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The role of shear in crystallization 
kinetics: From suppression to 
enhancement
David Richard & Thomas Speck

In many technical applications crystallization proceeds in the presence of stresses and flows, hence 
the importance to understand the crystallization mechanism in simple situations. We employ 
molecular dynamics simulations to study the crystallization kinetics of a nearly hard sphere 
liquid that is weakly sheared. We demonstrate that shear flow both enhances and suppresses the 
crystallization kinetics of hard spheres. The effect of shear depends on the quiescent mechanism: 
suppression in the activated regime and enhancement in the diffusion-limited regime for small strain 
rates. At higher strain rates crystallization again becomes an activated process even at densities close 
to the glass transition.

The making of a material is a process that often involves phase transformations. How a material trans-
forms from one stable phase to another has wide-spread consequences: for technological applications such 
as metal alloys1, colloids2–4, and the graphite-diamond transition of carbon5; but also for the nucleation 
of ice in clouds6 affecting our climate. Phase transformations have been studied primarily after a sudden 
change of thermodynamic conditions but with dynamics that obey detailed balance. More realistically 
however, such transformations proceed away from thermal equilibrium and in the presence of external 
mechanical stresses and flows, for example when preparing colloidal crystals through spin-coating7. To 
study the basic physical mechanisms, here we consider as a model system a supersaturated liquid of hard 
spheres8–10 and generate a non-vanishing stress through constantly shearing the liquid.

Hard spheres (or more generally, hard particles11) are a paradigm for a wide range of soft materials in 
which entropy dominates over energetic forces and is one of the best-studied model systems in statistical 
mechanics. Moreover, many aspects of liquids are dominated by the packing of atoms. In the absence 
of shear, even though there are no direct forces between particles, hard spheres crystallize at sufficiently 
high packing fractions φ >  φf with φf ≃  0.492 when the entropy of the crystal has become higher than 
that of the disordered liquid. Experimentally, the limit of true hard spheres can be approached using 
colloidal suspensions12, which allow the direct observation of nucleation events3,13. The exact microscopic 
pathway from liquid to solid remains the focus of intensive research. The classical picture has been that 
of a one-step processes in which a rare fluctuation leads to densification and the emergence of a nucleus 
with the same symmetry as the solid14. More recent work has observed different pre-cursors during the 
initial stage that have a different symmetry than the final solid. This leads to a picture of crystallization 
as a two-step9,15, or even three-step3, process. Increasing the density, the entropic barrier to nucleation 
shrinks with dynamics that effectively become arrested on experimental time scales for packing fractions 
φ >  φg with φg ≃  0.58. How the crystallization pathway then changes is currently under investigation16.

Weakly sheared liquids still crystallize but with kinetics that are significantly altered. Understanding 
and controlling these kinetics at least qualitatively is of technological importance in the search of new 
protocols to process materials. For example, growing crystals without defects requires a small growth 
rate once the critical nucleus has formed. Typically this implies conditions close to coexistence2, where, 
however, the nucleation time (the time for the critical nucleus to appear) becomes prohibitively large. No 
consensus has emerged so far regarding the role of shear in numerical17–20 and experimental studies21–23 
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with and without attractive interactions. On one hand the suppression of crystallization has been reported 
for weak, moderate, and high strain rates17,19,22, which is characterized by a decrease of the structural 
order in the sheared crystal22, larger critical nuclei and nucleation barriers compared to the quiescent 
case17, and finally the break-up and melting of solid clusters19. On the other hand, weak shear can induce 
crystallization in the disordered liquid and glassy state18,23. To complicate matters, an optimal strain rate 
has been reported19–21, where at first crystallization is promoted but hampered at larger strain rates. We 
will show that all of these features are reproduced in a sheared hard sphere liquid.

Results
As has been done in previous studies9,10, we do not simulate true hard spheres but particles interacting 
pairwise via the Weeks-Chandler-Andersen potential, which is mapped onto hard spheres through an 
effective diameter d (see Methods). We calculate the crystallization rate density k (in Brownian units τBd3) 
for different values of the packing fraction φ and strain rate γ . To this end we bracket the crystallization 
time τ τ τ= ( + )/< > 2x x x  (the spread is included in the error estimation) by the two times τ<x  τ( )>x  such 
that the size n of the largest cluster obeys n <  ns (n >  ns) for all τ< <t x  τ( > )>t x . The exact value 
nc <  ns ≪  N of the threshold ns is not important as long as it is larger than the critical nucleus size nc and 
much smaller than the system size. We found that ns =  200 is a convenient value, which in the following 
is used for all packing fractions studied. For the lowest density we have performed a committor analy-
sis24,25 and checked that the probability to commit to the solid state is unity for n ≥  200. For the highest 
density n ≃  200 roughly corresponds to the onset of the linear growth regime. From 100 independent 
runs, the crystallization rate is then determined as k =  (V〈 τx〉 )−1, where V is the volume of the simulation 
box.

In the quiescent case (γ = 0) the rate is a non-monotonic function of the packing fraction, see Fig. 1a: 
It has a maximum around φ ≃  0.56 and is decreasing fast when going to lower densities (lower supersat-
uration). The calculated rates agree well with previous simulation results9,10 and within errors also with 
experimental data (for a detailed discussion see ref. 12. Note that densities even closer to freezing can be 
studied using rare-event sampling methods8,10 but predict absolute rates that are several orders of mag-
nitude too small compared to experimental results12. A comprehensive explanation of this discrepancy 
is still an open issue.

The crystallization rate also decreases at higher densities due to two competing factors: going to 
higher densities the free energy barrier against nucleation decreases while at the same time the diffusivity 
of particles also decreases. The non-monotonicity thus reflects the turnover from an activated process 
at lower densities, where a sufficiently large solid cluster has to be nucleated to overcome interfacial 
tension, to a crystallization process that is limited by diffusion26. In colloidal suspensions and complex 
fluids it is the mobility of particles that is rate-limiting, while in atomistic fluids it is the conduction of 
the released latent heat.

Activated regime. We now apply a steady shear flow leading to a non-vanishing stress. The shear 
flow is weak so that for the range of strain rates studied the system remains in the linear response 

Figure 1. Crystallization kinetics. (a) Crystallization rate k vs. the (effective) packing fraction φ for γ =


0. 
The arrow indicates the melting point φm ≃  0.545 of hard spheres. Closed symbols show our work employing 
molecular dynamics (MD), open symbols refer to results obtained in refs 9,10 employing Brownian 
dynamics (BD). (b) Crystallization rate k vs. the square of the strain rate γ



2 for the different packing 
fractions (colors agree with a). The solid lines are fits to Equation (1). Inset: The fitted values for A as a 
function of packing fraction φ, where the solid line is A ∝  (φ −  φ0) with φ0 ≃  0.56. If not shown then error 
bars in this figure are smaller than the symbol size.
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regime and the temperature is approximately constant, see Supplementary Figure 1. Since we consider 
a non-equilibrium situation we require a thermostat in order to remove the dissipated heat. We have 
been particularly careful in selecting this thermostat in order to minimize the deviation of the kinetic 
energy from the bath temperature while not perturbing collective dynamics. Supplementary Figure 2 
demonstrates that the kinetic energy remains unperturbed also during crystallization, indicating that the 
latent heat is removed sufficiently fast by the thermostat. Note that the strain rates studied here are much 
smaller than what is required for shear-induced ordering27.

In Fig. 1b, we observe for packing fractions φ ≤  0.56 a strong suppression of crystallization. The rate 
decreases as a function of the square of the strain rate,

φ γ φ φ γ( , ) ≈ ( ) + ( ) , ( ) k k Aln ln 10
2

where k0 is the quiescent rate. Such a quadratic dependence to lowest order is expected from symmetry 
considerations alone since the rate should be invariant under the inversion γ γ( − )� � �  of the flow profile. 
Moreover, the fitted expansion coefficients A <  0 for the lowest densities are well described by a linear 
function A ∝  (φ −  φ0) with φ0 ≃  0.56 well below the glassy regime. Given the strong dependence of the 
quiescent rate k0 on density, this simple result is somewhat surprising. The density φ0 approximately 
indicates the crossover from a regime where crystallization is suppressed by shear flow to a regime where 
it is enhanced with A >  0 (at least for weak shear). The location of this crossover agrees with the location 
for the qualitative change from activated to diffusion-limited.

Committor analysis. We now analyze in more detail the lowest density φ ≃  0.539 studied to gain 
some insights into the transition state ensemble, which comprises the configurations at the top of the 
free energy barrier separating the liquid from the solid. To this end we perform a committor analysis24,25 
computing the probability PB to commit to the solid state, which is a good reaction coordinate to unam-
biguously describe the process of crystallization. Specifically, PB is computed from several (20 in our case) 
fleeting trajectories – short runs of length τf – for every configuration along a stored trajectory with 
randomized velocities. The fleeting time τ τ τ� �18f B x is much shorter than the nucleation time τx 
with mean τ τ 750x B, but large enough to allow the system to unambiguously reach the threshold 
(ns =  200). The committor for one configuration is calculated as the ratio between the number of fleeting 
trajectories that reach the solid divided by the total number of trials fired from that configuration. Such 
an analysis can also be performed in a driven system. Some care has to be taken regarding the initial 
velocities, which here are taken from the equilibrium Maxwell-Boltzmann distribution. Due to the small 
strain rates, the perturbation of the steady state is negligible compared to the fleeting time τf (cf. 
Supplementary Figure 3).

Figure 2(a) shows for φ ≃  0.539 that the correlations between PB and the cluster size n are similar for 
both the quiescent and the sheared liquid. For the latter, equal PB typically have larger cluster sizes which 
indicates that smaller clusters are more likely to break up under shear. This intuitively agrees with the 
observation of a suppression of nucleation. Of particular interest are configurations for which PB ~ 0.5, 
i.e., for which the chances to fall back to the liquid or to surmount the barrier are equal. These 

Figure 2. (a) Committor analysis for packing fraction φ ≃  0.539. Scatter plot showing the correlations 
between the committor PB and the size n of the largest cluster for the quiescent (gray) and shear driven case 
(red) with strain rate γτ .� � 0 07B . The shaded area indicates n ≥  ns =  200, for which the probability that solid 
clusters continue to grow has reached PB ≃  1. The dashed lines limit the transition state ensemble, for which 
the distribution of nucleus sizes is shown in the inset. (b) Effective chemical potential for packing fractions 
φ <  φ0. The crystallization rates k for several strain rates collapse when plotted against an effective chemical 
potential. The dashed line is a guide to the eye.
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configurations constitute the transition state ensemble, for which the distribution of cluster sizes are 
shown in the inset of Fig. 2(a). The mean values nc ≃  36 for γ = 0 and nc ≃  68 for γτ .� � 0 07B  are esti-
mates of the critical cluster sizes for the quiescent and sheared liquid, respectively. Moreover, PB ≃  1 for 
n ≥  ns, which shows that the threshold is sufficiently large. For higher densities critical cluster sizes are 
smaller and we use the same threshold for all densities.

Effective chemical potential. Classical nucleation theory predicts a crystallization rate 
k0 =  κexp(− Δ G/kBT) with two contributions: a kinetic pre-factor κ and an exponential free energy bar-
rier Δ G ∝  |Δ μ|−2. Here, T is the temperature, kB is Boltzmann’s constant, and Δ μ <  0 is the difference 
in chemical potential of the solid and the liquid. The proportionality depends on the interfacial tension 
and geometric factors due to the average shape of the critical nuclei.

Both contributions to the rate are affected when turning on the shear flow. The pre-factor is deter-
mined by the fluctuations and correlations between solid-like particles in the meta-stable liquid, the 
reduction of which is not strong enough to explain the observed exponential reduction of the crystal-
lization rate. Alternatively, it has been proposed that the suppression can be accounted for through an 
effective free energy with an increased barrier17. To test this idea, we convert packing fractions to chem-
ical potential differences using a linear fit to the data of ref. 10. Indeed, plotting the rates as a function 
of an effectively reduced chemical potential difference

μ μ αγ μΔ = Δ ( + ) < Δ ( )1 2eff
2

(while keeping the interfacial tension constant) with constant α ≃  − 15, all rates for different strain rates 
collapse onto a single curve as shown in Fig. 2(b). This demonstrates that nucleation under shear remains 
a rare, collective fluctuation to overcome a single barrier. Interestingly, Butler and Harrowell have argued 
for the non-equilibrium coexistence of a sheared liquid and the solid that the magnitude of the chemical 
potential difference is likely to increase28,29. This would imply that under shear there are two effective 
chemical potentials: one determines the nucleation of the new phase and one determines the final coex-
istence in the steady state. Both cannot be the same, which is in striking contrast to the quiescent liquid.

Diffusion-limited regime. We finally study the regime φ ≥  0.56. In Fig. 3a the mean crystallization 
time 〈 τx〉  is plotted for the largest packing fraction φ ≃  0.587, which indeed shows an enhancement of 
crystallization for weak shear flow. For consistency, we maintain the same criteria for determining the 
crystallization time although now multiple solid clusters appear and grow. While at low supersaturation 
the distinction between the actual nucleation time (random waiting time to reach the critical cluster size) 
and crystallization time (random waiting time τx to reach ns) is negligible, this is no longer the case. At 
this density, the solidification process is limited by the rate with which additional particles “attach” (there 
are no direct attractive forces but arranging into ordered structures locally increases the entropy). Shear 
flow increases the diffusion both parallel and perpendicular to the direction of the shear flow30, and thus 
speeds up the attachment while the barrier to nucleate small solid clusters is still small. However, we 
observe that increasing γ  the mean crystallization time reaches a minimum before it again increases for 
higher strain rates.

In Fig. 3b the evolution of the largest cluster is shown for φ ≃  0.587. To separate the effects of nucle-
ation and growth, the single trajectories have been shifted by τx before averaging. In the quiescent liquid, 
the growth of the largest nucleus is gradually and slow before 〈 n〉  becomes an approximately linear 
function of time for 〈 n〉  >  ns. Hence, the value ns =  200 is also a good estimate for the beginning of the 
linear growth regime. In the presence of shear flow, the initial increase of 〈 n〉  is less gradual and the 
following growth is more rapid. Interestingly, for both non-zero strain rates the curves lie on top of each 
other while the crystallization rates differ by a factor of two. The reason is revealed in Fig.  3c, which 
shows that the distribution of the single crystallization times τx is strongly affected by the shear flow. In 
the quiescent liquid the barrier to nucleation has basically vanished and we observe multiple nuclei (see 
snapshot Fig. 3d). The mean nucleation time 〈 τx〉  ≃  16.5τB is small (compare 〈 τx〉  ≃  750τB for φ ≃  0.539) 
while the distribution is approximately Gaussian, which qualitatively agrees with a diffusive evolution 
under a constant force given by the chemical potential difference between liquid and solid. Going to a 
small strain rate γτ .� � 0 15B , the distribution of nucleation times remains a Gaussian but becomes more 
narrow with a smaller mean. At this strain rate solid clusters thus appear more frequently and grow faster 
compared to the quiescent liquid (see Fig.  3e). At higher strain rate γτ .� � 0 3B  the distribution of τx 
becomes very broad with a pronounced tail, which implies a delayed induction of solid clusters and the 
qualitative change to activated behavior. Once these have formed, however, clusters grow faster than in 
the absence of shear flow (Fig. 3f).

Conclusions
The effect of weakly shearing a hard sphere liquid on crystallization strongly depends on the density: At 
low supersaturation the driving force of crystallization, the difference of the chemical potential between 
liquid and solid, is also small. Here the forces exerted by the shear flow might overcome the gain of 
entropy and lead to a larger probability for small solid clusters to lose particles (or even break up). Larger 
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clusters are not affected, which, in combination, leads to a shift of the critical cluster size that can be 
interpreted as an effectively larger barrier to nucleation. No enhancement of crystallization occurs in this 
regime. This result might also shed some light onto the controversy regarding the discrepancy between 
experimental and simulation results at low supersaturations. As pointed out by Russo et al.31, sedimenta-
tion of not fully density-matched colloidal particles has an influence on the crystallization rate. However, 
the actual mechanism is not known and combined with the suppression of crystallization found here 
seems to rule out shear-induced effects.

At high supersaturation there is a combination of two effects: (i) The diffusion of particles in the 
surrounding liquid is increased. This enhanced exploration of configuration space accelerates the growth 
of solid clusters. (ii) The shear flow disrupts the subtle order in the liquid and thus suppresses the forma-
tion of small solid clusters. At larger strain rates this suppression is so strong that crystallization again 
becomes an activated process comparable to crystallization at lower supersaturation in the quiescent 
liquid. We expect that these physical mechanisms are valid beyond hard spheres also in the presence of 
short-ranged interactions.

Methods
We study a model liquid composed of N =  5000 monodisperse, nearly hard spheres in a periodic box 
with volume V employing standard NVT molecular dynamics32. Particles interact via the 
Weeks-Chandler-Andersen potential (WCA) ε σ σ( ) = ( / ) − ( / ) + /u r r r4 [ 1 4]12 6  for r <  21/6σ. The 
temperature is held constant via the stochastic Lowe-Andersen thermostat33, which is characterized by 
the bath collision frequency Γ . This thermostat has desirable properties, in particular it is Galilean invar-
iant and conserves angular momentum. The WCA potential can be mapped onto hard spheres by means 
of an effective diameter d10, which we compute from φ ρ= π df

HS
6 f

WCA 3 with freezing packing fraction 
φ . 0 492f

HS  of hard spheres and freezing density ρ . 0 712f
WCA  of the WCA liquid10. The packing 

fraction is φ = πd N
V6

3
. As time scale we employ the Brownian time τB =  d2/D0, where D0 is the bare dif-

fusion coefficient in the infinitely dilute system. The system is driven through Lees-Edwards periodic 
boundary conditions leading to a linear flow profile γ/ = d v dyx .

Figure 3. Shear-enhanced crystallization for φ ≃ 0.587. (a) Mean crystallization time 〈 τx〉  vs. the strain 
rate γ


 (black, other packing fractions are shown using the same colors as in Fig. 1). The solid lines show the 

quadratic fits, the dashed line is a guide to the eye. (b) Evolution of average cluster size 〈 n〉  as a function of 
shifted time. (c) Histograms of crystallization times for three strain rates and their respective means. Solid 
lines are Gaussian fits. (d–f) Snapshots after t =  5τB starting from the same initial particle configuration for 
(d) the quiescent liquid, (e) at strain rate γτ .� � 0 15B , and (f) at strain rate γτ .� � 0 3B . Red particles have 
been identified as solid-like, green particles as pre-structured (i.e., particles with high local order but less 
orientational “bonds” with their neighbors). For clarity, liquid-like particles are shown with a reduced size.
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Random configurations of dense hard spheres without preformed structures were created with the 
algorithm by Clarke and Wiley34, where the non-overlapping distance between particles was chosen to 
be equal to the effective diameter d. These configurations are thermalized in a short run without shear at 
high collision frequency Γ  ≃  100 before the production runs at given strain rate with Γ  ≃  10.

To distinguish between liquid-like and solid-like particles, we follow ref.  10. We employ the local 
bond order parameter35

( )∑ θ ϕ( ) =
( )

,
( )

,
=

( )

, , ,q i
N i

Y1

3l m
n j

N i

l m i j i j
1

n

for particle i, where Yl,m(θ, φ) are spherical harmonics and Nn is the number of neighbors within distance 
rij <  1.5σ. We construct a bond network through the scalar product

( , ) =
∑ ( ) ( )

(∑ | ( )|) (∑ | ( )|) ( )

=− , ,

=− ,
/

=− ,
/

⁎

d i j
q i q j

q i q j 4

m l
l

l m l m

m l
l

l m m l
l

l m
1 2 1 2

using l =  6 with d(i, j) ≥  0.7 defining a bond. A particle is defined as “solid-like” (“pre-structured”) if the 
number of bonds is ≥ 9 (≥ 6), and clusters are constructed from mutually bonded solid-like particles.
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