncXc

i¼1

ni

1þðni�1Þq

(15)

where c represents the number of clusters per group, ni the

size of cluster i and n mean cluster size.
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This DE is appropriate for a cluster-level analysis with

minimum variance weighting for continuous or binary out-

comes.51 It is also applicable for an analysis by GEE with

exchangeable correlation structure, robust variance estima-

tors and binary outcomes.52 By exchangeable correlation

we mean that every subject within a cluster is equally cor-

related to every other subject and this pair-wise correlation

is denoted q. This is a common and reasonable assumption

to make for cluster randomized trials. An alternative

approach is to assume that the within-cluster correlation

can be specified by an identity matrix, also known as the

working independence model. This correlation offers

advantages, in that for model fitting it is simple and can

aid model convergence. If the working independence

model was assumed but the true correlation was exchange-

able, then the following design effect can account for this

misspecification52

DE ¼
nc
Xc

i¼1

ni

�
1þ ðni � 1Þq

�
 Xc

i¼1

ni

!2
(16)

In the case of equal cluster sizes, this method reduces to the

standard design effect and the use of the working inde-

pendence model results in no loss in efficiency. These GEE

methods may be less appropriate for small samples, as the

robust variance estimator does not perform well in this sit-

uation. Pan52 recommends that potential misspecification

of the correlation structure be explored at the design stage;

please refer to the paper for further examples of alternative

combinations of working and true correlation structures.

A sample size method that can accommodate variable

cluster sizes and allow adjustments for covariates analysed

with a GEE model has been proposed by Liu.53 However,

except in some special cases (equal cluster sizes and only

treatment fitted in the model), there is no closed form

available and the method must be implemented numeri-

cally. For an exchangeable correlation structure with fixed

cluster size, the methods of Liu and Pan can be compared;

Pan’s method has been shown to produce marginally larger

sample sizes.52 The difference comes from the use of the

score test by Liu compared with the Wald test in the deri-

vation by Pan.

Methods that require only the mean and standard

deviation of the distribution of cluster size:

It is not common to have knowledge about each cluster

size at the design stage. Estimates of the distribution (mean

and standard deviation) of cluster size are likely to be more

available. However, it should be noted that, in some cases,

the mean and SD of the sampling distribution may be dif-

ferent from those of the population distribution of all clus-

ters. The design effect is now

DE ¼ 1þ fðCV2 þ 1Þn � 1gq (17)

CV is the coefficient of variation of cluster size.

This design effect can be used with an appropriately

weighted cluster-level analysis for binary or continuous

outcomes.50,54,55As individual-level analyses are more

Table 2. Sample size methodology for adaptations to the

standard two-arm, parallel-group, completely randomized

design

Adaptation Outcome

measure

Analysis Reference

Design

ICC uncertainty Continuous Cluster-level 45

Adjusted test 49

Mixed model 44–46

GEE 45,46

Binary Cluster-level 47

Variable cluster

sizes

Continuous Cluster-level 50,51,61

Adjusted test 55

Mixed model 56

GEE 53

Binary Cluster-level 50,51,105

Adjusted test 54

Mixed model 57

GEE 52,53

Time-to-event Cluster-level 103

Internal pilot Continuous Mixed-model 58

GEE 59

Binary GEE 59

Unequal allocation

ratio

Continuous Cluster-level 61

Mixed model 60

Small number of

clusters

Continuous Cluster-level 13,107

Binary Cluster-level 13

Equivalence Continuous Adjusted test 36

Binary Adjusted test 63

Non-inferiority Binary Adjusted test 64

Conduct

Attrition Continuous Adjusted test 65

Mixed model 66

Binary Adjusted test 65

Non-compliance Binary Adjusted test 64, 67

Analysis

Inclusion of

covariates

Continuous Cluster-level 70,71

Mixed model 69,74–76,79,81,108

GEE 53,73,108

Binary Mixed model 69,74,80

GEE 53,72,73,104 108

Inclusion of

repeated

measures

Continuous Mixed model 66,82–84,86

GEE 85

Binary GEE 85

International Journal of Epidemiology, 2015, Vol. 44, No. 3 1057



efficient, it provides an overestimate of sample size

required for most individual level analyses.

Van Breukelen56 and Candel57 propose the total num-

ber of clusters, as computed assuming equal cluster size

and mixed model analysis, multiplied by the following

design effect to account for variability in cluster size. It

potentially has wide applicability as the authors suggest its

use for correction of sample sizes calculated using any cur-

rent formulae where equal-sized clusters are assumed.

DE � 1

1� CV2 n
nþ1�q

q

h
1� n

nþ1�q
q

i (18)

The above DE is calculated via Taylor approximation but

is considered to provide a good approximation for all rea-

sonable distributions of cluster size. Heterogeneous varian-

ces across treatment groups can also be accommodated.57

Internal pilots

For trials that recruit a relatively large number of clusters

over a fairly long period of time, it may be appropriate to

re-estimate the sample size during the trial once informa-

tion has been gained on the ICC and other nuisance param-

eters.58,59 These methods assume a mixed model analysis

for continuous outcomes and GEE for binary or continu-

ous outcomes. The use of these internal pilots is less com-

mon in clustered trials and further investigation is required

to determine best practice for their use, for example it is

not known at which stage an interim estimate of the ICC

can be considered stable and used to adequately re-esti-

mate the sample size.

Allocation ratio

Design efficiency is maximized with equal allocation to

treatment groups, and this has been assumed in the major-

ity of the methodology presented here. However, there is

an argument that unequal allocation may occasionally be

desirable, particularly in cases where the costs associated

with the intervention are high. Liu studies the optimal allo-

cation of units to treatment group when the cost per cluster

varies across the treatment groups, assuming a mixed

model analysis.60 The optimal cluster allocation ratio

depends upon the cost ratio between the treatment and

control.

Small number of clusters

The majority of the methods assume that a relatively large

number of clusters is to be recruited, making the approxi-

mation to the normal distribution in the formulae appro-

priate. When the number of clusters is small, calculations

based upon these approximations will likely underestimate

the required sample size. In this case the normal

distribution can be replaced by the t-distribution or meth-

ods based on the non-central t used. Donner13 presents a

power calculation based upon the non-central t-distribu-

tion with a simple non-centrality parameter for cluster-

level analyses. Extensions to this non-centrality parameter

can additionally allow for unbalanced designs.61 As the

percentage points of the non-central t-distribution are not

routinely available in statistical texts, these methods are

best implemented with a statistical package using the code

provided by the authors.

Alternatively, Snedecor and Cochran62 suggest adding

one cluster per arm when testing at the 5% level and the

number of clusters is small, which is incorporated into the

formulae described by Hayes (equations 7, 8 and 14)27 or

could be added to the other formulae presented.

In general however, trials with a small number of clus-

ters should be avoided. As well as the difficulties in sample

size estimation, many analysis methods do not perform as

well with a small number of clusters and imbalance in clus-

ter characteristics across treatment groups is more likely to

occur.1

Equivalence and non-inferiority

Non-inferiority and equivalence designs are less commonly

used in cluster randomized trials. The methods presented

here assume an analysis using an adjusted test. For equiva-

lence designs, the standard design effect can be applied to

the sample size calculated under individual randomization

for binary outcomes63

m ¼ 2Pð1� PÞðZ1�a þ Z1�bÞ2

d2
½1þ ðn� 1Þq� (19)

where P is the true event proportion in both groups and d

represents the equivalence limit for the upper limit of the

confidence interval of the difference in intervention pro-

portion, and for continuous outcomes36

m ¼ 2ðZ1�a þ Z1�bÞ2

ðd=rÞ2
½1þ ðn� 1Þq� (20)

Here we have specified one-sided tests. To be conservative,

two-sided tests could be used.

The calculation for the number of clusters per treatment

group, c, in a non-inferiority trial with binary outcome,

is64

c ¼ ðza þ zbÞ2Varðlog ðORÞÞ
ðlogðdÞ � logðORÞÞ2

(21)

where the relative treatment effect is measured by the odds

ratio (OR) of a positive response among compliers and d
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represents the non-inferiority margin of the OR. This

method additionally incorporates non-compliance and,

due to this, the variance of this odds ratio is complex to

calculate (see original paper).

Attrition

In a cluster randomized trial, individuals within a cluster

may withdraw from the trial or an entire cluster may with-

draw or not recruit any participants. Drop-out of entire

clusters is relatively uncommon but could be incorporated

into the sample size calculation by the addition of 1 or 2

extra clusters per treatment group.

Attrition among members of a cluster is a more com-

mon problem, particularly for cohort samples.

Conventional approaches to account for such attrition

are to divide the sample size by the anticipated follow-up

rate or use the anticipated average cluster size in the

calculation. However, these methods overestimate and

underestimate, respectively, when cluster follow-up rates

are highly variable or the cluster size or ICC is large.

A design effect has been proposed for binary or continu-

ous outcomes assuming adjusted tests, i.e. the individual-

level t-test or chi-square test suitably adjusted for cluster-

ing65

DE ¼ ½1þ ðnp� 1Þqþ ð1� pÞ½1þ ðn� 1Þs�q�=p (22)

p represents the probability of the outcome being

observed. A binary missingness indicator variable is 0 if

the outcome is missing and 1 otherwise. s is the intracluster

correlation coefficient for the missingness data mechanism,

i.e. at its minimum s ¼ � 1
n�1 implies that all clusters

have identical follow up rates and s ¼ 1 implies all the

missingness indicators are the same within a cluster

(entire clusters are completely observed or completely

missing). Currently estimates for s are not routinely

published with the results of trials and the authors

recommend a sensitivity analysis using a range of plausible

values.

Roy has also considered attrition for the longitudinal

clustered design, assuming analysis with a mixed effects

regression model.66 The calculation uses an iterative

method and allows for a differential drop-out across treat-

ment groups and over time.

Non-compliance

Sample size requirements increase as the level of non-

compliance increases. Methods which allow for non-

compliance, where analysis is by an adjusted test, have

been proposed for both non-inferiority and superiority

designs.64,67 However, the allowance for non-compliance

makes the variance of the treatment effect more complex

to calculate. These methods may be less applicable in prag-

matic cluster randomized trials where the effect of the

intervention is usually assessed in the presence of non-

compliance. In a truly pragmatic trial, compliance may not

be measured or actively encouraged.68

Inclusion of baseline measurements

Sample size calculations can be adapted to allow covariates

in the analysis, as this may increase power by explaining

variability and reducing the between-cluster variation,

which is particularly important when the number of avail-

able clusters is limited or the cost of recruiting each addi-

tional cluster is high. Covariates may be collected at the

level of the individual or the cluster and they may be demo-

graphic variables, such as age, or baseline measures of the

primary outcome. Neuhaus and Segal69 suggest, in general,

that multiplication of the ICC by the ICC of any individ-

ual-level covariate provides an estimate of an adjusted ICC

that can be used in the standard design effect, assuming a

mixed model analysis.

Pre-post design

Inclusion of the baseline measurement of the primary

outcome into the analysis is referred to as a pre-post

design.

The nature of the correlation in a pre-post design will

depend upon the population being sampled, for which

there are two types: cross-sectional or cohort sample. With

a cross-sectional sample, different individuals are measured

at each time point. Here there are two sources of correla-

tion to be accounted for: the correlation of outcomes from

individuals within a cluster at the same time point (which

can be thought of as the familiar ICC, q) and the correla-

tion between baseline and follow-up outcomes for individ-

uals within a cluster (referred to as the cluster auto

correlation, qc). With a cohort sample, the same individu-

als are measured at baseline and follow-up and the addi-

tional correlation across time points on the same

individual conditional on the cluster is referred to as the

subject autocorrelation, qs.

Assuming a cluster-level ANCOVA, a relatively

straightforward design effect can be used for the pre-post

design.70,71 The design effect can accommodate either the

cross-sectional sample (qs ¼ 0), cohort sample or a mixture

of the two70

DE ¼ ½1þ ðn� 1Þq�

�
 

1�
� nq

1þ ðn� 1Þq qc þ
1� q

1þ ðn� 1Þq qs

�2
!

(23)
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When the analysis is performed on change from baseline

scores the design effect is

DE ¼ ½1þ ðn� 1Þq�

�2

 
1�

� nq
1þ ðn� 1Þqqc þ

1� q
1þ ðn� 1Þqqs

�!

(24)

Preisser72,73 focuses on binary outcomes with a GEE

analysis. The number of clusters for the cross-sectional

pre-post design is given as

c ¼
Z1�a

2
þ Z1�b

� �2
ðr2

1 þ r2
2Þ

nððp11 � p10Þ � ðp21 � p20ÞÞ2
(25)

where

r2
h ¼ ½ph1ð1� ph1Þ þ ph0ð1� ph0Þ�½1� ðn� 1Þq�

�2nqc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph1ð1� ph1Þ þ ph0ð1� ph0Þ

p
and pht is the probability of the outcome for an individual

at time t (0¼ pre-test, 1¼ post-test) from treatment group

h (1¼ control, 2¼ intervention).

In terms of sample size, a cohort sample is more efficient,

although it suffers from several drawbacks. To gain notice-

able precision, the correlation across time points on the same

individual must be fairly substantial. Cohort designs can also

suffer from loss to follow-up and therefore require oversam-

pling at baseline and attentive follow-up of individuals.

The sample size efficiency of the cohort design relative

to the repeated cross-sectional design with 1 measurement

on each individual at each time point, assuming a mixed

model, has been quantified as74,75

RE ¼
nð1� qcÞr2

b þ ð1� qsÞr2
w

nð1� qcÞr2
b þ r2

w

(26)

Inclusion of other covariates

Although the inclusion of covariates can reduce the sample

size requirements, there are costs associated with taking addi-

tional measurements. In a trial without covariates, suppose

the total budget for the trial is summarized via the cost func-

tion T ¼ nCc1 þ Cc2, where C is the total number of clus-

ters, n the cluster size, c1 the costs per individual and c2 the

costs per cluster. The number of clusters, C, and the number

of individuals, n, which minimize the variance of the treat-

ment estimator, given the budget constraint are given as76–78

C ¼ T

ðrw=rbÞ
ffiffiffiffiffiffiffiffiffi
c1c2
p þ c2

; n ¼ rw

rb

ffiffiffiffiffi
c2

c1

r
(27)

A similar approach can be used with the inclusion of cova-

riates.76,79,80 Alternatively, power-based calculations are

provided by Moerbeek, assuming a mixed model.81 The

total number of clusters is calculated as

N � 4
r2

wð1�
n

n� 1
q2

WÞ þ nr2
b ð1� q2

B þ
1

n� 1
q2

WÞ
n

�ð
z1�a=2 þ z1�b

D
Þ2

(28)

where q2
W and q2

B are the within-cluster and between-clus-

ter residual correlations between the outcome and the

covariate. qW ¼ 0 for a cluster level covariate.

The additional cost to measure a covariate at the indi-

vidual level is c�1 and the additional cost of measuring a

covariate at the cluster level is c�2. Therefore the total cost

function for individual level covariates becomes

T ¼ nCðc1 þ c�1Þ þ Cc2

and for cluster level covariates

T ¼ nCc1 þ Cðc2 þ c�2Þ

The costs associated with and without the covariate can be

estimated and compared. The inclusion of covariates is

more cost effective when the cost of measurement is small

and the correlation between covariates and outcome is

large. The formula presented by Moerbeek assumes the

covariates are uncorrelated with the treatment condition.

When the number of clusters is small, this can be achieved

via matching on this covariate, particularly recommended

for covariates that vary at the cluster level.79

Inclusion of repeated measurements

Multiple time points introduce additional components of

correlation, as the observations for each cluster will be cor-

related over time. In a longitudinal cluster randomized trial

we have a three-level structure with outcomes measured at

specific time points within subjects, within clusters.

A three-level mixed effects regression model therefore con-

tains additional fixed effect terms for time and the treat-

ment by time interaction. The sample size methods for

these designs are more complex than others and the

required estimates may be difficult to find. The hypothesis

of interest in these trials is the effect of the intervention

over time. Assuming a mixed model, the calculation by

Koepsell et al.82 is based on the non-central-t distribution,

with the treatment effect adjusted by a design constant

allowing for different hypothesized paths of the interven-

tion effect over time. A formula based upon the Wald test
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of the interaction term for the number of clusters per arm

has been proposed83

n3 ¼
2r2ðz1�a=2 þ z1�bÞ2ð1� q1Þ

n2n1D
2
Xn1

k¼1

ðTk � TÞ2=n1

(29)

where nx is the number of units at level x ðx ¼ 1;2;or 3Þ,
T represents the equally spaced time variable and q1is the

correlation among level-one units (see later section on

three-level trials for definition).

Roy’s iterative method similarly proposes a test of the

treatment by time interaction from a mixed effect model

but additionally allows incorporation for a differential

drop-out across treatment groups and over time.66 Murray

proposed that a mixed model with random coefficients is a

more appropriate analysis for explicitly modelling more

than two time points in the analysis.84 The additional ran-

dom effects make this method more complex than others

and, although the authors have provided parameter esti-

mates to aid planning for some outcomes, investigators

will likely need to spend time and money sourcing suitable

estimates. Sample size formulae for assessing change over

time assuming an analysis by GEE have been derived by

Liu.85 However, except under certain correlation struc-

tures, the calculations involved in this method are

substantial.

If the effect of treatment is expected to diverge over

time, sample size can be calculated for testing the treat-

ment effect at the final time point with incorporation of

information from the entire study period assuming a com-

pound symmetry structure and mixed model. This produ-

ces smaller sample sizes than an assessment at the final

time point only, but the assumptions underpinning this

method may limit its widespread application.86

Alternative designs

The above methods are described for the parallel group

trial and small variations to this standard design. We now

consider methodology for alternative design choices.

Table 3 summarizes the available sample size methodology

for alternative designs.

Stratification and matching

Cluster randomized trials in general recruit a smaller num-

ber of units than an individually randomized trial. This can

potentially lead to baseline imbalances in cluster characteris-

tics across treatment groups. Matching or stratification can

be used to improve similarity in clusters across treatment

groups. In a matched-pair design, similar clusters are paired,

or matched. One cluster from the pair is allocated to the

intervention and the other to the control and a cluster-level

analysis conducted. Similarity may be defined on cluster-

level characteristics that are thought to affect the outcome,

such as size or geographical location. Matching reduces the

variance between clusters (within strata or within matched

pair) and hence can provide efficiency in sample size. The

efficiency gains depend upon the effectiveness of the match-

ing. The sample size for an unmatched cluster randomized

trial must be inflated by the following DE in order to have

the same precision as the matched study87

DE ¼ 1=ð1�qxÞ (30)

Its calculation requires knowledge of the correlation in the

outcome between matched pairs, qx. This correlation can

be estimated from previous studies or from the correspond-

ing correlation for a surrogate variable observed prior to

randomization, if any exist, otherwise a range of plausible

values can be considered.

In planning a matched trial, it is worth noting that any

potential gain in efficiency can be lost if clusters drop out

of the study, rendering the matched pair unuseable in the

analysis. However, ignoring matching and including all

clusters in an unmatched analysis of a matched design has

been shown to be valid and efficient in trials that recruit a

small number of relatively large clusters.88

The required number of cluster pairs, m0, is calculated

using the following formula assuming analysis at the clus-

ter level

m0 ¼
r2ðta=2;m0�1 þ tb;m0�1Þ2

d2
(31)

Table 3. Sample size methodology for alternative designs

Trial design Outcome measure Analysis Reference

Matched/stratified Continuous Cluster-level 27,32,109

Mixed model 89

Bayesian 92

Binary Cluster-level 27,32,41,87,109

Mixed model 89

Adjusted test 91

Rate Cluster-level 27,90

Cross-over Continuous Cluster-level 93,106,107

Mixed model 94

Binary Cluster-level 106

Count Cluster-level 106

Stepped-wedge Continuous Mixed model 95,96

Three-level Continuous Mixed model 77,98,100,101

GEE 99

Binary GEE 99

International Journal of Epidemiology, 2015, Vol. 44, No. 3 1061



This is the familiar formula for the paired t-test, where d is

the expected difference within pairs, r2 the variance of this

difference and tx;m0�1 percentage points of the t distribution

with m0�1 degrees of freedom.

For continuous outcomes the variance is calculated as

2 r2
b þ

r2
w

n

� �
(32)

where r2
b is the between-cluster variance within a

matched pair and r2
w the within-cluster component of

variability.32,89

For binary outcomes the variance is calculated as

P1ð1� P1Þ þ P2ð1� P2Þ
n

þ 2r2
b (33)

where P1 the expected proportion in the control arm and

P2 the expected proportion in the intervention arm.41

The methods by Hayes which use the coefficient of var-

iation in outcome for unmatched trials (equations 7, 8 and

14) can be used for matched trials with two modifica-

tions.27 Two, rather than one, cluster should be added to

account for the use of the normal approximation and k

should be replaced with km, the coefficient of variation

between clusters within the matched pair. The Hayes

method for rates can be shown to be equivalent to an ear-

lier approach by Shipley.90

Stratification is similar to matching, in that we poten-

tially now have several clusters within each stratum, rather

than two as we have in a pair-matched study. This has

been addressed for binary outcomes with a straightforward

calculation.91 For continuous outcomes, Kikuchi and

Gittins92 follow the less common Bayesian approach to

design and analysis. However, as the impact of stratifica-

tion is difficult to ascertain in advance, recommendations

are to ignore it in the sample size calculation, for a more

conservative estimate.1

Cross-over designs

Cross-over designs require a smaller number of clusters

than a parallel-group trial and are therefore useful when

the availability of clusters is limited. A simple design effect

for cluster-level analysis has been presented for the cross-

over design in which entire clusters switch treatments dur-

ing the course of the trial93

DE ¼ 1þ 1

2
n1 � 1

� �
q2

� �
� 1

2
n1g (34)

where n1 is the number of participants recruited within

each cluster across both time periods; q2 is the correlation

between subjects in the same cluster at the same time point

and g is the inter-period correlation. In this design, differ-

ent subjects from each cluster are included in separate peri-

ods of the trial (a cross-sectional sample). The treatment

effect is calculated within clusters and therefore between-

cluster variance is removed and the design is more efficient

than the parallel-group.

Alternatively, each subject could be included in both

periods within a cluster (a cohort sample). Here a mixed

model is assumed. The treatment effect is calculated within

subjects, within clusters, so both between-cluster and

between-subject variations are eliminated, making this the

most efficient cross-over design with cluster level random-

ization. The relative efficiency (RE) of the cross-over

design with cross-sectional sample over the parallel-group

cluster randomized design has been quantified by

Rietbergen94

RE ¼
1þ 1

2 n1 � 1
� �

q2

� �
� 1

2 n1g

1þ ðn1 � 1Þq2

(35)

and similarly for the cohort sample

RE ¼ 1

2

1� q1 � q2

1þ ðn1 � 1Þq2

(36)

where q1 is the intrasubject correlation.

Although cross-over designs can improve efficiency, the

nature of the intervention or condition under study may

make them inappropriate, as occurs in individually

randomized trials.

Stepped-wedge design

The stepped-wedge design is similar to the cross-over

design, except that the cross-over of treatments is all in

one direction and staggered over time. All clusters receive

the control intervention at baseline. At various points

during the trial (referred to as steps), one or more clusters

will cross over to receive the treatment intervention,

with all clusters receiving treatment by the end of the

trial. The point at which a cluster, or group of clusters,

will cross over is randomly determined at the beginning of

the trial.

The main criteria for use of a stepped-wedge design is

when the implementation of the intervention can only be

performed sequentially across clusters, perhaps due to

resource constraints, and when the intervention is believed

to do more good than harm and so it would be considered

unethical for some clusters to not receive the intervention

at some point during the trial. Although these designs are

increasing in popularity, there is little published research

describing best practice in their design and analysis.

Hussey in 200595 provides the first guidance on sample
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size, which has been further developed by Woertman and

assumes analysis by mixed model.96

This recently developed sample-size approach for the

stepped-wedge design with continuous outcomes supposes

that, between each step, one or more cross-sectional sam-

pling waves of the clusters occur and outcome measure-

ments are taken. The total number of individuals required

under individual randomization is multiplied by a DE to

give the number of individuals to be sampled across all

clusters at each sampling wave

Nsw ¼
ðZ1�a=2 þ Z1�bÞ2 4r2

D2

� 1þ qðktnþ bn� 1Þ

1þ q
� 1

2
ktnþ bn� 1

�� 3ð1� qÞ

2t
�

k� 1

k

�
2
64

3
75

(37)

where k is the number of steps, b the number of pre-

randomization sampling waves, t the number of sampling

waves between each step, n the number sampled from each

cluster at each sampling wave and q is the ICC. Nsw is the

total number of individuals required at each time point,

the required number of clusters is calculated as Nsw=n, the

number of clusters switching treatment at each step is cal-

culated by dividing the number of clusters by k and the

total number of individuals required across the entire trial

is Nsw multiplied by (bþkt).

Three-level cluster randomized trials

Additional levels of clustering may occur due to the choice

of cluster. For example, three-level cluster randomized tri-

als are fairly common in educational research where pupils

(level 1 units) are sampled within classrooms (level 2 units)

and randomization takes place at the level of the school

(level 3 units). The total variance is now made up of the

variance between schools, r2
3; the variance between class-

rooms within schools, r2
2; and the variance associated with

students within classrooms and schools, r2
1 . We can define

two ICCs,97 for students within schools

q2 ¼ r2
3=ðr2

3 þ r2
2 þ r2

1Þ (38)

and for students within classrooms

q1 ¼ r2
3 þ r2

2=ðr2
3 þ r2

2 þ r2
1Þ (39)

In a three-level trial, the required sample size is calculated as

n3n2n1 ¼ DE�m (40)

where m is the number of individuals required in each

group in an individual randomized controlled trial

(RCT) and nx is the number of units at level

x ðx ¼ 1;2; or 3Þ.
The Design effect for three levels of clustering is

DE ¼ 1þ n1ðn2 � 1Þq2 þ ðn1 � 1Þq1 (41)

This DE can be used for continuous outcomes with equal

cluster size analysed with either a mixed effects model or

GEE assuming exchangeable correlation, as these methods

are equivalent under equal cluster size.98–100 The design

effect in the original paper by Teerenstra100 has been

re-expressed for the purpose of this paper to use the

Pearson correlations (38 and 39), as these are more famil-

iar quantities and published estimates are more likely than

the variance components described in the original paper.

Following Raudenbush,76 optimization of the sample

sizes at each level can be performed based upon cost

constraints.101,102

Discussion

Sample size calculations for individually randomized trials

must be inflated in order to be used for cluster randomized

trials, to account for the inefficiency introduced by the cor-

relation of outcomes between members of a cluster. A sim-

ple design effect described by Donner, Birkett and Buck12

can be used for parallel-group trials when the cluster size is

assumed constant and the outcome is continuous, binary,

count or time-to-event.

Design effects have been derived for more complex

designs including: variable cluster sizes; individual level

attrition; cross-over trials; stepped-wedge designs; inclu-

sion of baseline measurements; analysis by GEE; and three

levels of clustering. These design effects are relatively

straight forward to calculate. However, the opportunity to

use them may depend upon the availability and quality of

estimates of the parameters required for the calculation.

When incorporating variable cluster size, the choice of

methods depends upon whether every cluster size is known

in advance, or just information on cluster size distribution.

In the case of incorporating stratification, the only method

available requires knowledge about the proportion of indi-

viduals in the stratum as well as the success probabilities in

each, information which is unlikely to be available at the

beginning of the trial. These other parameters, required to

assist others planning future trials, are not currently

reported as part of a trial’s findings, but we hope will

become routinely published in time.

The intracluster correlation coefficient featured more

frequently as a measure of within-cluster correlation than

the coefficient of variation, in our assessment of the sample

size literature. This may be due to the wide availability of
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published reviews of ICC estimates5,23–26 and patterns in

ICCs.18–22

The majority of papers specify binary or continuous

outcomes; few deal with other types of outcome. Simple

approaches for alternative outcomes data potentially war-

rant future development.

Sample size by simulation is an alternative to using an

analytical formula. Although the procedure may be com-

putationally intensive, in some cases it may be preferable

to complex numerical procedures and was used in four

papers identified in the literature.103–106 Many of the

methods proposed recommend validation of the sample

size calculated with a formula through simulation, particu-

larly for time-to-event outcomes or where the number of

clusters is small. However, the type I error is often inflated

when the number of clusters is small, the cluster size is var-

iable and for particular analyses such as the frailty model,

and this should be taken into consideration during the

planning and interpretation of simulations.

We have provided a comprehensive description of sam-

ple size methodology for cluster randomized trials, pre-

sented in a simple way to aid researchers designing future

studies.

With the increasing availability of more advanced meth-

ods to incorporate the full complexity that can arise in the

design of a cluster randomized trial, the researcher may

feel overwhelmed by the volume of methods presented.

However it should be noted that in some situations a sim-

ple formula may perform reasonably well in comparison

with a more complex methodology. For example, when the

coefficient of variation in cluster size is less than 0.23, it is

not deemed necessary to adjust the sample size and the

standard design effect obtained assuming fixed cluster sizes

would suffice.50

For continuous outcomes with equal cluster sizes, the

cluster-level and individual-level analyses are equivalent.

Therefore a sample size calculation assuming either of

these with the same measure of correlation should produce

equivalent results. When cluster size is variable, an individ-

ual-level analysis is more efficient than a cluster-level anal-

ysis weighted by cluster size; therefore a sample size

calculation based upon cluster-level analyses will be some-

what conservative if an individual analysis is then

conducted.

For binary outcomes, if the intervention is designed to

reduce the outcome proportion use of the coefficient of

variation27 will produce marginally smaller sample sizes

than using the ICC.12 When the intervention aims to

increase the outcome proportion, the sample sizes using

the coefficient of variation will be larger. When several

methods may be used, the choice between them is also a

question of practicality. The distribution of the outcome

and whether required estimates are available should be

considered. Further work is required to formally compare

the resulting sample sizes calculated under competing

methods, when alternative analyses are conducted, and to

evaluate the situations in which the simple methods can

provide reasonable results over the more complex. This

was beyond the scope of this paper.

A limitation of this paper is that a full critique and

comparison of the sample size methods were difficult due

to the lack of consistency in reporting across the papers.

No guidelines exist at present to judge the quality of

methodological papers and guide authors in clear and

transparent reporting. We hypothesize that the way in

which these methods are reported can also be a barrier to

their uptake. We hope that their presentation in this

article will improve uptake and research in the perform-

ance of these methods. We are planning further work

looking at developing guidelines for the reporting of

methodology papers.

There is often a large amount of uncertainty associated

with the estimate of the ICC, and the appropriateness of

any of the methods described here will depend upon the

level of uncertainty. In the case of a large amount of uncer-

tainty, we recommend that at a minimum the sample size

sensitivity to a range of ICC values be explored. We recom-

mend that, at the design stage, an appropriate simple for-

mula be used in the first instance to provide the researcher

with a benchmark figure upon which the impact of incor-

porating further complexities can be assessed.
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