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Synergies of Extracellular Vesicles
and Microchimerism in Promoting
Immunotolerance During Pregnancy
José M. Murrieta-Coxca, Paulina Fuentes-Zacarias , Stephanie Ospina-Prieto ,
Udo R. Markert* and Diana M. Morales-Prieto*

Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany

The concept of biological identity has been traditionally a central issue in immunology. The
assumption that entities foreign to a specific organism should be rejected by its immune
system, while self-entities do not trigger an immune response is challenged by the
expanded immunotolerance observed in pregnancy. To explain this “immunological
paradox”, as it was first called by Sir Peter Medawar, several mechanisms have been
described in the last decades. Among them, the intentional transfer and retention of small
amounts of cells between a mother and her child have gained back attention. These
microchimeric cells contribute to expanding allotolerance in both organisms and
enhancing genetic fitness, but they could also provoke aberrant alloimmune activation.
Understanding the mechanisms used by microchimeric cells to exert their function in
pregnancy has proven to be challenging as per definition they are extremely rare. Profiting
from studies in the field of transplantation and cancer research, a synergistic effect of
microchimerism and cellular communication based on the secretion of extracellular
vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in
feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to
reshape their function. A further aspect of EVs is their function in antigen presentation
either directly or on the surface of recipient cells. Here, we review the current
understanding of microchimerism in the feto-maternal tolerance during human
pregnancy and the potential role of EVs in mediating the allorecognition and tropism of
microchimeric cells.

Keywords: cross-dressing, immunotolerance, microchimerism, pregnancy, extracellular vesicles
(EV), allorecognition
INTRODUCTION

The Nobel Prize Laureate Sir Peter Medawar has become known for the formulation of the so-called
immunological paradox of pregnancy. He found it surprising that, despite expressing foreign
paternal antigens, the fetus remains in the mother’s uterus instead of being rejected in the way that a
skin graft of paternal tissue would be (1, 2). He proposed three mechanisms by which the fetus could
avoid recognition by the maternal immune system: the anatomical separation between mother and
fetus by the placenta, the immaturity of fetal antigens which impairs their ability to elicit a maternal
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immune response, and the immunological inertness of the
maternal immune system during pregnancy (3, 4). Medawar’s
work has set the first milestone in the study of reproductive
immunology, but despite his efforts and those of several medical
scientists throughout the last decades, the mechanisms that
govern feto-maternal tolerance are still only partly understood.

During normal human pregnancy, a natural bidirectional
immune regulation allows an intimate contact between
maternal and fetal cells at the maternal-fetal interface in a way
that a state of immune non-reactivity specific to particular
antigens is established. Thereby, the developing immune
system of the fetus tolerates protein products derived from
polymorphic genes that are expressed by the mother but are
not inherited, so-called non-inherited maternal antigens
(NIMAs), while the maternal immune system tolerates the
inherited paternal antigens (IPAs) expressed by the fetus (5, 6).

Although the placenta represents an important physical
barrier between mother and fetus, it is permeable to a
multitude of signal substances and cellular types which also
contribute to the establishment of immune tolerance. Small
quantities of both, mature and progenitor cells can cross the
placenta in a two-way cell trafficking. These cells are known as
microchimeric cells and play a key role in the regulation of
alloresponses towards NIMAs and IPAs (5). Additionally, the
communication between placental cells and maternal immune
cells mediated by extracellular vesicles (EVs) is one of the
mechanisms involved in allotolerance that is a current research
focus. EVs secreted by fetal tissues have the potential to transfer
fetal proteins and nucleic acids to maternal cells reshaping their
function. Here, we review the current understanding of
microchimerism in the feto-maternal tolerance during human
pregnancy and the role of EVs in mediating alloresponses, cell
trafficking, and tropism of microchimeric cells.
HISTORY OF MICROCHIMERISM

Back in 1945, Ray Owen reported the presence of two distinct blood
groups in fraternal twin cows: their own and that of their twin (7). To
explain this, he proposed a cell interchange between the bovine twin
embryonal cells in utero, ancestral to the erythrocytes of the adult
animal. The exchanged cells could become established in the
hematopoietic tissues of their co-twin hosts, providing a source of
blood cells distinct from those of the host, presumably throughout its
life, which is the conceptual foundation of acquired immunological
tolerance (7). A second publication of the same group years
thereafter stated that the actively acquired Rh tolerance to Rh
antigens displayed by Rh-negative women was related to their Rh-
positivemothers. The possible explanation was the prenatal exposure
to Rh antigens or Rh-positive cells derived from the mother (8).

Owen´s research was picked up by Burnet and Fenner as
evidence of a phenomenon they named “tolerance”, placing it in
the context of the “self or non-self” hypothesis whereby an organism
recognizes “self” and actively defends against pathogens and tissues
that are non-self (9, 10). This hypothesis was also tested by Sir
Medawar and Billingham by inoculating fetuses of one mouse strain
Frontiers in Immunology | www.frontiersin.org 2
with cells from a second and later in mice adulthood, performing
skin homografts from the original donor strain. These grafts were
accepted, but those from a third, unrelated mouse strain, were
rejected, agreeing with the fact that “self” is defined during
embryonic development as Burnet and Owen had hypothesized
(10, 11). Contemporarily, the British physician Dunsford found two
separate blood types in the blood of a donor who had a twin brother
that had died young; a phenomenon he called “blood group
chimera” (12, 13). These studies helped lay the groundwork for
understanding the process by which two different cell populations
can be found in an individual. This became a fundamental discovery
in immunology, providing new ideas for organ transplantation but
it also resulted fundamental in understanding human pregnancy as
actively acquired tolerance that may occur naturally by the
incorporation of maternal cells into a fetus during normal
development (11). These studies also set the definition of chimera
as an organism whose cells derive from two or more distinct zygote
lineages (14), which continues to be the meaning of the term at
present times.
PREGNANCY-DERIVED
MICROCHIMERISM

Currently, microchimerism is understood as the presence of less
than 1% allogeneic cells or DNA housed by an individual or an
organ (5, 15). Tissue microchimerism is considered to be primarily
pregnancy-derived, as a bidirectional cross-placental cell trafficking
occurs between fetus andmother. The decidua-trophoblast interface
plays a permissive role allowing stem cells and leukocytes, among
others, to be transferred from maternal tissues to fetal tissues giving
rise to maternal microchimerism, and from fetal tissues to maternal
tissues generating fetal microchimerism (5, 15–18). Cell-free fetal
DNA can be detected in maternal blood from the fourth week of
gestation (19, 20), increasing in concentration as pregnancy
progresses, with a sharp increase over the last 8 weeks of
pregnancy (21), but becoming undetectable at day 1 after delivery,
implying that its presence is limited to the current pregnancy (22).
Conversely, pregnancy-derived microchimerism has proven to be
long-lasting as a small number of maternal cells persist in her
offspring until adulthood, and fetal cells can be found in the mother
decades after parturition (23–29). Further, microchimerism is
asymmetrical, as more fetal cells are transferred to the mother -
than maternal cells to the fetus (15, 16, 30, 31). Yet, the
microchimeric cells seem to be more decisive for the development
of the fetus than for the mother possibly due to its nascent immune
system (32).

The transfer of fetal material into the maternal system was
first identified in 1893 as the presence of multinucleated cells
with characteristic morphology of placental cells in diverse
tissues of pregnant women who died from eclampsia (33).
Nowadays, it is proven that the number of fetal microchimeric
cells rises in the maternal body according to the gestational age.
They consist of numerous cell types such as trophoblast cells,
lymphocytes, hepatocytes, erythroblasts, and mesenchymal
progenitor stem cells (30). In humans, fetal microchimeric cells
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infiltrate maternal tissues as early as seven weeks of gestation,
differentiate, replicate and proliferate therein (19). In mice, fetal
microchimeric cells appear detectable in the mother in the
second week of pregnancy (34–36). Remarkably, the
distribution of fetal microchimeric cells in the organs of
pregnant women is not homogeneous, with the lung being the
most chimeric organ followed by the spleen, liver, kidney, brain,
and heart (37). Combining results from humans describing the
specific localization of fetal cardiomyocytes in the maternal heart
(24) and from mice locating fetal cells in maternal lungs, spleen,
heart, liver, kidney, and brain (36), suggest the existence of
specific mechanisms driving fetal cell tropism.

Likewise, maternal cells expressing surface markers of T and
B lymphocytes, and leukocytes, leukocytes have been found in
fetal tissues from the second trimester of pregnancy (38), and in
immunocompetent adult offspring (25). Yet, some questions are
still raised related to their involvement in the context of tolerance
induction, inflammatory and autoimmune disorders in the
offspring (36, 38–41).

During pregnancy, maternal microchimerism induces fetal
allotolerance towards NIMAs, whereas fetal microchimerism is
associated with maternal tolerance towards IPAs (36, 39–41).
These effects could become long-lasting on the fetal immune
system, while they seem to be only temporary on the maternal
side (42, 43). The majority of NIMAs and IPAs are encoded by
polymorphic genes belonging to the major histocompatibility
complex (MHC) class I and II (5, 44). These molecules define the
degree of maternal-fetal mismatch and the immune response
against non–self tissues or allogeneic products.

In a normal immune scenario, microchimeric cells can be
recognized and eliminated by the host immune system, but
during pregnancy, a set of immunological adaptations is
triggered to guarantee allotolerance both locally and
systemically (4, 29, 45). On cellular level, the generation of
Treg cells plays a fundamental role in development of immune
tolerance. It occurs upon stimulation of thymus-derived naive
CD4+CD44low cells with cell-extrinsic stimuli including
pregnancy-related hormones, such as progesterone and
glucocortocoids, Transforming growth factor b - TGF-b TGF-
b, and semiallogeneic fetal antigens (46). A potential mechanism
of immune tolerance driven by fetal antigen-specific Treg cells is
the suppression of decidual inflammation (46). It has been
proposed that these cells could persist in mother tissues as
"memory cells" and can expand in subsequent pregnancies
enforcing fetal immune tolerance (46).

Also CD8+ regulatory or suppressor T cells may contribute to
fetal tolerance [summarized in (46)], which is more pronounced
in later pregnancy (47, 48). In mice, proliferation of CD8+ T cells
increases at midgestation in mice, simultaneously with increased
detection of systemic fetal antigens (49). CD8+ T regulatory or
suppressor cells may reduce antibody production in B cells (50).

Additionally, alike malignant, microchimeric cells have
developed strategies to invade normal tissue including blood
vessels and to avoid destruction by the host immune system by
acquiring surveillance and adaptive properties for immune
evasion (4). This is partly caused by unique, specific subsets of
Frontiers in Immunology | www.frontiersin.org 3
HLA molecules on trophoblast cells: syncytiotrophoblast (STB)
and villous cytotrophoblast lack all MHC Class I and MHC Class
II molecules, so that T cells cannot bind to the main placental
interface. Although invasive extravillous trophoblast cells (EVT)
do express HLA class I, they lack HLA-A and HLA-B antigens.
Instead, they express the non-classical HLA-E, HLA-F, and
HLA-G. Likewise, EVT lack MHC Class II antigens so they
cannot act as antigen presenting cells (APC) initiating direct allo-
recognition by CD4+ T helper cells (4, 51). This non-classical
pattern of HLA expression partly explains the maternal
immunotolerance to paternal HLA molecules in the fetus (4).

Additional mechanisms to avoid maternal rejection include the
expression of HLA-G receptor ILT2 by decidual T cells, which after
recognition of fetal expressing HLA-G cells, drives a tolerogenic
response. HLA-G also inhibits cytolytic T cell functions (52), and
some isoforms of HLA-G could be transported from trophoblast to
maternal immune cells via EVs, which can induce immune
tolerance (53) or alter immune cell proliferation. Likewise, via
specific ligands dNK cells are also modulated by non-classical
HLA patterns on EVT, which switch their cytotoxic function to a
tolerogenic behavior (4, 54, 55). The mechanisms of maternal
tolerance induction to other microchimeric cells than trophoblast
cells are still unknown.

It has been proven that the exposure of the fetal immune system
to NIMAs by placental cell trafficking gives rise to an early NIMA-
specific regulation through the induction and maintenance of
allospecific CD4+CD25+ regulatory and CD8+ T cells during fetal
life (5, 56, 57). These cells produce TGF-b an immune regulatory
cytokine that suppresses the anti-NIMA response of fetal T effector
cells, mitigating maternal–fetal conflict to enforce tolerance (7, 56,
57). Other functional roles that may be partially attributable to
pregnancy-derived microchimerism include the amelioration of
autoimmune disorders in women with a higher number of prior
pregnancies (46, 58, 59), the replacement of injured human and
murine maternal cells by fetal microchimeric cells that migrate to
the site of damage and proliferate locally (60–65), and the potential
adaptation of the maternal breast physiology and induction of milk
supply suggested by the presence of fetal microchimeric cells (66,
67). Likewise, maternal cells may support fetal immune cell
development, these potential protective effects of maternal
microchimeric have been evidenced in mice by the presence of
maternal cells in primary and secondary lymphoid organs before
the fetal immune system is fully developed in healthy and immune-
deficient offspring (29, 56). In humans this has been suggested by
the presence of expanded populations of circulating maternal T cells
which improve the health of offspring by augmenting host defense
against microorganisms (68). Nevertheless, as the number of
microchimeric cells is very low per definition, factors secreted by
these cells should play a pivotal role in their function.
HISTORICAL MILESTONES OF
RESEARCH ON EVs in Pregnancy

The beginning of the field of EV biology could be dated to the
early research on blood coagulation, with the discovery of
July 2022 | Volume 13 | Article 837281
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Chargaff & West in the 1940s of a “particulate fraction” that
sedimented at high speed and contained breakdown products of
blood corpuscles with clotting potential (23, 69). It was only until
the report of pioneering experiments with platelets that the
presence and structure of those cell-free particles and their
biological relevance began to be described. In 1967, Peter Wolf
published electron microscopy images of a particle-like material
originating from platelets, which could be high-speed
sedimented and was distinguishable from intact platelets.
These particles named “platelet dust” are currently known as
EVs (70). Later in 1971, Neville Crawford published further
images of EVs, this time being named “microparticles”, described
partially their cargo, and suggested that EVs originated either in
the surface membrane or within the intracellular membrane
structures (71). Over the following decade and with the parallel
improvement of analytic techniques, the biogenesis of different
populations of EVs was described (72, 73) and the nomenclature
of EVs including the term exosomes started to be coined (74, 75).

Summarizing the study of EVs in the context of pregnancy is
also challenging due to the heterogeneous nomenclature used in
the first studies. It can be argued that it dates back to 1974, when
a simple procedure was proposed to obtain “membrane-bound
bodies” from human placental villous by mechanical disruption
(76). This method with minor modification is still in use for the
isolation of EVs from placenta explants. Following that
discovery, several groups reported both stimulatory and
suppressor immune responses upon the treatment of mixed
lymphocyte cultures with these preparations, which suggested
their role in the regulation of immune responses and maternal
allogeneic recognition during pregnancy (77, 78). Probably, one
of the breakthrough events in the field was the finding of
placental EVs in the maternal peripheral plasma, and the
elevated levels in women suffering of Preeclampsia (PE) (79).
This suggested a role of EVs in the systemic alterations for
immune tolerance during pregnancy but also opened the field to
the use of EVs as biomarkers for pregnancy pathologies.

In 2005 the first EV meeting took place, and since then there are
regular meetings of the formed International Society for
Extracellular Vesicles (ISEV) housing thousands of participants
working in the study of EVs in different contexts including
pregnancy. The ISEV endorses the description of EV as the
generic term for particles naturally released from cells, which are
delimited by a lipid bilayer, do not contain functional nucleus and
cannot replicate (80). Cumulative evidence has demonstrated that
EVs contribute to the transfer of functional elements, which
constitutes a pivotal mechanism of cell-cell communication (81).
EVs carry functional molecules including lipids, proteins, RNA
(mRNA, miRNA, lncRNA), as well as DNA molecules (frequently
related to pathological states) (81–84). EVs are released in an
evolutionarily conserved manner by cells ranging from organisms
such as prokaryotes to higher eukaryotes and plants. Based on their
physical characteristics such as size and density, or specific markers
of the intracellular origin, different EV subtypes can be defined (80).
Depending on their biogenesis, three main EV populations have
been described: Apoptotic bodies, which are released by plasma
membrane blebbing occurring during apoptosis; microvesicles (also
Frontiers in Immunology | www.frontiersin.org 4
known as microparticles or ectosomes), which include vesicles of
different sizes that are released from the plasma membrane; and
exosomes, which are generated from intraluminal vesicles (ILV) by
invagination of the endosomal membrane and accumulate in
multivesicular bodies (MVB). Upon fusion of MVB with the
plasma membrane, exosomes are released into the extracellular
environment (85–87). This classification often overlaps with that by
size because small (sEVs; <200nm) andmedium/large EVs (m/lEVs;
>200nm) are in most cases enriched fractions of exosomes and
microvesicles, respectively (80). To identify and isolate trophoblast-
derived EVs, specific placenta markers such as placental alkaline
phosphatase (PLAP) (88), syncitin-1/2 (89), and HLA-G (90) are
used. Likewise, tetraspanin CD63, ALIX, and TSG101 are
considered general markers for exosomes as they localize
predominantly to late endosomes and play an important role in
sorting ILV (91, 92). Nevertheless, there is still a lack of appropriate
and ubiquitous markers to differentiate other EV types and trace
their cellular origin.
EVs as Mediators of Immunological
Adaptations During Pregnancy

The human placenta releases rising concentrations of EVs during
pregnancy, which are distributed to other organs and cells (93).
The major producer of placental EVs is the STB covering the
maternal villi and directly in contact with the maternal
bloodstream (79). The STB also releases a particular
population of large vesicles denominated syncytial nuclear
aggregates (SNAs) containing fetal DNA, RNA, and organelles
(94, 95). A cross-talk between the placenta and the maternal
immune system is established via EVs, as placenta-derived EVs
are incorporated by neighboring and distant maternal immune
cells (96–99), while EVs produced by maternal immune cells
modulate placental responses (100, 101).

Studies on placental EVs have characterized their surface and
internal cargo revealing the presence of immunomodulatory
factors [e.g. Fas ligand, TRAIL (102)], minor histocompatibility
antigens [e.g. RPS4 (103)], glycoproteins [e.g. syncytin-1 (89)]
and miRNAs (104), among others. Transfer of these signals from
fetal tissues to maternal T cell, NK cell and macrophages via EVs
may influence maternal immune responses and induce
epigenetic reprogramming (Figure 1). Uptake of placental EVs
in vitro has been demonstrated to occur in nearly every tested
cell, and in most cases, it has been associated to measurable
effects, however this can be different when other cell types and
signals are also present as it is the situation in vivo (106–109).
Recent studies have suggested that the EV uptake ratio could be
cell-dependent with some cells such as macrophages and mature
dendritic cells incorporating more EVs than monocytes and
immature dendritic cells (110). However, the literature is
heterogeneous when comparing other cell populations: a study
reported T lymphocytes incorporating more placental-lEVs than
B and NK cells (90), while in a second study, uptake of
trophoblast-derived lEVs and sEVs is higher in NK compared
July 2022 | Volume 13 | Article 837281
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to T cells (107). Standardization of the sample collection,
isolation, and characterization protocols wil l al low
comparisons between studies to clarify the specificity and
mechanisms of placental- and trophoblast-EV uptake by
immune cells.

The function of placental EVs remains largely unclear but
most of the studies report their involvement in immune
responses related to induction of immune tolerance by
different mechanisms. Most of the immunoregulatory surface
molecules of the STB have been detected on its EVs where they
are supposed to fulfil similar functions. In the following we list
several examples that have been investiagted. Trophoblast-
derived EVs containing FasL might eliminate activated
maternal T cells (102, 111). Human placenta explants release
exosomes bearing ligands (MHC class I chain-related (MIC)
proteins A and B, UL-16 binding proteins) of the NKG2D
receptor on NK cells, cytotoxic T cells and gd T cells. Binding
of the ligands to NKG2D leads to reduced in vitro cytotoxicity
without affecting the perforin-mediated lytic pathway (97).
Furthermore, placental exosomes suppress in T cells the
expression of CD3-zeta chain and Janus kinase 3 (JAK3) but
induce suppressor of cytokine signalling 2 (SOCS2) which may
favor the expansion of lymphocytes with suppressive
phenotypes, such as Treg cells (112).

Previously, we have shown that EVs enriched from
choriocarcinoma cell lines transfected with a specific miRNA
carry large amounts of this miRNA. Upon co-incubation with T
and NK cells in vitro, the presence of specific miRNAs is able to
influence their proliferation. This suggests a specific role of EVs
depending on their specific cargo (107, 113). Specific features of
Frontiers in Immunology | www.frontiersin.org 5
EVs seem to be also involved in pathological conditions. A recent
study reported a different effect for STB-derived small and large
EVs, which upregulate pro-inflammatory cytokines in THP-1
macrophages when isolated from normal pregnancy and further
increase significantly when isolated from serum of patients with
PE (114). More specific effects of placental EVs on immune cell
populations have been reviewed in detail previously (55, 98, 114,
115) and will not be further addressed here.

An additional aspect of EVs in feto-maternal tolerance is their
function in the antigen presentation (Figure 1). This can occur
either directly viaMHC-peptide complexes on the EV surface, or
indirectly via MHC cross-dressing of antigen (Ag)-presenting
cells (APCs), a process that refers to the acquisition of intact
MHC molecules pre-loaded with antigen (Ag)-derived peptides
by leukocytes, in particular APCs (116). These mechanisms are
of interest in the establishment and maintenance of pregnancy-
derived microchimerism and will be described in detail in the
next section.
CONCEIVABLE MECHANISMS OF
MICROCHIMERISM-INDUCED
ALLORECOGNITION AND
IMMUNOTOLERANCE INVOLVING EVS

Classically, there are two distinct and non-exclusive mechanisms
used by host immune cells to recognize alloantigens: the indirect
and direct pathways (Figure 2). In the direct pathway, antigen
presenting cells (APC) from the graft (in the context of
FIGURE 1 | Structure and immunological functions of fetal EVs in pregnancy. Fetal cells, including endothelial, immune, dendritic, and CTB cells, and especially STB,
release great amounts of EVs to the maternal circulation. Upper: EV surface and internal cargo. Middle: Fetal EVs transfer their cargo to maternal immune cells by
different mechanisms including endocytosis, phagocytosis and membrane fusion. Lower: EVs can act as APCs directly interacting with maternal T cells and trigger
immunotolerance or activation. STB, syncytiotrophoblast; CTB, cytotrophoblast; IC, immune cell; EC, endothelial cells; DC, dendritic cells. For the sake of clear
illustration, the size of structures is not displayed in realistic proportions. The figure was drawn using pictures from 105 (http://smart.servier.com/).
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pregnancy the embryo/fetus) present alloantigen complexes via
MHC Class I and Class II that are recognized respectively by
CD8 and CD4 T cells CD8+ and CD4+ T cells of the host (the
mother). In the indirect pathway, graft alloantigens (typically
MHC antigens) are internalized by host APC (mostly dendritic
cells), processed, and presented as peptide fragments associated
to host MHC molecules for recognition by its T cells (117).
Direct and indirect allorecognition pathways are poorly studied
in pregnancy, being a unique situation where an allogeneic tissue
escapes rejection despite extensive contact with the host. Data
from mouse models suggest that maternal T cells recognize fetal
antigens through the indirect mechanism, indicating that T cell
response results from the uptake and processing of fetal antigen
by maternal APCs (118). However, in the context of
microchimerism, it is valid to speculate that a T cell response
could be also induced by antigen presentation by migratory fetal
cells themselves or by the shedding of fetal MHC complexes and
their subsequent uptake and retention as intact molecules on the
cell surface of maternal APCs (5, 119).

Recently, it has been demonstrated that intact antigens can be
transferred between different cell types including T cells,
Frontiers in Immunology | www.frontiersin.org 6
macrophages, B cells and DCs. DCs can capture and retain
unprocessed antigen and can transfer it to naive B cells to initiate
a specific response (120, 121). This evidence raises the possibility
that presentation and recognition of intact alloantigens may also
occur on the surface of host APCs without the use of the so called
classical mechanisms. In this semi-direct allorecognition,
allogeneic MHC molecules from the graft (potentially the
fetus) are acquired by host APCs, where they are not processed
to allopeptides, but integrated in the membrane as
conformationally intact MHC complex presenting graft
antigens. This phenomenon is also known as membrane
alloantigen acquisition or cross-dressing depending on the cell
types involved in the exchange and the experimental model
(122–124). Although host T cells recognize “intact” graft
antigens, this is discussed as a distinct pathway. This results in
activation of the same T cell clones as those which respond via
direct pathway allorecognition (125). However, the mechanisms
by which intact MHC-alloantigen complexes are transferred
between cells remain poorly understood.

In the field of transplantation, early studies have suggested
that cell-to-cell contact is required for host cells to acquire
FIGURE 2 | Potential scenarios of EV involvement in the fetal allorecognition by maternal T cells. Maternal cells are shown in blue and fetal cells and EVs are shown
in red. Up: Direct pathway. Fetal APCs, which secrete EVs to the intercellular space, present peptides (auto- or alloantigens) via MHC (I or II) molecules to
immunocompetent maternal T cells. Middle: In the semi-direct pathway, fetal allogeneic MHC molecules (I or II) are acquired via capture and uptake of fetal cells
(entire or only their cell membrane) or their secreted EVs, and then recycled and expressed on the maternal APC surface. APC can present antigens bound to fetal
MHC molecules to maternal T cell receptors. The indirect pathway implies the processing of fetal proteins from EVs or cells and the presentation of deriving peptides
by maternal MHC II complexes to T maternal cells. Down: Fetal-derived EVs cross-decorate maternal APCs with intact MHC-peptide complexes that can be
recognized by T cells similar to the semi-direct pathway. All displayed processes involve co-stimulatory interactions between APCs and T cells which are decisive for
subsequent reactions, which may be tolerogenic, immunoregulatory or –stimulatory. The figure was drawn using pictures from 105 (http://smart.servier.com/) and
was based on previous revisions (5, 116).
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foreign antigens, but recent publications have proposed
additional mechanisms involving EVs (126, 127). These are
based on the observations that despite finding only very few
and in some cases no donor cells in the lymph nodes of mice after
skint, heart or islet transplantation, many host cells can be found
therein cross-dressed with donor MHC molecules (127). Donor
EVs may represent here a source of donor MHC for T (including
Treg) cell activation suggesting an additional role for EVs in the
generation of an immune response against the allograft (126,
127). The intact foreign MHC molecules pre-loaded with
antigen-derived peptides that are integrated into the surface of
murine host DCs after uptake of graft-derived EVs, can be later
recognized by host T cells, which is in essence, semi-direct
allorecognition (Figure 2 middle panel) (120, 121). An
additional mechanism of EV-mediated allorecognition, which
does not require intracellular processing, is based on the confocal
microscopy observation of a fraction of exosomes secreted by
migrating mouse DCs that remain at least 4h as clusters on the
surface of conventional host DCs in lymphoid organs (126). In
dendritic cells, this ability to retain most exosomes on the surface
is characteristic of mature but not immature cells (128). With the
appropriate orientation, the donor EVs may provide the MHC
complex whereas the host APCs provide the required T-cell
costimulatory molecules allowing the presentation without
further processing to stimulate T cells (Figure 2 lower panel)
(116).The capacity of mature DCs to retain EVs organized in
clusters at the surface may prevent the dilution of the specific
MHC complexes and support the formation of functional
immune synapses (116). This mechanism of cross-dressing has
not been confirmed yet in the context of human pregnancy but
some studies including ours have provided evidence of clusters of
trophoblast- and placental-derived EVs attached to immune cells
(107, 109, 114).

Maternal microchimerism can generate a so-called “split
tolerance” in the offspring. This term has two different
meanings: it may refer to simultaneous acceptance or rejection
of 2 different tissues or organs from one donor or to divers
reactions of different components of the immune system on the
same antigen (129, 130). In pregnancy, this occurs as either an
effector or a tolerogenic response in T cells depending on the
origin of the antigen-presenting molecules and the presence of
costimulatory factors (43). The different response to maternal
microchimeric cells in a mouse model was explained through
two potential mechanisms: In the first one, allomolecules from
maternal microchimeric cells are released as soluble factors or via
EVs an taken up by fetal DCs. After intracellular processing,
antigens can be presented to fetal T cells in a self-MHC–
restricted manner inducing the indirect pathway of
allorecognition (43). In the second one, EV membranes
containing costimulatory factors and allo-MHC molecules
presenting alloantigens are integrated in fetal DC and activate
T cells. Depending on the molecules and costimulatory factors
present in the antigenic microdomains, either regulatory or
effector T cell clones will be specifically induced, driving to
split tolerance (43). Similarly, fetal microchimeric IPA+ cells
may exert an allorecognition mechanism mediated by fetal-
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derived EVs carrying HLA-G complexes. However, there is no
evidence for cross-dressing mechanism via EVs in the context of
maternal immunotolerance to fetal cells yet.
EVS AS ENHANCERS OF TROPISM OF
MICROCHIMERIC CELLS

Metastasizing is the process by which cancer cells are dispersed
from the primary tumor and travel via blood or lymph system to
form a new tumor in other tissues (131). It includes a cascade of
separate events that begins with disruption of the original
microenvironment, local invasion through extracellular matrix
and stromal cell layers, intravasation into the lumina of blood
vessels, survival in blood circulation, and subsequent arrest at
distant organ sites where they extravasate into the parenchyma.
Finally, metastatic cells re-start their proliferative features
generating macroscopic, clinically detectable neoplastic
growths, which is referred to as metastatic colonization (132–
135). Studies in the field of cancer indicate that tumor-derived
EVs play a significant role in the cascade of metastasis and can
induce the formation of the pre-metastatic niche strengthening
the tropism and establishment of new tumors (81, 136, 137).

The pre-metastatic niche is a preformed microenvironment
prepared for the colonization and dissemination of cancer cells
in specific organs (138, 139). It is characterized by
immunosuppression as well as enhanced inflammation,
angiogenesis, and vascular permeability (140, 141). EVs
released by primary tumors contain proteins and other active
molecules which, after internalization by cells in secondary
organs, can alter these processes to generate a supportive
microenvironment prior to widespread metastasis (81, 136,
137, 142). Analog to tumor-derived EVs, the specific surface
and composition of fetal-derived EVs may promote cell
trafficking and may induce in distant maternal organs an
immunotolerant niche that allows the establishment of
microchimerism (Figure 3).

EVs from placenta and their tumoral counterparts are similar in
their cargo. For instance, several miRNAs known as regulators of
angiogenesis, EMT, and invasion in cancer were also reported in
placenta- and trophoblast-derived EVs (107, 143–145). Transfer of
this miRNA cargo to endothelial cells can cause endothelial
dysfunction by inducing oxidative stress and membrane damage.
In breast cancer, EVs carrying miR-105 cause destruction of tight
junction protein ZO-1 in recipient endothelial cells which increases
vascular permeability and susceptibility for metastatic invasion
(136). Exposure to EVs from first trimester human placenta affect
endothelium-dependent vasodilation of mesenteric arteries in
pregnant mice (146). Further, STB-derived EVs transfer miRNAs
to endothelial cells affecting target gene expression therein and in
pregnancy pathologies such as PE, STB-derived EVs cause extensive
cell membrane damage (104). This suggests that placental EVs
participate in the regulation of maternal vascular adaptations in
pregnancy which is relevant for the trafficking of cells across the
endothelial barriers (Figure 3).
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EV content can also be affected by additional conditions such
as stress stimuli. Hypoxia-derived sEVs from human prostate
cancer cells are loaded with increased amounts of TGF-b, TNF1-
a, and IL-6 and have elevated matrix metalloproteinase (MMP)-
2/9 activity. These sEVs induce expression of ECM proteins, and
promote CD11b+ cells at selected organ sites (147). During the
first trimester of pregnancy, a hypoxic environment is
maintained in the placenta. In response to low oxygen tension,
the release of sEVs from trophoblastic cells (148) and first-
trimester primary trophoblast cells (149) increases. Under
hypoxic conditions, trophoblastic EVs contain a specific set of
miRNAs that could potentially target genes involved in cell
migration and inflammatory responses (143, 148). Uptake of
these EVs may facilitate or impede vascular remodeling by
inducing changes in cell migration and TNF-a secretion of
endothelial cells (148).

Cancer- and trophoblast-derived EVs also share their potential
to induce immunotolerance and cell migration. EVs derived from
metastatic melanomas carry programmed death 1-ligand 1 (PD-L1)
on their surface which interacts with programmed cell death protein
1 (PD-1) on CD8+ T cells and induces their inactivation.
Stimulation of melanoma cells with IFN-g increases the amount
of PD-L1 on the surface of sEVs enhancing CD8+ T cell suppression
and facilitating tumor growth (150–152). Akin to cancer EVs, those
secreted by trophoblastic cells and placenta explants may modulate
the immune environment by regulating, either positively or
negatively, proliferation and apoptosis of T cells (107, 113, 153).
EVs derived from trophoblast cells also modulate cytokine secretion
and migration of macrophages, which may contribute to the
immunoregulation of the recipient tissues (154, 155). Further,
sEVs containing activated matrix MMP-2 2 derived from cancer
cells modulate extracellular matrix by degrading collagen and
fibronectin to promote cell invasion and metastasis (156).
Comparably, EVs derived from trophoblast spheroids can
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modulate major pathways in endothelial cells including
extracellular matrix organization (157).

The membrane of tumor-derived EVs expresses protein “zip-
codes”, formed by specific integrin profiles, addressing specific
target organs, and thus, determining metastatic organotropism
(158). This may also occur during pregnancy and may explain
how tropism can be directed to specific organs. Although this
area is still largely unknown, a recent study has demonstrated
that exogenously administered pregnancy-associated EVs traffic
specifically to interstitial lung macrophages and liver Kupffer
cells and associate in an integrin-dependent manner (159).
Further, 24 h after intravenous injection, human placental
sEVs have been localized in the lung, kidney, and liver of mice
(146). This preliminary evidence supports a specific EV tropism
in pregnancy to maternal organs that are most prone to harbor
microchimeric cells, indicating synergies of EV and cell tropism.
CONCLUSION AND FUTURE DIRECTIONS

In the last decades, based on the observations of Peter Medawar and
other scientists, several mechanisms employed by fetal cells to
induce immunotolerance in the mother have been elucidated. The
findings summarized in this review suggest that pregnancy-induced
microchimerism and exchange of EVs play a pivotal role in
modulating T cell responses. Recent studies in transplantology
have proposed mechanisms linking the acquisition of graft MHC
class II antigens through microchimerism and EVs, with induction
of immunotolerance, and in oncology, with preparation of
immunotolerant niches in distant organs to accept metastases. In
the context of pregnancy, similar mechanisms may occur to induce
or support immunotolerance between mother and fetus. These
include tolerogenic signals contained in EVs or antigen
presentation mediated by microchimeric cells and EVs, as well as
FIGURE 3 | Proposed supportive effect of fetal EVs on microchimerism during pregnancy. 1. Fetal EVs are secreted mainly by the placenta and reach the maternal
circulation. 2. Fetal EVs are taken up by endothelial cells (EC), alter their morphology and function, and cause vessel permeabilization. 3. EVs can also reach distant
organs, influence their immune cell environment and induce changes in their extracellular matrix (ECM). 4. Fetal cells can trespass the placental barrier and access
maternal vessels. 5. Profiting from the EC alterations, fetal cells can extravasate maternal vessels and 6. Access the parenchyma of distant organs as microchimeric
cells. Processes indicated with a red question mark are yet to be confirmed. The figure was drawn using pictures from 105 (http://smart.servier.com/).
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the preparation of niches for subsequent intentional or incidental
acceptance of microchimeric cells. There is evidence for some of
these mechanisms, mostly in the fetus-to-mother direction, but
more studies are needed to confirm they occurrence and relevance
in the bidirectional communication. Understanding these processes
in pregnancy is of relevance as they are potentially altered or
involved in pathologies. Further, novel technologies to modify
surface and cargo of fetal EVs may selectively influence maternal
APC via uptake or co-dressing and lead to the development of novel
therapeutic strategies.
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