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BACKGROUND: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation
of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with
new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15
(PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.
METHODS: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary
myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were
analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8
and Bcl-2 family of proteins was assessed by western blot analysis.
RESULTS: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes
were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively,
following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both
cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response.
In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and
intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of BimEL preceded downregulation of other Bcl-2
proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.
CONCLUSION: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15
represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy.
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Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel tubulin
depolymerising agent (Mulligan et al, 2006) that has been shown
by us to exhibit proapoptotic activity in a variety of human tumour
cell types, including those derived from both solid and haemato-
logical malignancies (Greene et al, 2008; McElligott et al, 2009;
Nathwani et al, 2009; Bright et al, 2010). Recently, we have shown
that PBOX-15 induces apoptosis in ex vivo B-cell chronic
lymphocytic leukaemia (CLL) cells harbouring poor prognostic
indicators and fludarabine resistance-associated p53 deletions
(McElligott et al, 2009), and in imatinib-resistant chronic myeloid
leukaemia (CML) cells (Bright et al, 2010). Importantly, PBOX-15
displays minimal toxicity towards normal blood and bone marrow
cells (McElligott et al, 2009). The anticancer activity of drugs that
interfere with tubulin dynamics, collectively known as microtubule
targeting agents (MTA), is well established and, conventionally,

the proapoptotic activity of these agents has been linked to their
induction of mitotic arrest (Jordan and Wilson, 2004; Zelnak,
2007). However, it is becoming increasingly clear that additional
mechanisms leading to cell death may also be activated by these
agents (Gascoigne and Taylor, 2008), and indeed we have shown
that PBOX-15 induces apoptosis independent of cell cycle arrest in
ex vivo CLL cells (McElligott et al, 2009).

In this study, we investigate the efficacy and mode of action of
PBOX-15 in multiple myeloma, a common B-cell malignancy.
Myeloma is characterised by the accumulation of malignant
plasma cells with defective apoptotic mechanisms and minimal
proliferative rates (Kuehl and Bergsagel, 2005). Current chemo-
therapy options include the proteasome inhibitor bortezomib,
thalidomide, or its immunomodulatory analogue lenalidomide,
in combination with steroids and DNA alkylating agents (Kyle and
Rajkumar, 2008). However, a major drawback of these agents is
the eventual development of resistance. Of particular concern is
the emergence of resistance to bortezomib and lenalidomide in
myeloma patients (Politou et al, 2006; Schmidmaier et al, 2007;
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Sonneveld et al, 2008). Therefore, there is a pressing need for
continued investigation and development of alternative treatment
options for patients. The MTA vincristine has also demonstrated
therapeutic efficacy in myeloma, and has previously been
incorporated into initial treatment regimes for newly diagnosed
patients (Alexanian et al, 1990). However, its use is associated with
the development of multidrug resistance, and it has largely been
replaced by newer agents (Grogan et al, 1993; Kyle and Rajkumar,
2008). A number of preclinical studies have demonstrated the
anti-myeloma activity of other MTAs, including Taxol, Vinorelbine
(a semisynthetic Vinca alkaloid), and the isocourmarin derivative
185322 (Aoyama et al, 1998; Ochiai et al, 2002; Kawano et al, 2007).
In addition, 5HPP-33, a thalidomide analogue with potent anti-
myeloma activity, has also demonstrated tubulin-polymerisation-
inhibiting activity in vitro (Kizaki and Hashimoto, 2008).

In this study, we demonstrate the anti-myeloma activity of
PBOX-15 in a panel of myeloma cell lines and in primary myeloma
cells ex vivo. Moreover, we delineate the mechanism of PBOX-15
activity in myeloma cells: we show induction of caspase-8-
dependent apoptosis, independent activation of the extrinsic
and intrinsic apoptotic pathways, and early downregulation of
the proapoptotic BH3-only protein Bim. Importantly, we show
upregulation of death receptor 5 (DR5) in PBOX-15-treated
myeloma cells, with resultant potentiation of apoptosis following
cotreatment with PBOX-15 and the DR5 ligand, tumour necrosis
factor-related apoptosis-inducing ligand (TRAIL).

MATERIALS AND METHODS

Chemicals

PBOX-15 was synthesised as previously described (Campiani et al,
1996; Mc Gee et al, 2005). KillerTRAIL was obtained from Alexis
Biochemicals (Lausen, Switzerland) and caspase inhibitors were
obtained from Calbiochem (Darmstadt, Germany). Unless indi-
cated, all other reagents and chemicals were obtained from
Sigma-Aldrich (St Louis, MO, USA).

Cell culture

NCI-H929, U266, and RPMI8226 myeloma cell lines were obtained
from the DSMZ cell bank (Braunschweig, Germany). KMS11 cells
(Namba et al, 1989) were a kind gift from Dr Takemi Otsuki,
Kawasaki Medical School, Japan. All cell lines were cultured in
complete medium (RPMI-1640 medium supplemented with 10%
fetal calf serum and 1% penicillin– streptomycin) under standard
cell culture conditions.

Patient samples

Written informed consent was obtained from five myeloma
patients before sample collection, and the study was approved by
the St James’s Hospital and Federated Dublin Voluntary Hospitals’
Joint Ethics Committee, Dublin, Ireland. CD138þ cells were
isolated from bone marrow aspirates on a MACS Separator using
whole blood CD138 Microbeads (Miltenyi Biotec, Auburn, CA,
USA), as per manufacturers’ instructions, or identified by gating
of phycoerythrin (PE)-conjugated anti-CD138 (BD Biosciences,
Franklin Lakes, NJ, USA)-stained cells on a CyAn ADP flow
cytometer (Beckman Coulter, Brea, CA, USA) using Summit V4.3
software (Dako, Fort Collins, CO, USA).

Cell cycle analysis and apoptosis assays

Cell cycle distribution was analysed by flow cytometry analysis
of propidium iodide (PI; Invitrogen, Paisley, UK)-stained cells.
Cells were fixed and permeabilised with 90% (v/v) ethanol, and
incubated with 25 mg ml�1 PI and 0.1 mg RNase A (Gentra Systems

Inc., Minneapolis, MN, USA) for 30 min before analysis using a
FACSCalibur flow cytometer and CellQuest software (BD Bio-
sciences). Quantification of apoptosis was determined by flow
cytometry analysis of cells costained with fluorescein isothiocya-
nate (FITC)-conjugated AnnexinV (AnnexinV-FITC) (IQ Products,
Groningen, The Netherlands) and PI (AnnexinV/PI assay) as
previously described (McElligott et al, 2009). For primary
myeloma samples, cells were stained with PE-conjugated anti-
CD138, AnnexinV-FITC, and Hoechst33258 at room temperature
for 30 min, and analysed on a CyAn ADP flow cytometer. Mito-
chondrial inner membrane (MIM) depolarisation was assessed by
incubating cells for 15 min with 2 mM JC-1, a cationic dye, followed
by flow cytometry analysis. Mitochondrial cytochrome c release
was assessed using the InnoCyte Flow Cytometric Cytochrome c
Release Kit (Calbiochem) according to the manufacturer’s
instructions.

Immunofluorescent microscopy

Direct immunofluorescent staining for tubulin was performed as
previously described (Verma et al, 2008) using anti-a-tubulin-
FITC conjugate and Hoechst. Images were visualised using a Ziess
LSM 510 META imaging system (Carl Ziess MicroImaging,
Thornwood, NY, USA).

Western blot analysis

Whole-cell lysates were obtained using RIPA buffer (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), and protein concentration
was determined using a NanoDropND-1000 UV-Vis Spectro-
photometer (NanoDrop Technologies, Wilmington, DE, USA).
Western blot analysis was performed using antibodies directed
against BubR1 (Sigma-Aldrich), caspase-8, DR5, Bid, and Bim (Cell
Signalling Technology, Danvers, MA, USA), Bcl-2 and Mcl-1
(Calbiochem), and appropriate HRP-conjugated secondary anti-
body (Dako, Glostrup, Denmark). All blots were reprobed with
anti-b-actin to confirm equal loading, and densitometry was
performed using ImageJ software (US National Institutes of
Health; http://rsb.info.nih.gov/ij/).

TaqMan gene expression analysis

RNA was extracted using the RNeasy Mini Kit (Qiagen, West
Sussex, UK), and converted to cDNA using a High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems Inc. (ABI), Foster
City, CA, USA). TaqMan Gene Expression Assays (DR5, Bim,
GAPDH; ABI) and apoptosis panel TaqMan Low Density Arrays
(ABI) were performed according to the manufacturer’s protocols.
Data analysis was performed using the SDSv2.1 program (ABI).

Statistical analysis

Two-tailed t-test analysis was performed using GraphPad
InStat v3.05 (GraphPad Software, San Diego, CA, USA), with
Po0.05 considered significant. PBOX-15-mediated potentiation of
TRAIL-induced apoptosis was determined by showing that
apoptosis induced by combination treatment was significantly
greater than additive (i.e., apoptosis resulting from cotreatment
with TRAIL and PBOX-15 was significantly greater than the sum
of apoptosis induced by TRAIL alone plus apoptosis induced by
PBOX-15 alone).

RESULTS

PBOX-15 exhibits anti-myeloma activity in vitro and
ex vivo

PBOX-15 was found to induce apoptosis in a dose-dependent
manner in a panel of myeloma cell lines, NCI-H929, KMS11,
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RPMI8226, and U266, although with varying potency. Following
treatment with 1 mM PBOX-15 for 24 h, apoptotic responses of
35.2±2.1, 32.7±0.6, and 25.3±3.6% were measured in NCI-H929,
KMS11, and RPMI8226 cells, respectively, whereas a lower level of
apoptosis, 13.7±2.0%, was measured in U266 cells (Figure 1A).
We have previously shown this concentration and duration of
exposure to PBOX-15 to be minimally toxic to normal B lympho-
cytes and bone marrow progenitor cells (McElligott et al, 2009).
The efficacy of PBOX-15 was next compared with a panel of
cytotoxic agents using the cell lines that displayed the least
(U266) and most (NCI-H929) sensitivity to PBOX-15. In NCI-H929
cells, PBOX-15-induced apoptosis was found to be comparable
to apoptosis induced by 1 mM vincristine (42.3±2.8%; P40.05),
and greater than apoptosis induced by 10 mM dexamethasone
(14.4±2.9%; Po0.001) or 20 mM nocodazole (14.4±2.9%; Po0.05)
(Figure 1B). NCI-H929 cells were found to be resistant to treatment
with 2 mM As2O3. PBOX-15 was found to induce similar levels
of apoptosis in U266 cells as 1 mM vincristine (13.1±1.1%;
P40.05), 20 mM nocodazole (16.2±2%; P40.05), and 2 mM As2O3

(11±3.4%; P40.05), whereas these cells were resistant to
dexamethasone-induced apoptosis (Figure 1B).

The effect of PBOX-15 on myeloma cells isolated from bone
marrow aspirates of five patients was also assessed. Patients
no. 1–4 were newly diagnosed and treatment naive, whereas patient
no. 5 had relapsed following an allogeneic haematopoietic stem cell
transplant (HSCT) and was lenalidomide refractory. Patient no. 4
had a 17p chromosomal deletion, which is associated with poor
clinical outcome (Avet-Loiseau, 2007). Loss of CD138, a myeloma
cell-specific transmembrane heparin sulphate proteoglycan,
represents a marker for determining the induction of apoptosis
in myeloma cells following drug treatment (Jourdan et al, 1998;
Clendening et al, 2010). Here, a PBOX-15-induced decrease in
CD138þ cells was shown to occur concurrently with increased
AnnexinV staining (Figure 1C). Quantitation of apoptosis by
AnnexinV/Hoechst staining demonstrated that, following treat-
ment with 1 mM PBOX-15 for 24 h, apoptosis was induced in all
samples with a mean increase from background levels of 12±2.9%

(range 5–22.4%) (Figure 1D). PBOX-15-induced apoptosis was not
further increased in samples treated for up to 72 h (data not
shown).

Earlier work by our group has shown that the proapoptotic
activity of PBOX-15 is associated with the induction of micro-
tubule depolymerisation (Mulligan et al, 2006). Here, direct
immunofluorescent staining demonstrated that PBOX-15 treat-
ment (1 mM, 18 h) resulted in complete disruption of the micro-
tubule network in both NCI-H929 and U266 myeloma cell lines
(Figure 2A). In addition, flow cytometry analysis of PI-stained cells
demonstrated that PBOX-15 arrested both cell lines in the G2/M
phase of the cell cycle (Figure 2B). However, an increase in the
sub-G0 population, which is indicative of apoptosis, was seen only
in PBOX-15-treated NCI-H929 cells. In comparison, G2/M arrest
was maintained in PBOX-15-treated U266 cells for up to 72 h
of treatment. Consistent with this, a time-dependent increase
in apoptosis was observed in NCI-H929 cells treated with 1 mM

PBOX-15 (Figure 2C), whereas treatment of U266 cells for up to
72 h with 1 mM PBOX-15 did not augment the apoptotic response.
Previously, we have shown that cells expressing high levels of the
mitotic checkpoint protein BubR1 undergo sustained mitotic
arrest in response to treatment with PBOX compounds, whereas
a low level of expression is associated with transient arrest and a
greater apoptotic response (Greene et al, 2008). Similarly, greater
expression of BubR1 was detected in U266 cells compared with the
NCI-H929 cell line (Figure 2D), and downregulation of BubR1
expression was observed only in NCI-H929 cells after treatment
with 1 mM PBOX-15 for 24 h.

PBOX-15 upregulates DR5 and potentiates TRAIL-induced
apoptosis in NCI-H929 and U266 cells

To delineate the mechanism by which PBOX-15 induces apoptosis,
its effect on expression of genes involved in the extrinsic apoptotic
pathway was examined in both NCI-H929 and U266 cells. Using
preformatted TaqMan Low Density Array apoptosis panels,
expression of DR genes TNFRSF10B, TNFRSF1A, and FAS, which
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encode DR5, tumour necrosis factor receptor-1 (TNF-R1), and Fas,
respectively, were found to be upregulated, with relative changes in
gene expression (RQ) of 4two-fold in both cell lines after
treatment with 0.25mM PBOX-15 for 12 h (Figure 3A). These
treatment conditions were used to minimise secondary transcrip-
tional effects due to PBOX-15-induced apoptosis in the cells. The
largest fold increase following PBOX-15 treatment of both cell lines
was in the expression of TNFRSF10B (DR5), with RQ values of
10 and 17 determined for NCI-H929 and U266 cells, respectively.
These results were validated using individual TaqMan assays, with
similar RQ values calculated (data not shown), and western blot
analysis demonstrated upregulation of DR5 protein in both cell
lines following treatment with PBOX-15 (Figure 3B). Greater
upregulation of DR5 protein was observed in NCI-H929 cells
(4.8-fold) following treatment with 1 mM PBOX-15 for 24 h
compared with U266 cells (2.9-fold). In addition, upregulation of
the DR5 precursor protein was also detected in PBOX-15-treated
NCI-H929 cells. DR5 upregulation has previously been associated
with enhancement of TRAIL-induced apoptosis in myeloma cells
(Jazirehi et al, 2001; Mitsiades et al, 2001; Liu et al, 2003).
Cotreatment of NCI-H929 and U266 cells in this study with
suboptimal doses of PBOX-15 (0.5mM) and TRAIL (15 ng ml�1)
potentiated apoptosis to levels greater than those induced by
either agent alone or by their additive effect. In NCI-H929 cells,
an apoptotic response of 66.5±4.1% (Po0.05) was measured
following treatment with 0.5 mM PBOX-15 and 15 ng ml�1 TRAIL
for 24 h (Figure 3C), and in U266 cells this combination treatment
induced 38.4±2.6% (Po0.05) apoptosis (Figure 3D).

PBOX-15-induced apoptosis of NCI-H929 cells is caspase
dependent with independent activation of extrinsic and
intrinsic apoptotic pathways

In addition to sensitising cells to DR-ligand-mediated apoptosis,
chemotherapy-induced upregulation and clustering of DRs has

been shown to directly activate the caspase-8-dependent extrinsic
apoptotic pathway (Huang et al, 2001). We have previously
reported that PBOX-6-induced apoptosis may involve both
caspase-dependent and -independent pathways (Zisterer et al,
2000; McGee et al, 2001), and have recently demonstrated PBOX-
15-induced apoptosis of CLL cells to be caspase-8 dependent
(McElligott et al, 2009). In NCI-H929 cells, pretreatment with the
pan-caspase inhibitor z-VAD-fmk completely prevented PBOX-15-
induced apoptosis, indicating a caspase-dependent mechanism of
apoptosis (Figure 4A). Specifically, PBOX-15-induced apoptosis
was found to be caspase-8 dependent, with apoptosis significantly
reduced in cells pretreated with the caspase-8 inhibitor z-IETD-
fmk (Po0.01) (Figure 4A). In comparison, pretreatment of cells
with the caspase-9 inhibitor Ac-LEHD-CMK, or the granzyme B
inhibitor z-AAD-CMK, did not prevent PBOX-15-induced apop-
tosis. The activation of caspase-8 during PBOX-15-induced apop-
tosis of NCI-H929 cells was confirmed by western blot analysis,
with cleaved caspase-8 fragments detected after treatment for 18 h
with 1 mM PBOX-15 (Figure 4B). In contrast, caspase-8 was cleaved
to a lesser extent in PBOX-15-treated U266 cells.

In addition to its role in the extrinsic apoptotic pathway,
caspase-8 may also trigger the intrinsic apoptotic pathway through
cleavage of the proapoptotic protein Bid. Here, we show that
expression of Bid was decreased in NCI-H929 cells treated for 24 h
with 1 mM PBOX-15, and this was prevented in cells pretreated
with z-IETD-fmk (Figure 5A). In support of the activation of
the intrinsic apoptotic pathway, flow cytometry analysis of JC-1-
stained cells demonstrated that MIM depolarisation occurred in a
time-dependent manner in PBOX-15-treated NCI-H929 cells, and
was an early event, occurring after 2 h of treatment (Figure 5B).
Flow cytometry analysis also showed release of cytochrome c from
the mitochondria of these cells after 6 h of treatment with PBOX-15
(Figure 5C). However, inhibition of caspase-8 did not prevent MIM
depolarisation (data not shown) and only partially prevented
cytochrome c release (Figure 5C).
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PBOX-15 induces downregulation of BimEL in NCI-H929
cells

As important regulators of the intrinsic apoptotic pathway, the role
of the antiapoptotic Bcl-2 proteins, Bcl-2 and Mcl-1, in PBOX-15-
induced apoptosis of NCI-H929 cells was next investigated.
No effect on Bcl-2 was observed in NCI-H929 cells following
treatment with PBOX-15 for up to 48 h (Figure 5D). However,
expression of Mcl-1, which has been shown to be an important

regulator of myeloma cell survival (Gomez-Bougie et al, 2004),
was found to be decreased in NCI-H929 cells treated with 1 mM

PBOX-15, with expression completely abolished after 48 h
(Figure 5D).

In myeloma cells, Mcl-1-mediated regulation of apoptosis has
been linked to its interaction with the proapoptotic BH3-only
protein Bim (Gomez-Bougie et al, 2004, 2005). There are three
alternative splicing isoforms of Bim (BimEL, BimL, and BimS), and
all were found to be expressed in both NCI-H929 and U266 cells
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and expression of DR5 assessed by western blot analysis. Results are representative of three independent experiments. (C) NCI-H929 and (D) U266 cells
were treated with PBOX-15 and TRAIL as indicated for 24 h, and apoptosis was quantified by AnnexinV/PI assay. Columns, mean; bars, s.e.; n¼ 3. Apoptosis
due to TRAILþ PBOX-15 was significantly greater than the sum of apoptosis due to TRAIL alone plus apoptosis due to PBOX- 15 alone, *Po0.05,
t-test, n¼ 3.
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(Figure 6A). In NCI-H929 cells, BimEL expression was found to be
decreased after treatment with PBOX-15 for 6 h, with reduced
expression maintained for up to 24 h of treatment. A decrease in
expression of BimL and BimS was also detected in PBOX-15-treated
NCI-H929 cells; however, this occurred to a lesser extent, and was
not detected until 24 h of treatment. In contrast, PBOX-15
treatment had minimal effect on the expression of any Bim
isoform in U266 cells (Figure 6A). RQ–PCR analysis showed an
increase in Bim mRNA levels in NCI-H929 cells after treatment
with PBOX-15 (Figure 6B), indicating that the observed decrease in
BimEL protein levels is not due to inhibition of gene transcription.
In contrast, a decrease in Bim mRNA levels was noted in PBOX-15-
treated U266 cells.

Decreased BimEL protein expression has previously been
reported to be the result of caspase-dependent cleavage in
myeloma cells undergoing melphalan-induced apoptosis (Gomez-
Bougie et al, 2005). Here, pretreatment of NCI-H929 cells with the
caspase-8 inhibitor, z-IETD-fmk, prevented PBOX-15-induced
decrease in BimEL expression (Figure 6C), suggesting a role for
active caspase-8 in downregulating BimEL expression in these cells.

DISCUSSION

PBOX-15 is a potent member of a potential new class of anticancer
agents that has been shown by us previously to have activity in
haematological malignancies, including chemotherapy-refractory
CLL and CML cells (McElligott et al, 2009; Bright et al, 2010). The
proapoptotic activity of PBOX-15 has been associated with its
tubulin binding and depolymerising properties, and accordingly
may be classified as an MTA (Mulligan et al, 2006). Microtubule
targeting agents are widely used as anti-mitotic agents in the
treatment of cancer; however, the mechanism by which they

subsequently induce cell death remains incompletely defined
and may be heterogeneous both within cell populations and
between cell types (Gascoigne and Taylor, 2008). Presently, we
investigate the activity of PBOX-15 in myeloma cells, and delineate
the mechanism by which it induces apoptosis in these cells.
Consequently, we identify a potential new therapeutic approach for
the treatment of multiple myeloma.

In this study, the potential of PBOX-15 as a novel anti-myeloma
agent was initially demonstrated by its ability to induce apoptosis
in a panel of myeloma cell lines. The use of patient samples,
however, is important in predicting the clinical relevance of novel
anticancer agents, and here we also show PBOX-15-induced
apoptosis in ex vivo myeloma cells isolated from patient bone
marrow aspirates. Of note, we show PBOX-15 activity in myeloma
cells isolated from patients with poor clinical prognosis: sample
no. 5, which was obtained from a lenalidomide-refractory patient
who had relapsed following allogenic HSCT, and sample no. 4,
harbouring a 17p deletion associated with loss of p53 expression
and aggressive disease (Yeung and Chang, 2008). Previously, we
have shown that PBOX-15 induces apoptosis in CLL cells with 17p
deletions (McElligott et al, 2009). In this study, p53 status appears
to influence PBOX-15-induced apoptosis in myeloma cells, with
the lowest relative sensitivity to PBOX-15 displayed by patient
sample no. 4 and the U266 and RPMI-8226 cells lines, both of
which express mutated p53 (Liu et al, 2003). This may suggest that
PBOX-15 can activate both p53-dependent and -independent
apoptotic pathways in myeloma cells.

Of the cell lines tested, NCI-H929 cells exhibited the greatest
apoptotic response following treatment with PBOX-15, whereas the
U266 cell line was the least sensitive. However, in both cell lines,
PBOX-15-induced apoptosis was found to be comparable to, or
greater than, that induced by other cytotoxic agents, including the
MTAs vincristine and nocodazole, and the anti-myeloma agent
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Figure 5 PBOX-15 activates the intrinsic apoptotic pathway in NCI-H929 cells. (A) NCI-H929 cells were treated as indicated for 24 h, and expression of
Bid was assessed by western blot analysis. Where indicated, cells were pretreated for 1 h with caspase-8 inhibitor z-IETD-fmk. Results are representative of
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dexamethasone. Despite their differential sensitivities to PBOX-15,
both NCI-H929 and U266 cells were found to undergo cytoskeleton
disruption and G2/M phase cell cycle arrest following treatment
with PBOX-15. However, in contrast to the subsequent potent
induction of apoptosis in NCI-H929 cells, PBOX-15-treated U266
cells were found to undergo sustained cell cycle arrest. Previously,
we have demonstrated the duration of G2/M arrest induced by
PBOX compounds to correlate with endogenous expression levels
of the mitotic spindle checkpoint protein BubR1 (Greene et al,
2008). Here, we show greater expression of BubR1 in U266 cells
compared with the NCI-H929 cell line, and demonstrate down-
regulation of BubR1 expression in NCI-H929 cells, but not U266
cells, following treatment with PBOX-15. Thus, differences in
BubR1 expression levels may account in part for the different
cytostatic responses of NCI-H929 and U266 cells to PBOX-15.

Significantly, we show PBOX-15-induced upregulation of the
DR5, TNF-R1, and Fas DR genes in both NCI-H929 and U266
cells, suggesting that PBOX-15 may sensitise myeloma cells to
DR-mediated apoptosis. In both cell lines, the greatest increase
in gene expression was of TNFRSF10B, with a corresponding
upregulation of the gene product, DR5. Importantly, the level of
PBOX-15-induced DR5 upregulation was found to correlate with

the subsequent level of apoptosis induced in the two cell lines.
Together, these data suggest a primary role for the extrinsic
apoptotic pathway in PBOX-15-induced apoptosis of myeloma
cells. Consistent with this, we found PBOX-15-induced apoptosis
in NCI-H929 cells to be caspase-8 dependent. Microtubule
targeting agent-induced upregulation of DR5 has previously been
shown to sensitise breast and ovarian cancer cells to TRAIL-
induced apoptosis (LaVallee et al, 2003; Wood et al, 2004).
Similarly, upregulation of DR5 has been associated with chemo-
sensitisation of myeloma cells to TRAIL-induced apoptosis follow-
ing treatment with doxorubicin, As2O3, the histone deacetylase
inhibitor Trichostatin A, or the Akt inhibitor perifosine (Jazirehi
et al, 2001; Liu et al, 2003; Fandy and Srivastava, 2006; David et al,
2008). However, to the best of our knowledge, MTA-induced
chemosensitisation of myeloma cells to TRAIL through DR5
upregulation has not previously been reported. Here, we show that,
consistent with DR5 upregulation, cotreatment of both NCI-H929
and U266 cells with suboptimal doses of PBOX-15 and TRAIL
potentiated the apoptotic response. Thus, in addition to its
potential as a single agent, these results identify a potential role
for PBOX-15 as a novel chemosensitiser in the treatment of
myeloma. Of particular note is the ability of PBOX-15 to sensitise
the relatively chemoresistant U266 cell line to TRAIL-induced
apoptosis. Thus, together with our demonstration of PBOX-15-
induced apoptosis in lenalidomide-refractory patient sample no. 4,
and our previous work identifying the ability of PBOX-15 to induce
apoptosis in p-glycoprotein-positive and breast cancer resistance
protein-positive cancer cells (Nathwani et al, 2009), both of which
have been shown to be associated with chemotherapy-induced
treatment drug resistance in myeloma (Grogan et al, 1993; Turner
et al, 2006), we suggest a potential role for PBOX-15 in the
treatment of chemoresistant myeloma.

Crosstalk between the extrinsic apoptotic pathway and the
intrinsic pathway, the other main mechanism by which apoptosis
can proceed, was suggested by the detection of a caspase-8-
dependent decrease in Bid expression in PBOX-15-treated
NCI-H929 cells. However, although inhibition of caspase-8 parti-
ally prevented mitochondrial cytochrome c release in these cells,
MIM depolarisation was caspase-8 independent. Moreover, pharma-
cological inhibition of caspase-9, a key mediator of the intrinsic
pathway, did not prevent PBOX-15-induced apoptosis. Together,
these results demonstrate that the intrinsic and extrinsic apop-
totic pathways are independently triggered in PBOX-15-treated
NCI-H929 cells. These data also identify the extrinsic pathway as
the primary mechanism by which PBOX-15-induced apoptosis
proceeds in NCI-H929 cells, and suggests that the role of the
intrinsic apoptotic pathway here is in amplification, rather than
direct initiation, of apoptosis.

We have previously reported a role for antiapoptotic Bcl-2,
an important regulator of the intrinsic apoptotic pathway, in
PBOX-induced apoptosis of CML cells (Mc Gee et al, 2004).
Although no role for Bcl-2 in PBOX-15-induced apoptosis of
NCI-H929 cells was observed in this study, antiapoptotic Mcl-1
was found to be downregulated in these cells. In myeloma cells,
Mcl-1-mediated apoptosis has been reported to be regulated by
its interaction with proapoptotic Bim (Gomez-Bougie et al, 2004,
2005; Morales et al, 2008). Here, a decrease in expression of Bim
was detected in NCI-H929 cells treated with PBOX-15, with down-
regulation of the BimEL isoform observed to be an early event. As a
proapoptotic protein, downregulation of Bim is more usually
associated with cell survival and antiapoptotic signals (Craxton
et al, 2005; Morales et al, 2008), whereas increased expression is
associated with apoptosis of myeloma cells (Gómez-Benito et al,
2007; Morales et al, 2008). However, the apoptotic activity of
Bim may also be regulated by other mechanisms such as post-
translational modification (Lomonosova and Chinnadurai, 2009).
Here, decreased Bim expression in PBOX-15-treated NCI-H929
cells was shown not to result from transcriptional repression, but
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assessed by western blot analysis. Results are representative of three
independent experiments. (B) NCI-H929 and U266 cells were treated as
indicated for 12 h, and Bim mRNA levels were assessed by RT–PCR.
Relative changes in gene expression (RQ) were calculated compared with
untreated controls, using GADPH expression as the endogenous control.
Columns, mean; bars, RQmin and RQmax; n¼ 3. (C) NCI-H929 cells were
treated as shown for 18 h, and expression of Bim was assessed by western
blot analysis. Where indicated, cells were pretreated for 1 h with the
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instead was found to be caspase-8 dependent. Decreased expres-
sion of BimEL has previously been described to result from
caspase-dependent generation of N-terminally cleaved BimEL,
which displays increased proapoptotic activity, during apoptotic
signalling in the Jurkat T-lymphocytic leukaemia cell line (Chen
and Zhou, 2004). A comparable role for cleaved BimEL in
amplification of apoptosis has also been suggested in melphalan-
treated myeloma cells (Gomez-Bougie et al, 2005). However, the
role of caspase-8-dependent downregulation of BimEL during
PBOX-15-induced apoptosis of NCI-H929 cells is unclear, and a
potential role for cleaved Bim in the amplification of PBOX-15-
induced apoptosis in myeloma cells warrants further investigation.

Overall, this study demonstrates the potential of PBOX-15 as an
anti-myeloma agent, and we show activation of multiple apoptotic
mechanisms in PBOX-15-treated myeloma cells. Functional studies
have identified upregulation of DR5 and activation of caspase-8 as
key mechanisms by which PBOX-15 induces apoptosis in myeloma

cells. In addition, the ability of PBOX-15 and TRAIL to potentiate
apoptosis of myeloma cells through DR5 upregulation identifies a
novel mechanism underlying the potential use of PBOX-15 as a
strategy for chemosensitisation of myeloma cells. Additional
preclinical studies, including the use of animal models, are
warranted to further assess the potential of PBOX-15 as a potential
therapeutic agent for myeloma.
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