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A B S T R A C T   

Objective: Ferroptosis is of vital importance in the development of Rheumatoid arthritis (RA). The 
purpose of this project is to clarify the potential ferroptosis-related genes, pathways, and immune 
infiltration in RA by bioinformatics analysis. 
Methods: We acquired ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb). We 
obtained the Gene dataset of RA (GSE55235) from the Gene Expression Omnibus (GEO) Database, 
screened the differentially expressed genes (DEGs) in RA and control samples, and then took the 
intersection of it and FRGs. Aiming to construct the protein-protein interaction (PPI) networks of 
the FRGs-DEGs, STRING database and Cytoscape software 3.7.0 would be used. Furthermore, hub 
genes were identified by CytoNCA, a Cytoscape plug-in. The gene ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of FRGs-DEGs were performed. 
Results: We identified 34 FRGs-DEGs, including 7 upregulated and 27 downregulated genes by 
taking the intersection of the FRGs and DEGs. PPI analysis identified a total of 3 hub genes 
(VEGFA, PTGS2, and JUN). GO enrichment analyses and KEGG Pathway enrichment displayed 
that the FRGs-DEGs are involved in the response to oxidative stress and corticosteroid, heme 
binding, FoxO-signal pathway. Results of immune infiltration displayed that increased infiltration 
of T cells, while Macrophages M2 less may be related to the occurrence of RA. 
Conclusion: The hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which 
are mainly involved in FoxO-signal pathway. T cell, Mac, and plasma cells may be involved in the 
regulation of RA-joints-synovial-inflammation.   

1. Introduction 

Rheumatoid arthritis (RA) is characterized by the following: it can cause bone inflammation and cartilage destruction in the 
affected joint and is an autoimmune and inflammatory disease. The basic pathological manifestations of RA are synovitis, pannus 
formation, and gradual destruction of articular cartilage and bone, finally leading to joint deformity and disability [1,2]. The estimated 
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global prevalence rate of RA is 0.46 %, so it is called one of the most common chronic diseases worldwide [3], and the prevalence is 
expected to increase [4]. The mortality rate of patients with RA remains higher than that of the general population [5,6]. RA affects 
patients’ quality of life and poses a significant social and economic burden on individuals, their families, and the community [7]. The 
underlying mechanism of RA is not yet fully clarified, therefore, it is important to have an intensive study on the nosogenesis of RA for 
targeted therapy of RA. 

Ferroptosis, proposed by Dixon et al., is a unique iron-dependent form of nonapoptotic cell death that was triggered by erastin or 
RSL [8]. This type of death is related to reactive oxygen species (ROS) and intracellular iron [9]. The main morphological charac-
teristics of death were abnormal mitochondrial structure, while the biological characteristics were mainly glutathione (GSH) con-
sumption and glutathione peroxidase 4 (GPX 4) inactivation that leads to abnormal accumulation of ROS and iron and induces cell 
death [10]. A previous study found that erastin (the ferroptosis inducer) leads to increased expression of MMP13 and decreased 

Fig. 1. The flow chart of this study.  
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expression of collagen II in chondrocytes, which proposed that under inflammation and iron overload conditions the chondrocytes 
underwent ferroptosis [11]. It has been preliminarily reported that desferrioxamine, which inhibited ferroptosis, could alleviate soft 
tissue swelling in Wistar rats [12]. An earlier study indicated articular-cartilage injury and chondrocyte-ferroptosis were attenuated by 
Transient Receptor Potential Melastatin 7 (TRPM7), which provided a hopeful target for the prevention and treatment of RA [13]. 
Tumor necrosis factor α(TNF-α), interleukin-6(IL-6), and IL-1β are the key proinflammatory cytokines that destroy bone and articular 
cartilage and play a dominant role in the etiopathology of RA [14]. The GPX pathway of ferroptosis is also associated with RA. The 
decrease of key inflammatory factors such as TNF-α, IL-1β, and IL-6 has been observed in several anti-RA-drug studies, while the 
increase in GPX4 expression has been found [15–17]. Hence, investigating deeply the potential role of ferroptosis in RA will help to 
understand the nosogenesis and would provide a new therapy for RA treatment. 

The unclarified nosogenesis of RA prevents its diagnosis and treatment. Furthermore, as far as we know, there has been no 
bioinformatic-based study targeting the mechanism on the basis of ferroptosis in RA. Aiming to identify the key ferroptosis-related 
genes in RA and have an intensive study on the potential nosogenesis of ferroptosis in RA, we used data analysis and data mining 
techniques in the present study. The flow chart of this study is shown in Fig. 1. This study is expected to contribute to the understanding 
of the ferroptosis mechanism in RA as well as provide new ideas for RA clinical diagnosis and its treatment. 

2. Materials and METHODS 

2.1. Data sources 

The clinical information of RA patients was obtained from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). 
And from that, we obtained the RA Affymetrix microarray dataset GSE55235. This dataset performed genomic expression profiling of 
10 RA patients and 10 healthy individuals. In dataset GSE55235, the GPL96 (Affymetrix Human Genome U133A Array) was verified 
using [18]. As the data were obtained from public databases, there was no need for approval from the local ethics committee. 

2.2. Data preprocessing 

Probes were converted to gene symbols in accordance with the GPL96 platform-annotation information. A Limma package was 
used in R software (Version 4.2.1) to identify differentially expressed genes(DEGs) from expression data, using adjusted P-value ＜0.05 
& |log2 (fold change)| > 1 as thresholds. Next, a volcano plot and heatmap of DEGs were rendered using the Ggpubr and heatmap 
packages in R software. We obtained ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb; http://www.zhounan.org/ 
ferrdb/current/). FerrDb is the world’s first manually curated database for regulators and markers of ferroptosis and ferropto-
sis–disease associations [19]. Afterward, we calculated the intersection of FRGs with DEGs via R software and drew a Venn diagram. 

2.3. Protein-protein interaction (PPI) network analysis of FRGs-DEGs 

The STRING database is one of several resources for online retrieval of organism-wide protein association networks, and version 
11.5 used in this study (https://string-db.org/), used for amalgamating all known and predicted proteins associations (including 
physical interactions and functional associations) [20]. The PPI network was constructed for further exploration of PPIs by using 
STRING, with the minimum required interaction score>0.4 [21] and hiding disconnected nodes in the network. And then, Cytoscape 
software 3.7.0 was used to visualize the PPI network. After that, we calculated and analyzed the topological properties of the following 
three data for each node in the PPI network using the Cytoscape software plug-in CytoNCA (degree centrality (DC), betweenness 
centrality (BC), and closeness centrality (CC) [22]. These properties showed the topological significance of each individual node of the 
entire network. Subsequently, DC ≥ 2 × median DC, BC ≥ median BC, and CC ≥ median CC were used as the screening criteria to 
screen putative targets for the hub targets [23]. 

2.4. Enrichment analyses of FRGs-DEGs 

We performed GO(Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of FRGs- 
DEGs by the cluster profiler package of R software to evaluate the biological role and significance of FRGs-DEGs [24,25]. In addition, 
P-value <0.05 was defined as statistically significant. 

2.5. Analysis of immune cell infiltration 

CIBERSORT deconvolution algorithm is a machine learning method based on linear support vector regression, that can evaluate the 
infiltration abundance of B cells memory, plasma cells, NK cells, and other 22 sorts of immune cells in tissues [26]. We used R software 
to analyze the infiltration of 22 sorts of immune cells in RA-tissue-samples and normal-tissue-samples, and the calculation times were 
set at 100 times for the sake of accuracy [27]. CIBERSORT derives a p-value for the deconvolution of each sample, and P-value< 0.05 
was considered accurate [26]. Therefore, only samples with a CIBERSORT P-value< 0.05 were enrolled for further analysis. Then, R 
software version 3.2 was applied to calculate the related coefficient between different immune-cells in the enrolled sample data and 
visualize the results, so as to analyze the differences between the RA and the control group as well as the correlation between each 
immune cell. Additionally, R software was used to conduct and visualize the correlation betwixt hub genes and immune infiltration 
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[28,29]. 

3. Results 

3.1. FRGs-DEGs 

We downloaded the microarray expression profiling dataset GSE55235 from GEO database and gained DEGs by comparing sy-
novial tissues from the healthy and RA groups. We obtained 1069 DEGs by differential expression gene analysis. The volcano plots of 
the DEGs were shown in Fig. 2. We also identified 259 FRGs that drive, suppress, or mark ferroptosis from the FerrDb. And then, we 
identified 34 FRGs-DEGs, including 27 downregulated genes and 7 upregulated by taking the intersection of the FRGs and DEGs 
(Table 1). We displayed the Venn diagram in Fig. 3. 

3.2. Protein-protein interaction (PPI) network analysis of FRGs-DEGs 

After removing 6 disconnected nodes, the PPI network data (including 28 nodes and 68 edges) were gained from STRING database. 
The purpose of using the Cytoscape software was to visualize the PPI network of FRGs-DEGs(as shown in Fig. 4). The nodes represented 
genes and the edges indicated interactions of genes. Red nodes showed genes were upregulated, and blue nodes showed genes were 
downregulated. The size of the node expresses as the DC value of the node, that was to say, the larger the node was, the greater the DC 
was, and the more significant the node is in the PPI network. The topological features of every node then were calculated including DC, 
BC, and CC. The median values of DC, BC, and CC were 4.00, 3.30, and 0.17 respectively. Therefore, we obtained three hub targets 
namely, VEGFA, PTGS2, and JUN, with DC > 8.00, BC > 8.03 and CC > 0.17. 

3.3. Enrichment analyses of FRGs-DEGs 

We used GO and KEGG Enrichment Analyses functions of R software to analyze the biological role and significance of 34 FRGs- 
DEGs. Through the GO enrichment analysis, 489 GO terms with P-value< 0.05 in total were obtained. The Biological Process(BP) 
enrichment analysis confirmed 455 terms. Among them, the top 5 significant enrichment results included response to acid chemical, 
response to oxidative stress, cellular response to external stimuli, response to corticosteroids, and cellular response to extracellular 
stimuli. The Cellular Component(CC) enrichment analysis confirmed 2 terms including NADPH oxidase complex and oxidoreductase 
complex. The Molecular Function (MF) enrichment analysis detected 32 terms. Among the MFs, the most significant were 

Fig. 2. The volcano plot of DEGs. 
Note: (A) Volcano plot: The volcano plot was constructed by the fold-change values and adj.p.val. Red dots represented upregulated DEGs (610 
genes); blue dots represented downregulated DEGs (459 genes). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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oxidoreductase activity, acting on NAD(P)H, acting on NADPH, iron ion binding, heme binding, and tetrapyrrole binding. The top 10 of 
the BP, CC, and MF enriched terms were shown in Fig. 5. KEGG pathway enrichment analysis enriched 42 terms with P-value< 0.05. 
Among them, the highly enriched terms were Kaposi sarcoma-associated herpesvirus infection, FoxO-signal pathway, Chemical 
carcinogenesis - reactive oxygen species, IL-17 signal pathway, NOD-like receptor signal pathway, TNF-signal pathway, etc. The top 30 
enriched pathway terms were shown in Fig. 6. 

3.4. Immune infiltration 

We finally gained the immune cell content matrix of 10 RA synovial-tissue-samples and 7 normal synovial-tissue samples, by the 

Table 1 
List of FRGs-DEGs.   

Gene symbol Gene name 

Downregulated genes 
1 ANGPTL7 Angiopoietin-related protein 7 
2 PTGS2 Prostaglandin endoperoxide synthase 2 
3 ATF3 Cyclic AMP-dependent transcription factor ATF-3 
4 DUOX2 Dual oxidase 2 
5 ZFP36 mRNA decay activator protein ZFP36 
6 CDO1 Cysteine dioxygenase type 1 
7 GDF15 Growth/differentiation factor 15 
8 JUN Transcription factor Jun 
9 CDKN1A Cyclin-dependent kinase inhibitor 1 
10 GABARAPL1 Gamma-aminobutyric acid receptor-associated protein-like 1 
11 SCD Stearoyl-CoA desaturase 
12 CXCL2 C-X-C motif chemokine 2 
13 MAPK8 Mitogen-activated protein kinase 8 
14 DDIT4 DNA damage-inducible transcript 4 protein 
15 DPP4 Dipeptidyl peptidase 4 
16 DUSP1 Dual specificity protein phosphatase 1 
17 ZEB1 Zinc finger E-box-binding homeobox 1 
18 SLC2A3 Solute carrier family 2, facilitated glucose transporter member 3 
19 CBS Cystathionine beta-synthase 
20 AKR1C1 Aldo-keto reductase family 1 member C1 
21 VEGFA Vascular endothelial growth factor A 
22 SLC3A2 4F2 cell-surface antigen heavy chain 
23 ARNTL Aryl hydrocarbon receptor nuclear translocator-like protein 1 
24 NNMT Nicotinamide N-methyltransferase 
25 BNIP3 BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 
26 AKR1C2 Aldo-keto reductase family 1 member C2 
27 PLIN2 Perilipin-2 
Upregulated genes 
1 ATM Serine-protein kinase ATM 
2 ALOX5 Polyunsaturated fatty acid 5-lipoxygenase 
3 CAPG Macrophage-capping protein 
4 CYBB Cytochrome b-245 heavy chain 
5 NCF2 Neutrophil cytosol factor 2 
6 RRM2 Ribonucleoside-diphosphate reductase subunit M2 
7 SLC2A6 Solute carrier family 2, facilitated glucose transporter member 6  

Fig. 3. venn diagram of FRGs and DEGs.  
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CIBOSORT deconvolution algorithm, the samples were screened with P < 0.05, as shown in Fig. 7, where the RA group was shown in 
pink and the control group was shown in blue. We found that the infiltration of immune cells was different between RA and the control 
group. The results displayed that the contents of T-cell-CD4-memory-restin, Dendritic-cell-restin and Mast-cell-activated were 
decreased in RA synovial tissues compared to control synovial tissues, while the contents of Plasma-cells as well as T-cell-CD8 
increased in the synovium of RA to varying degrees. The percentage of each immune cell infiltration in each sample was presented in 
Fig. 8. The results showed that T cells and Macrophages(Mac) M2, Plasma cells had a high proportion in the RA group, while the 
content of Eosinophils was low in both groups. The correlation coefficients between different immune cells in the included samples 
were calculated and the heat map of correlation coefficients was reported in Fig. 9. There was an apparent direct correlation between T 
cell CD4 naïve and B cells memory (r = 0.89), T cell CD4 memory activated and T cell CD4 memory activated (r = 0.78), T cells 
regulatory (Tregs) and NK cells resting (r = 0.73). Plasma cells and T cell CD4 memory resting were negatively correlated (r = − 0.71). 
Mast cells resting had a significant negative correlation with Mast cells activated (r = − 0.79). Mac M2 and M1 showed an apparent 
inverse correlation (r = − 0.69). The heatmap of the correlation between hub genes and immune infiltration showed that JUN was 
directly proportional to Eosinophils(Eos) and T cell follicular helper(Tfh) (as shown in Fig. 10). We also found a negative association 
between VEGFA and Mac M2. 

4. Discussion 

Abnormal proliferation of fibroblast-like synoviocytes (FLSs) and the infiltration of immune cells into synovial tissue are two 
typical features of RA [30,31], and they produce factors that drive inflammation and pannus formation, such as TNF-α, interleukin-6 
(IL-6) [32], and prostaglandin (PG) E2, ultimately leading to articular cartilage destruction and bone erosion [33,34]. Recent studies 
[35,36] have revealed that ferroptosis is important in regulating inflammatory and autoimmune diseases. Lipid peroxidation and 
abnormal iron metabolism, as critical stimulators for ferroptosis, are involved in the development of RA [37–39]. In the Fenton re-
action, Fe II oxidizes H2O2, resulting in the production of hydroxyl radicals (HO*), which oxidize polyunsaturated lipids. glutathione 
peroxidase 4(GPX4) activity is reduced, and lipid oxides cannot be metabolized by GpX4-catalyzed glutathione reductase, eventually 
leading to Ferroptosis [40]. More importantly, in the joint cavity of RA patients in large quantities exists a product-oxidative stress 
called ROS. Clinical trials have confirmed that in RA patients ROS, as a potential marker to judge the disease progression [41,42]. Thus 
it can be seen that ferroptosis has an important role in developing RA. 

With the purpose of constructing the PPI network of FRGs-DEGs, STRING database and Cytoscape software were applied. Then hub 
genes from the whole network were identified using CytoNCA. The hub genes contained 3 nodes namely, VEGFA, PTGS2, and JUN. 
VEGFA is one of the most important pro-angiogenic mediators correlated with inflammation-associated synovial angiogenesis in RA 
[43]. Serum VEGFA levels of RA patients correlate with lesion development in RA. High serum VEGFA levels at an early stage may 
predict the size of subsequent damage of joints [44]. Both anti-VEGFA and anti-VEGFA-receptor antibodies have been found to 
suppress pannus formation, delay disease onset and reduce synovial inflammation in the mouse RA model [45]. PTGS2, also known as 
cyclooxygenase 2 (COX-2), is an essential rate-limiting enzyme in PGs biosynthesis and plays an essential role in the inflammatory 
response [46,47]. The high expression of COX-2 can increase the content of PGE2, resulting in inflammation, pain, and joint injury 
[48]. In inflammation, the expression of COX-2 is regulated by various cytokines, such as TNF-α, and IL-1 [49]. The infiltration of mast 
cells (MCs) in RA patients’ synovium exists ahead of joint symptom onset time, and there is a 6-25-fold improvement in the number of 
mast cells in RA patients in comparison with healthy people [50]. Mishima Shintaro et al. [51] detected that the expression of PTGS2 

Fig. 4. PPI networks.  
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was apparently higher in synovial MCs of RA patients compared with osteoarthritis patients. Besides, non-steroidal anti-inflammatory 
painkillers (such as celecoxib) that selectively inhibit cox-2 expression and activity and reduce PGE2 production have become 
commonly used drugs to reduce the symptoms of joint swelling and pain caused by RA [52]. Jun (C-Jun) belongs to the JUN family 
proteins including Jun B, C-Jun, and Jun D [53]. JUN can regulate the expression of proinflammatory cytokines and chemokines [54] 
and induce the expression of the transcription factor Fos-related antigen proteins in the peripheral blood of synovial Mac, thereby 
regulating the clinical process of RA [55]. 

GO annotation analysis of the 34 FRGs-DEGs found that most enrichment terms are included in the BP. In enriched BP terms, the 
response to oxidative stress and response to corticosteroids were closely related to RA. Oxidative stress is a key contributory factor for 
the etiopathology of RA [56]. These issues have been studied in detail in RA (such as the oxidation of low-thickness lipoproteins, 
oxidative harm to hyaluronic corrosive and lipoperoxidation outcomes, DNA damage and carbonyl expansion brought about by 
protein oxidants) [57]. It has been previously shown that ROS can activate different signal pathways having a vital importance in the 
pathophysiology of RA [58]. Corticosteroids have long been the mainstay of RA therapy owing to their potent immunosuppressive and 
anti-inflammatory actions [59,60]. However, it is very effective in the short term regarding pain relief, but the long-term effect is not 
satisfactory and can lead to many side effects [61]. The CC analysis showed that the ferroptosis gene in RA mainly existed in NADPH 
oxidase complex, and oxidoreductase complex. In terms of MF, it plays a role in oxidoreductase activity, acting on NAD(P)H, acting on 
NADPH, iron ion binding, heme binding, and tetrapyrrole binding. Excessive stimulation of NAD(P)H is one of the causes of oxidative 
stress and excessive production of reactive oxygen species [62]. Heme oxygenase-1(HO-1) is an enzyme existing within the human 
body, which has protective and antioxidant functions. HO-1 levels will be increased because of the stimulation of oxidation and in-
flammatory cytokines, and thus it exerts anti-inflammatory, antioxidant effects on the body [63,64]. Su et al. [65]. found that calycosin 

Fig. 5. Barplot of GO enrichment analysis. 
Note: The top 10 GO enrichment analysis of 3 components. The enriched terms of GO are expressed by vertical coordinates, and the percentage of 
genes in each term are expressed by the horizontal coordinates. The color intensity represents the degree of enrichment, and the higher the degree of 
enrichment from blue to red. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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could inhibit the expression of proinflammatory factors in synovial fibroblasts of RA patients by increasing HO-1 activity, suggesting 
the induction of high expression of HO-1 can be used to treat RA. Hence, investigating deeply the mechanism of ferroptosis in RA may 
be of potential help to improve the clinical efficacy of RA. 

KEGG enrichment analysis displayed that ferroptosis-DEGs have main connection with Kaposi sarcoma-associated herpesvirus 
infection, FoxO-signal pathway, Chemical carcinogenesis-reactive oxygen species, IL-17 signal pathway, NOD-like receptor signal 
pathway, TNF-signal pathway. Among them, FoxO signal pathway, NOD-like receptor signal pathway, IL-17 signal pathway, and TNF 
signal pathway were closely related to the occurrence and development of RA, the mediation of inflammation and the destruction of 
bone and joints. It has been reported that transcriptional FoxO-related factors maintain the survival role of RA synoviocytes in the 
integration of inflammatory stimuli in RA joint synovial tissue. FOXO3A and FOXO4, members of the FoxO family, protect cells from 
oxidative stress by transcriptional upregulation of ROS scavenger MnSOD [66]. Cytosolic NOD-like receptors (NLRs) family that are 
activators of inflammation have been associated with human diseases including infections, autoimmune, and inflammatory disorders 
[67]. NLRP3, a member of the NLRs family, is a crucial source of IL-1 and IL-18, and plays a part in the nosogenesis of RA [68]. IL-17 
inhibition in several animal models of arthritis limits joint erosion and inflammation and uses antibodies to block IL-17 or its receptors, 
aiming to reduce disease in mice [69]. Initial observations from phase I trials indicate that the signs and symptoms of RA are apparently 
suppressed after the treatment of anti-IL-17 antibody [70]. TNF-signal pathway is also a significant inflammatory-signal pathway. 
TNF-α is a crucial player in the occurrence of RA. It can be bound to TNF Receptor-1 on fibroblast synoviocytes, promote the release of 
inflammatory cytokines such as IL-1, IL-6, and IL-8, and aggravate articular cartilage and bone injury [71]. In addition, it can also 
induce immune cells in the blood to enter the joint through vascular cell adhesion molecule-1, aggravating joint injury [72]. These 
signal pathways are significant in ferroptosis intervention in RA. 

To further study the role of immune cells in RA-synovium, we used the CIBOSORT deconvolution algorithm to screen the synovium 
samples of the RA and the control group. The final result showed that T cells, Mac M2, and Plasma cells had a high proportion in the RA 
group. CD8+T cells account for the majority of T cells. In recent years, several studies have confirmed T cell infiltration plays an 
important role in RA nosogenesis [73,74]. In addition, it has been reported that the pool of CD8+T cells tends to expand in the synovial 
tissues of RA patients [75,76]. Carvalheiro et al. [77]. found that T cell CD8 are abundant in RA and observed the activation status and 
proinflammatory potential of T cells CD8 subsets in RA patients, suggesting a local and systemic effector cytotoxic role in RA. Tregs are 
a kind of cells with strong immune suppression, which play an important role in autoimmunity by directly inhibiting and secreting 

Fig. 6. Barplot of KEGG pathway enrichment analysis. 
Note: The top 30 KEGG pathway enrichment analysis. The enriched pathways are in the vertical coordinates, and the percentage of genes in each 
pathway is expressed in the horizontal coordinates. The color intensity represents the degree of enrichment, and the redder the color, the higher the 
enrichment. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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anti-inflammatory factors (transforming growth factor-β, IL-10, etc.) to negatively regulate the immune response [78]. These reflect 
the unique biological behavior of T cells in RA. The above series of studies’ conclusions were consistent with the results of this study. 
Although Mac M2 has a high proportion in RA group, the infiltration level of Mac M2 is significantly reduced in RA. In addition, the 
correlation analysis showed that Mac M2 and Mac M1 were negatively correlated. Macs are broadly divided into two categories, Mac 
M1 and Mac M2 [79]. The imbalance between Mac M1 producing proinflammatory factors and Mac M2 producing anti-inflammatory 
factors is one of the key mechanisms promoting the progression of rheumatoid arthritis, and Mac M2 plays a protective role in RA [80]. 
There was an apparent direct correlation between T cell CD4 naïve and B cell memory. Theoretically, antigen-presenting cells in RA 
joints may stimulate synovial CD4+ T cells to differentiate into T helper cells, which in turn activate B cells, some of which are 
differentiated into plasma cells that produce autoantibodies [81]. The immunocyte correlation analysis shows that most of the immune 
cells in RA have different degrees of correlation, suggesting that various immune cells may interact to form a highly complex 
immunosuppressive network. However, the specific effects of these correlations on the development of synovium in RA need to be 
further studied. 

The heatmap of the correlation between hub genes and immune infiltration showed that JUN and VEGFA were closely related to 
immune cell infiltration. It has been previously shown that the Tfh level was significantly increased in RA [82], which was unanimous 
to the results of immune infiltration in this study. Tfh is a subset of CD4 T cells, which can mediate the destruction of cartilage and bone 
in RA patients because it can induce B cell activation, proliferation, and differentiation and produce a large amount of immuno-
globulins, such as anticyclic citrullinated peptide (CCP) [83], thus of vital importance in RA nosogenesis. However, the specific 
mechanism by which Tfh cells promote the nosogenesis of RA remains unclear. We conclude that JUN and Tfh have a synergistic 
function on the nosogenesis of RA. The proinflammatory effector function of eosinophils is well-known in asthma and likely to 
contribute to the development of asthma exacerbation [84]. Unexpectedly, Chen et al. [85] proposed that Eos has suppressed 

Fig. 7. Heat map of the proportion of immune cell infiltration in RA-synovial-tissue samples versus control-synovial-tissue samples (control in blue, 
RA in pink). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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inflammatory arthritis. There was a recent study pointing out that there are hitherto undiscovered proresolution features in the Eos 
subset, which stimulates RA arthritis resolution [86], however, the mechanism by which the double-edged effects of Eos are identified 
is currently unknown. VEGFA has a negative positive association with Mac M2. VEGFA plays an essential role in the inflammatory 
response [46,47]. Mac M2 plays a protective role in RA [80]. Therefore, we conclude that PTGS2 and Mac M2 have antagonistic effects 
in the nosogenesis of RA. 

5. Conclusions 

In summary, the hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which are mainly involved in FoxO 
signal pathway and NOD-like receptor signal pathway. T cells, Mac, and plasma cells may be involved in the regulation of RA-joint- 
synovial inflammation. JUN and Tfh have synergistic effects in the nosogenesis of RA, while PTGS2 and Mac M2 have antagonistic 
effects. It provides a more detailed molecular mechanism for understanding the influence of ferroptosis on the development of RA. This 
study speculated that iron death may interfere with RA through abnormal ROS accumulation, regulating oxidative stress, inflam-
matory response, and corticosteroid response. We know deeply about the underlying molecular nosogenesis by which ferroptosis 
influences the development of RA through the results of this study, thereby providing a novel detection and targeting of therapeutic 
modalities by modulating ferroptosis angles. 
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Abbreviations 

RA Rheumatoid arthritis 
FRGs ferroptosis-related genes 
FerrDb Ferroptosis database 
GEO Gene Expression Omnibus 
DEGs differentially expressed genes 
PPI protein-protein interaction 
GO gene ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
ROS reactive oxygen species; GSH = glutathione 
GPX 4 glutathione peroxidase 4 
TRPM7 Transient Receptor Potential Melastatin 7 
TNF-α Tumor necrosis factor-α; 
IL-6 interleukin-6 
DC degree centrality 
BC betweenness centrality 
CC closeness centrality 
BP Biological Process 
CC Cellular Component 

Fig. 10. The heatmap of the correlation between hub genes and immune infiltration. 
Note: Red indicates a positive correlation, blue indicates a negative correlation, and the darker the color, the greater the correlation. * appears in the 
grid, a correlation between the immune cells and hub gene with P-value <0.05. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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MF Molecular Function 
Mac Macrophages 
Tregs T cells regulatory 
Eos Eosinophils 
Tfh T cells follicular helper 
FLSs fibroblast-like synoviocytes 
PG prostaglandin 
COX-2 cyclooxygenases 2 
MCs synovial mast cells 
HO-1 Heme oxygenase-1 
NLRs NOD-like receptors 
CCP cyclic citrullinated peptide 
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