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Abstract: Biologically inspired spiking neural networks (SNNs) are widely used to realize ultralow-
power energy consumption. However, deep SNNs are not easy to train due to the excessive firing
of spiking neurons in the hidden layers. To tackle this problem, we propose a novel but simple
normalization technique called postsynaptic potential normalization. This normalization removes
the subtraction term from the standard normalization and uses the second raw moment instead
of the variance as the division term. The spike firing can be controlled, enabling the training to
proceed appropriately, by conducting this simple normalization to the postsynaptic potential. The
experimental results show that SNNs with our normalization outperformed other models using other
normalizations. Furthermore, through the pre-activation residual blocks, the proposed model can
train with more than 100 layers without other special techniques dedicated to SNNs.

Keywords: spiking neural networks; normalization; pre-activation residual blocks

1. Introduction

Recently, spiking neural networks (SNNs) [1] have attracted substantial attention due to
ultra-low power consumption and high friendliness with hardware such as neuromorphic-
chips [2,3] and field-programmable gate array (FPGA) [4]. In addition, SNNs are biologically
more plausible than artificial neural networks (ANNs) because their neurons communicate with
each other through spatio-temporal binary events (spike trains), similar to biological neural
networks (BNNs). However, SNNs are difficult to train since spike trains are non-differentiable.

Several researchers have focused on the surrogate gradient to efficiently train SNNs [5–9].
The surrogate gradient is an approximation of the true gradient and is applied to the backprop-
agation (BP) algorithm [10]. Recent studies have successfully trained deep SNNs using this
method [11]. However, it is still challenging to train deepened models due to the increasing
difficulty of controlling spike firing.

To control the spike firing properly, we propose a novel and simple normalization:
postsynaptic potential normalization. Contrary to the standard batch/layer normalizations,
our normalization removes the subtraction term from the standard normalization and uses
the second raw moment instead of the variance as the division term. We can automatically
control the firing threshold of the membrane potential and spike firing by conducting
this simple normalization to the postsynaptic potential (PSP). The experimental results
on neuromorphic-MNIST (N-MNIST) [12] and Fashion-MNIST (F-MNIST) [13] show that
SNNs with our normalization outperform other models using other normalizations. We
also show that the proposed method can train the SNN, consisting of more than 100 layers
without other special techniques dedicated to SNNs.

The contributions of this study are summarized as follows.
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• We propose a novel and simple normalization technique based on the firing rate. The
experimental results show that the proposed model can simultaneously achieve high
classification accuracy and low firing rate;

• We trained deep SNNs based on the pre-activation residual blocks [14]. Consequently,
we successfully obtained a model with more than 100 layers without other special
techniques dedicated to SNNs.

The remainder of the paper is organized as follows. In Sections 2–4, we describe the
related works, SNN used in this paper, and our normalization technique. Section 5 presents
the experimental results. Finally, Section 6 presents the conclusion and future works.

2. Related Works
2.1. Spiking Neuron

SNN consists of spiking neurons that model the behavior of biological neurons and
handle the firing timing of the spikes. Owing to the differences in approximations, several
spiking neuron models have been proposed, such as the integrate-fire (IF) [15], leaky-integrate-
and-fire (LIF) [16], Izhikevich [17], and Hodgkin–Huxley model [18]. In this study, we adopt
the spike response model (SRM) [19] to deal with the refractory period (Section 3).

The refractory period is an essential function of biological neurons to suppress the spike
firing. Spike firing occurs when the neuron’s membrane potential exceeds the firing threshold.
From a biological perspective, the membrane potential is calculated using PSP, representing the
electrical signals converted from the chemical signals. These behaviors are represented within
the chemical synapse model shown in Figure 1a [20]. SRM was implemented to approximate
this synaptic model better than IF/LIF neurons, which are widely used in SNNs.
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Figure 1. Illustration of fundamental components of SNN. (a) Biological information and signal pro-
cessing between presynaptic and postsynaptic neurons in SNN. (b) A spiking neuron processes and
communicates binary spiking events over time. (c) The postsynaptic neuron changes the membrane
potential through each layer of the post-synaptic potential (PSP). It generates the output spikes when
the membrane potential reaches the neuronal firing threshold [21]. (d) The cumulative distribution
function (“Forward pass”) of our surrogate gradient and itself (“Backward pass”) [6].
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2.2. Training of Spiking Neural Networks

It is well-known that SNNs are difficult to train due to non-differential spike trains.
Researchers are working on this problem, and their solutions can be divided into two
approaches: first, the ANN-SNN conversion [22–25], and second, the usage of the surrogate
gradient [5–9]. The ANN-SNN conversion method uses the trained ANN parameters
of SNN. The sophisticated and state-of-the-art ANN model can be reused through this
method. However, this conversion approach requires many time-steps during inference
and increases the power consumption. In contrast, the surrogate gradient is used to directly
train SNNs by approximating the gradient of the non-differentiable spiking neurons. The
surrogate gradient approach was adopted since the model obtained by surrogate gradient
requires far fewer inference time-steps than the ANN-SNN conversion model [26].

2.3. Normalization

One of the techniques that have contributed to the success of ANNs is Batch Normal-
ization (BN) [27]. BN is used to reduce the internal covariate shift, leading to a smooth
landscape [28] while corresponding to the homeostatic plasticity mechanism of BNNs [29].
Using a mini-batch, BN computes the sample mean and standard deviation (STD). Mean-
while, several variants have been proposed to compute the sample mean and STD, such as
Layer Normalization (LN) [30], Instance Normalization (IN) [31], and Group Normalization
(GN) [32]. In particular, LN is effective at stabilizing the hidden state dynamics in recurrent
neural networks for time-series processing [30].

Several normalization methods have also been proposed in the field of SNNs, such
as threshold-dependent BN (tdBN) [33] and BN through time (BNTT) [34]. Thus, tdBN
incorporates the firing threshold into BN, whereas BNTT computes BN at each time step.
Furthermore, some studies used BN as is [35]. These studies applied the normalization to
the membrane potential. In contrast, our method was applied to PSP, as shown in Figure 2b,
to simplify the normalization form (Section 4).
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Figure 2. Normalization methods for spiking neural networks (SNNs). Each subplot shows a feature map
(a,b) or post-synaptic input (b) tensor, with N as the batch axis, C as the channel axis, (H, W) as the spatial
axis, and T as the time axis in the figure. Green voxels (a,b), previous methods, and blue (c), our proposed
method, are normalized by the same second central moment and uncentered second moment, respectively.

3. Spiking Neural Networks Based on the Spike Response Model

In this section, we describe the SNN used in this study. Our SNN is constructed using
SRM [19]; it uses SLAYER [6] as the surrogate gradient function to train the SRM.

3.1. Spike Response Model

We adopt SRM as a spiking neuron model [19]. SRM model is based on combining the
effects of the incoming spike arriving at the spiking neuron. It also has a function to the
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spike firing when the membrane potential u(t)(t = 1, 2, · · · , T) reaches the firing threshold.
Figure 1b,c indicate the behavior of this model. The equations are given as follows:

ui(t) = ∑
j

wij(ε ∗ sj)(t) + (ν ∗ si)(t), (1)

si(t) = fs(ui(t)− θ), (2)

where wi,j is the synaptic weight from the presynaptic neuron j to the postsynaptic neuron
i. sj(t) is the spike train inputted from the presynaptic neuron j, si(t) is the output spike
train of the postsynaptic neuron i, ∗ is a temporal convolution operator, and θ is a threshold
used to control the spike generation. fs is the Heaviside step function, which fires the spike
when the membrane potential ui(t) exceeds the firing threshold θ as shown in Figure 3. In
addition, ε(·) and ν(·) are the spike response and refractory kernels formulated using the
exponential function as follows:

ε(t) =
t
τs

e1− t
τs , (3)

ν(t) = −2θe−
t

τr , (4)

where τs and τr are the time constants of spike response and refractory kernels, respectively.
Note that ε ∗ sj(t) represents the PSP. After firing, the postsynaptic neuron goes into the
refractory period and cannot fire until its membrane potential resets to its resting potential.
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Figure 3. A dynamic threshold in SRM. The membrane potential (orange solid line) of the postsynaptic
neuron is described by the superposition of the PSPs. Each input spike arrival and output spike are
denoted by a black arrow and red arrow, respectively. At the moment of spiking, the firing threshold
(green dashed line) increases and decreases with time to the initial value of the firing threshold.

The main role of the refractory period suppresses the firing rate at a given spike interval. If
the spike interval T is constant, the firing rate without the refractory period is given by 1/T. On
the other hand, if the refractory period r is taken into account, it can be rewritten as 1/(T + r).
Therefore, the firing rate decreases as the refractory period increases, as shown in Figure 4. In
SNNs, the firing rate is proportional to the computational cost. Namely, using the refractory
period ensures biological plausibility and reduces computational costs.

3.2. Multiple Layers Spike Response Model

By using Equations (1) and (2), the SNNs with multi-layers can be described as follows:

a(l)(t) = (ε ∗ s(l))(t), (5)

u(l+1)(t) = W (l)a(l)(t) + (ν ∗ s(l+1))(t), (6)

s(l+1)(t) = fs(u(l+1)(t)), (7)

where a(l)(t) ∈ RC×W×H
≥0 and s(l)(t) ∈ {0, 1}C×W×H are the PSP and input spike tensor of

time step t; C is the number of channels; and W and H are the width and height of the input
spike tensor, respectively. Since a(l)(t) does not take a value less than zero, we consider an
excitatory neuron. Furthermore, W (l) ∈ RM is the weight matrix representing the synaptic
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strengths between the spiking neurons in l and l + 1 layers; M is the number of neurons of
l + 1-th layer.
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Figure 4. Relationship between refractory period r = (ν ∗ si) and firing rate for the different spike intervals
T = 1, 3, 5 [ms].

3.3. Deep SNNs by Pre-Activation Blocks

A deep neural network is essential to recognize complex input patterns. In particular,
ResNet is widely used in ANNs [14,36], and its use in SNNs is expanding.

The ResNet’s networks are divided into the pre-activation and post-activation residual
blocks, as follows (Figure 5):

Pre : h(k+1)(t) = h(k)(t) + G(h(k)(t)), (8)

Post : h(k+1)(t) = F(h(k)(t) + G(h(k)(t))), (9)

where h(k) and h(k+1) are the input and output in the k + 1 block, respectively. G represents
the residual function, corresponding to “Conv-Func-Conv” and “Func-Conv-Func-Conv”
in Figure 5; F represents the Func layer (“Spike-PSP-Norm”). Note that the refractory
period is used in F. In the experimental section, we compare these blocks and show that
deep SNNs can be trained using the pre-activated residual blocks. This result shows that
identity mapping is an essential tool to train the deep SNNs, similar to ANNs [14].

Conv

Func

Conv

Func

Func

Func

Conv

Conv

Spike

PSP

Norm

+

+

(a) Post-activation (b) Pre-activation (c) Func layer

Figure 5. Network blocks. (a) Post-activation residual block, (b) Pre-activation residual block, and
(c) Func layer. Postsynaptic potential (PSP) and Norm in the Func layer represent Equation (5) and
normalization. Spike represents fs(·+ r), where r is the refractory period.

3.4. Surrogate-Gradient

We use SLAYER [6] as one of the surrogate gradient algorithms to tarin the SNN with
multi-layers. In SLAYER, the derivative of the spike activation function fs of the l + 1 layer
is approximated as follows (Figure 1d):

ρ(l+1)(t) =
1
α

exp(−β|u(l+1)(t)− θ|), (10)
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where α and β are hyperparameters to adjust the peak value and sharpness for the surrogate
gradient, and θ ∈ RM is the firing threshold. SLAYER can be used to train SRM as
described in [6].

4. Normalization of Postsynaptic Potential

In this section, we explain the derivation of our normalization, which is called
postsynaptic-potential normalization, as shown in Figure 6a.

As the depth of the SNN becomes deeper, it becomes more difficult to control spike
firing properly (Figure 6b,c). To tackle this problem, we first introduce the following typical
normalization into the PSP.

û(l+1)(t) = W (l) â(l)(t) + (ν ∗ s(l+1))(t), (11)

â(l)(t) =
a(l)(t)−EX [a(l)]√

VX [a(l)] + λ
� γ + ξ, (12)

where γ and ξ are trainable parameters, and the� operator denotes the Hadamard product;
each variable of EX [a(l)] and VX [a(l)] is approximated as follows:

EX [a
(l)
i ] ≈ 1

X

X

∑
x=1

a(l)i (x), (13)

VX [a
(l)
i ] ≈ 1

X

X

∑
x=1

(a(l)i (x)−EX [a
(l)
i ])� (a(l)i (x, t)−EX [a

(l)
i ]), (14)

where a(l)i (x) represents the x-th variable required to compute these statistics of the i-th
variable of a(l) ∈ RC×W×H×N×T

≥0 (N is the mini-batch size), and X depends on what
kind of summation to compute. For example, if we compute these equations as in BN,
X = W×H×N× T. In addition, if we compute them as in LN, X = W×H×C× T. Note
that the normalization to PSP means that it inserts before the convolution or fully connected
layers. This position differs from the other normalization ones, which use normalization to
the membrane potential [33–35].

As shown in Equation (12), â(l)(t) may take minus. Therefore, â(l)(t) < 0 is not
valid since neurons of SLAYER represent excitatory neurons. This phenomenon clearly
arises from the trainable parameter ξ and the shift parameter EX [a(l)]. Thus, we modify
Equation (12) as follows:

â(l)(t) =
a(l)(t)√

VX [a(l)] + λ
� γ. (15)

Next, we consider the case when û(l+1)(t) reaches the firing threshold θ.

θ = W (l) â(t)+ (ν ∗ s(l+1))(t), (16)

= Ŵ (l) a(l)(t)√
VX [a(l)] + λ

+ (ν ∗ s(l+1))(t). (17)

Here, we have merged the trainable parameter γ and the weight matrix W (l) into Ŵ (l).
This merging is possible because of the normalization performed before multiplying W (l).
Then, we express Equation (17) as follows:

Ŵ (l)a(l)(t) =
√
VX [a(l)] + λ(θ− ν ∗ s(l+1)(t)) := θ̂. (18)
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Equation (18) shows that the firing threshold varies dynamically as shown in Figure 3,
which is consistent with the activity of cortical neurons in the human brain [37–40]. The

refractory period (ν ∗ s(l+1))(t) and
√
VX [a(l)] + λ can decrease θ̂ and scaling, respectively.

過剰発火

・・・

0
1

2
9O

ut
pu

t l
ay

er

Convolutional layers
a

b

c

・・・Tim
e

In
pu

t l
ay

er

Feedforward propagation process

Spike PSP Norm Conv

・・・Tim
e

・・・Tim
e

・・・Tim
e

・・・

・・・

Channel

C1
C2 C3 C4

C5 C6

C2 C4 C6

C2 C4 C6

fe
at

ur
e 

m
ap

s
w

ith
 N

or
m

fe
at

ur
e 

m
ap

s 
w

ith
ou

t N
or

m

highlow
firing frequency

highlow
firing frequency

â
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Figure 6. (a) Overview of the forward propagation phase using postsynaptic potential (PSP) nor-
malization on the N-MNIST dataset. (b) Example of feature maps, which are integrated along the
time axis, without PSP normalization. (c) As in (b) but for feature maps with it. PSP normalization
controls the activity of the network and prevents the over-firing of the neurons.

Next, we focus on the scale factor
√
VX [a(l)] + λ. As shown in Equation (18), the firing

threshold θ̂ becomes larger as the variance (second central moment) VX [a(l)] increases.
However, considering the behavior of the membrane potential, θ̂ should become larger
when the value of PSP (not variance) increases. Thus, we modify the equation as follows.

â(l)(t) =
a(l)(t)√

EX [(a(l))2] + λ
, (19)

where EX [(a(l))2] represents the second raw moment consisting of the following variable,

EX [(a(l)i )2] ≈ 1
X

X

∑
x=1

a(l)i (x)� a(l)i (x). (20)
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By using this equation, we do not have to compute the mean beforehand, in contrast
to using the variance.

In addition to EX [(a(l))2], there is a hyperparameter λ in the scale factor. λ is usually
set to a small constant, e.g., λ = 10−3 because it plays the role of the numerical stability.
Figure 7 shows the relationship between EX [(a(l)i )2] and θ̂ when changing θ and λ. As

shown in this figure, θ̂ monotonically decreases as EX [(a(l)i )2] decreases. In particular, θ̂ is
close to zero when λ is sufficiently small, regardless of the initial threshold θ. θ̂ ≈ 0 means
that spikes fire at all times even if the membrane potential is significantly small, making
it difficult to train a proper model. Thus, we set a relatively large value (λ = 0.1) as the
default value.
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Figure 7. Relationship between EX [(a(l)i )2] and θ̂.

5. Experiments

In this section, we evaluate two PSP normalizations: BN (the most common normal-
ization) and LN (which is effective in time-series processing, such as SNN). We called them
PSP-BN (X = W × H × N × T) and PSP-LN (X = W × H × C× T).

5.1. Experimental Setup

We evaluated PSP-BN and PSP-LN on the spatio-temporal event and static image
datasets. We used N-MNIST [12] and F-MNIST [13]. N/F-MNISTs are widely used datasets
containing 60 K training and 10K test samples with 10 classes. Each size is 34× 34× 30,000
events (N-MNIST), and 28× 28 pixels (F-MNIST). We partitioned the 60 K data using 54 K
and 6 K as our training and validation data, respectively. We also resized the F-MNIST
image from 28× 28 to 34× 34 to achieve higher accuracy.

We evaluated the performance of several spiking convolutional neural network models,
such as 14-convolutional layers on N/F-MNIST. We also used more deep models, such as
ResNet-106 on N-MNIST and F-MNIST, respectively.

We used hyperparameters shown in Table 1 in all experiments and implemented by
PyTorch. We used the default initialization of PyTorch and showed the best accuracies of all
models. All experiments were conducted using a single Tesla V100 GPU. In addition to this
computational resource limitation, we randomly sampled 6 K of the training data for both
datasets to train in each epoch since SLAYER requires a significant amount of time to train.
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Table 1. Hyperparameter setting on N-MNIST and F-MNIST.

Hyperparameter N-MNIST F-MNIST

τs 10 10
τr 10 10
α 10 10
β 10 10
θ 10 10
optimizer AdaBelief AdaBelief
learning rate 10−2 10−2

weight decay 10−4 10−4

weight scale 10 10
mini-batch size 10 10
time step 300 100
epoch 100 100

5.2. Effectiveness of Postsynaptic Potential Normalization

We first evaluate the effectiveness of our normalizations. Table 2 presents the accu-
racies of PSP-BN and PSP-LN and other approaches. Note that we set our normalization
before the convolution as described in Section 4, which is different from the position pro-
posed in previous studies [33–35]. This table illustrates that PSP-BN and PSP-LN achieve
high accuracies on both datasets compared to the other approaches.

We also investigate the effect of the proposed method on the firing rate. Figures 8 and 9
show the firing rates of each method. As shown in Figure 8, our normalized models can
suppress the firing rate in most layers compared to the unnormalized model. Furthermore,
Figure 9 and Table 2 show that our normalized models can simultaneously achieve high
classification accuracy and low firing rate compared to other normalizations. These results
verify the effectiveness of our normalizations.

Then, we also analyze the training and inference times of the proposed method.
Figure 10 shows the computational cost of BN, PSP-BN, and PSP-LN. The training time
of PSP-BN and PSP-LN is shorter than BN because our normalization method does not
require training parameters (γ and ξ) as Equation (17). On the other hand, the training time
of PSP-BN and PSP-LN are almost the same because these differ only in X. In addition,
there is no significant difference in inference time for each normalization. These results
show that our normalization is suitable for training SNN.

Table 2. Accuracies of N-MNIST and F-MNIST obtained from different methods. PSP-BN and
PSP-LN are our normalization methods, and None is the model without normalization. Here, “c”,
“n”, and “o” represent the convolution, normalization, and output neurons, respectively. In addition,
each layer and spatial dimension in the network are separated by “-” and “×”.

Method Dataset Network Architecture Acc. (%)

BN [35] N-MNIST 34×34×2-8c3n-{16c3n}*5-16c3n-{32c3n}*5-10o 85.1
BNTT [34] N-MNIST 34×34×2-8c3n-{16c3n}*5-16c3n-{32c3n}*5-10o 90.0
tdBN [33] N-MNIST 34×34×2-8c3n-{16c3n}*5-16c3n-{32c3n}*5-10o 81.8
PSP-BN N-MNIST 34×34×2-n8c3-{n16c3}*5-n16c3-{n32c3}*5-10o 97.4
PSP-LN N-MNIST 34×34×2-n8c3-{n16c3}*5-n16c3-{n32c3}*5-10o 98.2
None N-MNIST 34×34×2-8c3-{16c3}*5-16c3-{32c3}*5-10o 40.6

BN [35] F-MNIST 34×34-16c3n-{32c3n}*5-32c3n-{64c3n}*5-10o 10
BNTT [34] F-MNIST 34×34-16c3n-{32c3n}*5-32c3n-{64c3n}*5-10o 10
tdBN [33] F-MNIST 34×34-16c3n-{32c3n}*5-32c3n-{64c3n}*5-10o 40.5
PSP-BN F-MNIST 34×34-n16c3-{n32c3}*5-n32c3-{n64c3}*5-10o 88.6
PSP-LN F-MNIST 34×34-n16c3-{n32c3}*5-n32c3-{n64c3}*5-10o 89.1
None F-MNIST 34×34-16c3-{32c3}*5-32c3-{64c3}*5-10o 84.1
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Figure 8. Comparison of firing rates. The top is N-MNIST and the bottom is F-MNIST.
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Figure 10. Comparison of the training and inference time by using BN, PSP-BN and PSP-LN. The top
is the training time and the bottom is the inference time.

5.3. Performance Evaluation of Deep SNNs by Residual Modules

Finally, we evaluate the performance of SNNs using the residual blocks. Table 3 shows
the performance of SNNs using the pre-activation and post-activation residual blocks. As
shown in this table, the accuracy is substantially improved using the pre-activation residual
blocks. This result shows that the post-activation employed in previous studies without
refractory period [5,11,33] is unsuitable for SNNs with a refractory period. Thus, while
ensuring the biological plausibility, due to the refractory period, we can obtain deep SNNs
beyond 100 layers using our normalizations and pre-activation residual blocks.

Table 3. Performance comparison using post-activation and pre-activation residual blocks. We use
ResNet-106 on N-MNIST and F-MNIST datasets, respectively.

Meshod Dataset Network Architecture Acc. (%)

PSP-BN N-MNIST Post-activation ResNet-106 10.0
PSP-BN N-MNIST Pre-activation ResNet-106 75.4
PSP-LN N-MNIST Post-activation ResNet-106 10.0
PSP-LN N-MNIST Pre-activation ResNet-106 86.8

PSP-BN F-MNIST Post-activation ResNet-106 10.0
PSP-BN F-MNIST Pre-activation ResNet-106 81.6
PSP-LN F-MNIST Post-activation ResNet-106 10.0
PSP-LN F-MNIST Pre-activation ResNet-106 82.1

6. Discussion and Conclusions

In this study, we proposed an appropriate normalization method for SNN. The pro-
posed normalization removes the subtraction term from the standard normalization and
uses the second raw moment as the denominator. Our normalized models outperformed
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other normalized models based on existing normalization such as BN, BNTT, and tdBN
by inserting this simple normalization before the convolutional layer. Furthermore, our
proposed model with pre-activation residual blocks can train with more than 100 layers
without any other special techniques dedicated to SNNs.

Besides the type of normalization, some papers pointed out that tuning hyperparameters
τs and λ is essential for high accuracy [41,42]. Investigating this aspect, we found that
PSP-BN is sensitive to λ, whereas PSP-LN is robust to τs and λ (Figures 11 and 12). These
results imply that the effectiveness of tuning hyperparameters depends on X. We will
conduct more detailed analysis in this regard in the future. In addition, we will also analyze
the effect on other datasets and networks. Furthermore, we aim to extend postsynaptic
normalization based on tdBN to develop robust normalization techniques for the thresholds in
spiking neurons.
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Figure 11. Accuracy comparison of F-MNIST dataset with respect to changing hyperparameter
τs (= {1, 5, 10}).
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Figure 12. Accuracy comparison of F-MNIST with respect to changing λ (= {10−10, 10−5, 10−3, 10−1}).

Author Contributions: S.-i.I. wrote the manuscript, R.S. wrote the code, Y.S. and N.N. reviewed the
work and contributed via discussions. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 2876 13 of 14

References
1. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
2. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al.

Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

3. Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

4. Maguire, L.P.; McGinnity, T.M.; Glackin, B.; Ghani, A.; Belatreche, A.; Harkin, J. Challenges for large-scale implementations of
spiking neural networks on FPGAs. Neurocomputing 2007, 71, 13–29. [CrossRef]

5. Lee, C.; Sarwar, S.S.; Panda, P.; Srinivasan, G.; Roy, K. Enabling spike-based backpropagation for training deep neural network
architectures. Front. Neurosci. 2020, 14, 119. [CrossRef]

6. Shrestha, S.B.; Orchard, G. Slayer: Spike layer error reassignment in time. arXiv 2018, arXiv:1810.08646.
7. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 2018, 12, 331. [CrossRef]
8. Zenke, F.; Ganguli, S. Superspike: Supervised learning in multilayer spiking neural networks. Neural Comput. 2018, 30, 1514–1541.

[CrossRef]
9. Zhang, W.; Li, P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. Adv. Neural Inf.

Process. Syst. 2020, 33, 12022–12033.
10. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
11. Fang, W.; Yu, Z.; Chen, Y.; Huang, T.; Masquelier, T.; Tian, Y. Deep Residual Learning in Spiking Neural Networks. arXiv 2021,

arXiv:2102.04159.
12. Orchard, G.; Jayawant, A.; Cohen, G.K.; Thakor, N. Converting static image datasets to spiking neuromorphic datasets using

saccades. Front. Neurosci. 2015, 9, 437. [CrossRef]
13. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on

Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 630–645.
15. Lapique, L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. 1907,

9, 620–635.
16. Stein, R.B. A theoretical analysis of neuronal variability. Biophys. J. 1965, 5, 173–194. [CrossRef]
17. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
18. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500–544. [CrossRef]
19. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,

UK, 2002.
20. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J.

Neurophysiol. 1967, 30, 1138–1168. [CrossRef]
21. Comsa, I.M.; Potempa, K.; Versari, L.; Fischbacher, T.; Gesmundo, A.; Alakuijala, J. Temporal coding in spiking neural networks

with alpha synaptic function. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8529–8533.

22. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Killarney,
Ireland, 12–17 July 2015; pp. 1–8.

23. Li, Y.; Deng, S.; Dong, X.; Gong, R.; Gu, S. A Free Lunch From ANN: Towards Efficient, Accurate Spiking Neural Networks
Calibration. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 6316–6325.

24. Rueckauer, B.; Lungu, I.-A.; Hu, Y.; Pfeiffer, M.; Liu, S.-C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef] [PubMed]

25. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef]

26. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef] [PubMed]

27. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
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