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ABSTRACT

Gas chromatography-mass spectrometry (GC-MS)
acquisitions routinely yield hundreds to thousands of
Electron lonization (El) mass spectra. The chemical
identification of these spectra typically involves
a search protocol that seeks an exact match to a
reference spectrum. Reference spectra are found
in comprehensive libraries of small molecule EIl
spectra curated by commercial and public entities.
We developed ARISTO (Automatic Reduction of lon
Spectra To Ontology), a webtool, which provides in-
formation regarding the general chemical nature of
the compound underlying an input ElI mass spec-
trum. Importantly, ARISTO can provide such anno-
tation without necessitating an exact match to a
specific compound. ARISTO provides assignments
to a subset of the ChEBI (Chemical Entities of
Biological Interest) dictionary, an ontology, which
aims to cover biologically relevant small molecules.
Our system takes as input a mass spectrum repre-
sented as a series of mass and intensity pairs; the
system returns a graphical representation of the
supported ontology as well as a detailed table of
suggested annotations along with their associated
statistical evidence. ARISTO is accessible at this
URL: http://www.ionspectra.org/aristo. The system
is free, open to all and does not require registration
of any sort.

INTRODUCTION

In a typical Gas chromatography—mass spectrometry
(GC-MYS) study, analytical chemists will usually submit
their Electron Ionization (EI) mass spectra to a software
system, which attempts to identify each spectrum by
matching it exactly to a reference spectrum from a well
curated library (1). These libraries are generated by sys-
tematically running pure compounds under standard

conditions to generate high-quality reference spectra.
One of the largest libraries to date is the NIST 08 EI
library (2) which contains spectra for 191436 compounds
(in its main library).

While the coverage of the NIST library ensures that for
many of the common small molecules an exact match can
be provided, if an exact match is not found, the researcher
is left with two choices: (i) inspection of the nearest, im-
perfect hits and (ii) de novo elucidation of the compound
structure, typically with the help of specialized software.
Several software systems attempt to provide such de novo
assignments including AMDIS (3,4) and Mass Frontier™
(ThermoFisher Scientific, Waltham, MA, USA). These
software solutions ultimately rely on a chemical substruc-
ture identification (5) as a key component of their solution
strategy.

In contrast, ARISTO does not explicitly incorpor-
ate substructure matching. Instead, it attempts to match
spectra directly to averaged spectra corresponding to
a formal standardized set of annotations (ChEBI,
described below), without seeking an explicit substruc-
ture match with the query spectrum. ARISTO leverages
the development in the chemical informatics community
of a formal ontology which aims to cover Chemical
Entities of Biological Interest—namely the ChEBI (6) dic-
tionary. ARISTO was derived by matching 3000 spectra
from the NIST 08 EI library to their respective ChEBI
entries.

The combination of these two resources is used to derive
a directed acyclic graph (DAG) of ~400 canonical anno-
tation spectra corresponding to broad (>10 member com-
pounds) ChEBI concepts. For each ChEBI concept (e.g.
CHEBI:46686 or azaalkane), the corresponding EI spectra
are averaged to generate a canonical annotation spectrum.
A user provided query spectrum can then be scored
against each of these averaged annotation spectra. From
this score a probability of correctness is derived by
comparing each score to a previously stored, comprehen-
sive leave-one-out study which allows the system to
estimate the precision of each prediction by linear inter-
polation against an empirical precision-recall plot
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(accessible in the results table). The scores are represented
both graphically and in tabular form. The table contains
links allowing the user to inspect the query spectrum
aligned with the associated annotation spectrum (in a
so-called mirror plot) as well as precision-recall plots
and receiver operating characteristic (ROC) curves for
the training data. The table also contains the description
of each ChEBI concept as well as a link to the associated
entry on the ChEBI website. The ontology supported by
ARISTO is expected to expand in parallel to growth in the
ChEBI annotation scheme.

We propose ARISTO as a potential complementary
approach in cases where exact spectral matches are un-
available and furthermore, in cases where approximate
matches fail to support any obvious conserved substruc-
ture. A description of the implementation will be provided
herein, along with example analyses and future directions.

RATIONALE AND IMPLEMENTATION

ARISTO is built on ChEBI, which is a relatively recent
ontology of chemical entities with relevance to biological
research. Though many other resources exist, which ad-
dress the space of small-molecules, we focused on ChEBI
exclusively due to its commitment to a comprehensive and
fully hierarchical ontology. Broadly speaking ChEBI can
be understood as a hierarchical tree of nodes (actually a
DAG), each with a ChEBI ID (e.g. CHEBI:38728) and
name (e.g. monocrotophos) as well as descriptions,
synonyms, cross-references to other databases and detailed
chemical structures where appropriate. The lower levels of
the hierarchy, the ‘leaves’ of the DAG, typically corres-
pond to specific compounds whereas internal nodes mostly
correspond to increasingly general concepts in chemistry,
culminating in ‘chemical entity’ at the root of the tree
(e.g. CHEBI:24431). As is the case with the well-known
gene ontology (GO) annotation scheme (7), most edges in
ChEBI correspond to ‘is a’ edges, though chemistry spe-
cific relations such as ‘is enantiomer of’ and ‘has parent
hydride’ are also supported.

While ChEBI has experienced phenomenal growth in
recent years, it remains committed to a definitive and
thorough annotation of all its entries. In support of this
goal, ChEBI uses a ‘rated’ annotation scheme similar to
the one in use by UniProt. Whereas UniProt distinguishes
its manually curated (Swiss-Prot) entries, ChEBI high-
lights the fully curated subset of its database (so called,
3 star entries). ARISTO relies only on these, highest rated
entries, and consequently, its growth is projected to be
limited primarily by the rate of ChEBI’s manual annota-
tion efforts (in addition to limiting ARISTO’s growth rate,
ChEBI also limits ARISTO to essentially un-derivatized
molecules since derivatized forms are not often explicitly
represented in chemical ontologies). Furthermore, to
ensure robustness, we have opted to focus exclusively
on the subset of ChEBI made entirely of ‘is a’ edges
and internal nodes for which we could find at least 10
compounds with El-spectra.

All the spectra used as a foundation for the ARISTO
system were extracted from the NIST 08 EI library, which

contains 191 436 reference spectra in its main library. With
each spectrum there is a structure provided as well as a
compound name along with common synonyms and
external accession numbers. While the compound nomen-
clature does not consistently correspond to any canonical
nomenclature, the structure would be, in principle, suffi-
cient to derive an InChiKey (8,9) identifier to match with
the one systematically provided by the ChEBI ontology.

The matching of EI spectra to broad annotations and
chemical identifiers is challenging and prone to severe in-
consistency. To overcome such pitfalls, the following
matching-guidelines were considered: (i) The chemical
structures provided by the NIST library do not contain
stereochemistry and therefore are only guaranteed to yield
the first 14 characters of the InChiKey correctly for any given
compound. Recall that the first 14 letters of any InChiKey e.g.
WHWZLSFABNNENI-OAHLLOKOSA-N for S-epinastine
(CHEBI:510306) versus WHWZLSFABNNENI-
HNNXBMFYSA-N for R-epinastine (CHEBI:51039),
are produced by hashing the connectivity layer in the
original InChi (and are therefore equivalent for these
two compounds). (ii) While enantiomers almost always
produce identical mass-spectra, the remaining characters
of the InChiKey do provide information on isotopic com-
position, which can impact the spectrum. Ultimately, in
order to minimize the chance of an incorrect match, espe-
cially in a first version of the system, the mapping between
NIST and ChEBI was achieved not by InChiKey, but
rather by CAS number. CAS was used as a cross-
referenced accession that unifies many of the NIST and
ChEBI entries. The resulting basis-set of annotated spectra
available to the ARISTO system was therefore reduced
from a potential ~200000 spectra in the NIST 08 EI
library, through a maximum of ~26000 ChEBI entries
to a CAS-supported matching of 3000 ChEBI-annotated
El spectra. In future versions of the system, we will attempt
a more extensive matching in order to support a broader
ontology. This will be achieved by matching on the first
14 characters of the InChiKey (‘connectivity hashing’).

Having matched spectra to ChEBI concepts we applied
an extremely simple ‘learning’ technique; we averaged the
spectra per concept. This approach was selected for two
main reasons: averaging replicate spectra constitutes a
valid step in most library curation pipelines, so in a
sense ARISTO is simply treating spectra from different
compounds as replicates of the higher-level concept
being represented. Second, spectral averaging simplifies
the process of cross-validation since there is no need to
‘retrain’ when removing a spectrum from the training set.
A simple weighted subtraction simulates the elimination
of the spectrum from the input.

Given a query spectrum and the averaged training data,
ARISTO can generate a score for each concept by
applying a simple dot-product to the query and the repre-
sentative average spectrum for the concept. In order
to translate scores into probabilities, we conducted a
complete leave-one-out cross-validation study from
which we generated ROC curves and precision-recall
curves per concept. ARISTO reports the area under the
curve (AUC) of the ROC curves to help users filter out
concepts, which cannot be effectively recognized by our



simple dot-product against-average-spectrum strategy.
Based on numerous tests (data not shown), the users are
encourage to ignore entries with AUC < 0.8. ARISTO
also reports the precision-recall curve, which it uses to
translate scores to probabilities on a per concept basis.
While it is evident that more complex learning schemes
are likely to yield better coverage in terms of the ChEBI
concept-space, we were able to find ‘learnable’ concepts
even with this very basic strategy (Figure 1). Indeed, these
concepts correspond to classes of compounds which can
be identified visually by experienced researchers that are
trained in the elucidation of structure from mass-
spectrometry data (such compound classes include, e.g.
long-chain fatty acids, steroids, etc.).

TEST CASE ANALYSES

The system is extremely easy to use in that it requires only
one element of input, namely, a nominal mass spectrum
specified as a series of mass and intensity pairs, optionally
separated by new lines. The user pastes the spectrum into
the provided input text box and activates the ‘Ontologize’
button. Candidate spectra will most likely be generated by
tools such as SpectConnect (10) which can indentify re-
producibly detected spectra that, while resisting identifica-
tion, seem to be instrumental in discriminating e.g.
biological conditions of interest. In Figure 2A, the input
field contains a spectrum from a lauric acid derivative
(available as example 5 in the Examples tab). Note that
the example spectra are all members of a randomly
selected test set comprised of 32 spectra removed prior
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Figure 1. Learning higher level ChEBI concepts by a naive process of
spectral averaging. The ‘learnable’ ChEBI concepts (AUC>0.8) include
long-chain fatty acid and steroid which are considered to be ‘easily
recognizable’ by mass spectrometry experts while other broad
categories such as natural product are relatively unexpected. Note
that with increasing compound coverage some of the broader categories
(N>500) may decrease in their AUC while categories that currently
lack adequate spectral support (N < 10) are likely to cross the threshold
of learnability.
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to the learning phase and made available in the Batch
Mode tab of the ARISTO website (see description below).

The system returns a complete assessment of whether
the spectrum matches one of 388 chemical concepts. The
results are provided in both graphical form (Figure 2B)
and tabular form (Figure 2C). The directed acyclic graph
represents the subset of the ChEBI ontology currently
supported by ARISTO, where each node corresponds to
a ChEBI concept color-coded by the probability that it is
a valid annotation for the query spectrum (ranging from
P = 0.01in red to P = 1.0 in green). Edges in the DAG
correspond to ‘is-a’ relationships. The size of each node is
proportional to its AUC in the comprehensive leave-one-
out analysis mentioned previously. Hovering over the
node produces a tooltip specifying the node name and
clicking on the node brings the user to the relevant
ChEBI webpage. The tabular results contain sortable
columns for the dot-product scores, the ChEBI node
name, the number of compound spectra used to generate
the representative average spectrum for the node, the
AUC for the concept, as well as the estimated precision
of the assignment. In addition, there is a link per annota-
tion which produces a mirror plot (Figure 2D) allowing
the visual comparison of the average annotation spectrum
(top in blue) with the query spectrum (bottom in red)
as well as links to plots showing the data collected
during the leave-one-out analysis with an additional red
data point corresponding to the score produced for the
query spectrum. When a user submits a spectrum from
the examples provided by the website itself, an add-
itional column is appended to the table showing the cor-
rectness of the call (according to release 73 of the ChEBI
ontology made in October 2010). By default, the table is
filtered to include only annotations with an AUC > 0.8
and they are sorted according to their estimated precision
(“Est. Precision’ column), which is the preferred figure of
merit by which to investigate ARISTO’s output. This is
because the significance of the raw dot-product score
(‘score’ column) is dependent, among other factors, on
the size of the category (‘N’ column). The AUC and
precision-recall plots are particularly useful in this
regard, since they allow the user to see the empirical
basis for the translation from raw score to estimated pre-
cision. The user can see every element used in the learning
phase and effectively compare the dot-score of the query
spectrum to all the data points collected during the
leave-one-out learning phase (the query data point is
colored red).

In the example illustrated in Figure 2 (corresponding to
example #5 in the examples page of the ARISTO website)
we can see that straight-chain saturated fatty acid
(CHEBI:39418) corresponds to the node with the
strongest absolute score and is one of the four nodes
showing maximal estimated precision (in the full, unfil-
tered table). However, two of these four predictions cor-
respond to extremely broad and uninformative categories
that also have relatively weak AUCs (they are in fact not
visible in the default, filtered version of the results table).
The entry for CHEBI:39418 is based on 19 compounds
(N =19) and an extremely high AUC. Consequently,
CHEBI:39418 is selected as the more specific and well
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Figure 2. Screenshots from ARISTO’s web interface. (A) The user loads a mass spectrum corresponding to an unknown compound—in this example
the structure is known (CHEBI:49519) and corresponds to example spectrum #5 in the Examples section of the website. The resulting report
produced by ChEBI shows: (B) a DAG representing the estimated precision and AUC for each concept represented as the color and size of
each concept-node along with its location within the supported ontology (an induced subgraph is highlighted in blue which links all ChEBI
annotations passing ARISTO’s default filter back to the DAG’s root node) and (C) a tabular report showing the estimated precision of each
prediction, the correctness of the call (marked as True/False and available only for the example input provided by the website) along with
image-links to more supporting information. The first image-link yields a mirror plot (D) showing the match between the average
annotation-spectrum (top in blue) for a given annotation, in this case straight-chain saturated fatty acid (CHEBI:39418), and the query spectrum

(bottom in red). See text for more details.

discriminated category. By clicking on the image links in
the AUC column and estimated precision columns, the
user can inspect the precision-recall and ROC curves for
CHEBI:39418 and confirm that a score of 0.898 corres-
ponds to a high-confidence identification. CHEBI:39418 is
indeed a useful characterization of the input compound
which would benefit an experimentalist interested in the
chemical nature of the compound. It is noteworthy that
this association is provided despite the fact that, strictly
speaking, according to ChEBI, our input compound
(CHEBI:49519) cannot be linked to the CHEBI:39418
category exclusively through a series of ‘is-a’ links
(hence the False entry in the ‘Correct?” column), rather
it is necessary to go through a ‘has-functional-parent’
link to lauric acid (CHEBI:30805). While future versions
of ARISTO may leverage these additional link-types ex-
plicitly, it is heartening that a version of ARISTO trained
only on the ‘is-a’ subset of ChEBI can recover such
relationships.

Example #6 (not shown in Figure 2 but available in the
examples page) corresponds to a compound from the
MassBank (11) site: 3alpha,6alpha-Dihydroxy-5alpha-
cholan-24-oic acid Methyl ester which is not incorporated
into the ChEBI ontology (and hence was never introduced
into ARISTO) and is derived (12) from hyodeoxycholic
acid (CHEBI:52023); when submitted to ARISTO this
spectrum is correctly annotated as a 3-hydroxy steroid
(CHEBI:36834). Note that the tabular report for this
spectrum does not contain a ‘Correct?’ column since this
compound has not yet been annotated by ChEBI. It is
nevertheless characterizable by ARISTO.

Example #7 corresponds to Apoatropine (as in Example
#6, this compound is not currently represented in ChEBI).
The spectrum originates from the analysis of Datura
inoxia seed extracts conducted by the Interdepartmental
Equipment Unit of the Faculty of Agriculture, Food
and Environment. This noisy GC-MS spectrum proved
impossible to characterize using NIST’s MS-Search



program and the NISTOS library: the correct structure was
#36 on the list of suggested structures and only 1 of the
top 10 identifications even contained a Nitrogen atom. In
contrast, ARISTO correctly and confidently (estimated
precision = 1.0) characterized the spectrum as containing
an azabicycloalkane (CHEBI:38295).

A final test case is provided in the Batch Mode tab of
the system where the user can upload a set of 32-spectra
specifically excluded from the learning phase of the algo-
rithm. The user can use this data set to get a sense of the
system’s coverage (for what percent of typical input
spectra will the system issue a prediction) and whether
or not the estimated precision is correct. Under the
default filtering (which allows predictions with a minimal
estimated precision of 0.5, i.e. with an expected failure rate
of 50%) the system returns 33 predictions for 13 of the
compounds (or 40% of the input data). Of these predic-
tions 17 were correct corresponding to 51% of the predic-
tions as expected under the default filtering. A stricter
filtering at 0.75 yields 15 predictions of which 12 are
correct, corresponding again to a well-calibrated 80% of
the responses. However, the coverage has now dropped to
only 6 compounds or ~19% of the input data (in fact, the
user may recognize some of these compounds as examples
1-5 in the Examples tab). The coverage of the system is
expected to increase as it grows beyond the initial basis-set
of 3000 spectra. Despite the relatively low coverage, it is
again heartening to see that the system makes correct pre-
dictions for every compound except for CHEBI:49519
where, as described previously, the predictions are
indeed meaningful and the annotation in the ‘Correct?’
column is set to False essentially due to the fact that
ARISTO currently considers only ‘is-a’ links in the
ChEBI dictionary.

CONCLUSIONS AND FUTURE DIRECTION

ARISTO represents an existence proof for the idea of
direct chemical characterization of mass spectra without
explicit substructure matching. We expect ARISTO to be
used primarily by experimentalists and to support the
growing field of chemical informatics. ARISTO aims to
close the gap between the enormous scale of small
molecule spectral libraries and the nascent, relatively
poor coverage of chemical ontologies associated with the
small molecule concept space. The EI spectra are used as
connectors between these spaces with the hope to circum-
vent the need for substructure identification. Recall that
often the identity of a substructure is a poor indicator
for the biological activity of the small molecule or its
biological relevance.

Clearly, there is much room for improvements. As
described earlier, the spectral basis set of the system can
in principle be increased quite dramatically by shifting
from a CAS number-based matching between the NIST
EI library and the ChEBI ontology to a looser matching
based on the connectivity layer of the InChiKey. Such a
mapping is bound to generate false matches, however it is
likely that, while the mismatched pairs will be chemically
distinct (e.g. they may be enantiomers), with respect to
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their EI fragmentation they are likely to be legitimately
considered as equivalent. Using this alternative mapping,
we expect to cover most of the ChEBI ontology and more
importantly, we can automatically track its growth.

In addition to improvements in coverage of chem-
ical space, there is room for increased complexity in
the algorithms used to classify spectra. The current
version of ARISTO aims specifically to test the lower
bound of algorithmic complexity, which is why it is
based on a simple dot-product against each average class
spectrum. More sophisticated machine learning algo-
rithms are likely to increase the set of learnable concepts
(e.g. algorithms that intelligently leverage the many TMS-
derivatives present in the GC-MS centric NIST 08 EI
library).

ACKNOWLEDGEMENTS

The authors thank members of the Linial Lab for helpful
discussions; Dr Steve Stein, Dr Anzor Mikaia and
Dr Edward White for their advice and for providing a
text-formatted version of the NIST 08 EI library;
Dr Julius Ben-Ari for invaluable feedback and the spec-
trum corresponding to Apoatropine; Zina Muzikansky for
her support during the preparation of this manuscript.

FUNDING

Binational Science Foundation (BSF) (2007-219);
Prospects consortium [EU FRVII]. Funding for open
access charge: Prospects consortium (EU FRVII).

Conflict of interest statement. None declared.

REFERENCES

1. Ausloos,P., Clifton,C.L., Lias,S.G., Mikaya,A.I., Stein,S.E.,
Tchekhovskoi,D.V., Sparkman,O.D., Zaikin,V. and Zhu,D. (1999)
The critical evaluation of a comprehensive mass spectral library.
J. Am. Soc. Mass Spectrom., 10, 287-299.

2. Stein,S.E. and Scott,D.R. (1994) Optimization and testing of mass
spectral library search algorithms for compound identification.

J. Am. Soc. Mass Spectrom., 5, 8§59-866.

3. Stein,S.E. (1999) An integrated method for spectrum extraction
and compound identification from gas chromatography/mass
spectrometry data. J. Am. Soc. Mass Spectrom., 10, 770-781.

4. Stein,S.E. (1995) Chemical substructure identification by mass
spectral library searching. J. Am. Soc. Mass Spectrom., 6,
644-655.

5. Gan,F., Yang,J.-h. and Liang,Y.-z. (2001) Library search of mass
spectra with a new matching algorithm based on substructure
similarity. Anal. Sci., 17, 635-638.

6. de Matos,P., Alcantara,R., Dekker,A., Ennis,M., Hastings,J.,
Haug,K., Spiteri,I., Turner,S. and Steinbeck,C. (2009) Chemical
entities of biological interest: an update. Nucleic Acids Res., 38,
D249-D254.

7. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T.
et al. (2000) Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nature Genetics, 25,
25-29.

8. Heller,S. and McNaught,A. (2010) The status of the InChl
project and the InChl trust. J. Cheminf., 2, P2.

9. Kidd,R. (2009) Changing the face of scientific publishing.
Integrative Biology, 1, 293.



WS510 Nucleic Acids Research, 2011, Vol. 39, Web Server issue

10. Styczynski,M.P., Moxley,J.F., Tong,L.V., Walther,J.L., MassBank: a public repository for sharing mass spectral data for
Jensen,K.L. and Stephanopoulos,G.N. (2007) systematic life sciences. J. Mass Spectrom., 45, 703-714.
identification of conserved metabolites in GC/MS data for 12. Iida,T., Tamaru,T., Chang,F.C., Niwa,T., Goto,J. and
metabolomics and biomarker discovery. Anal. Chem., 79, 966-973. Nambara,T. (1993) Potential bile acid metabolites. 20. A new

11. Horai,H., Arita,M., Kanaya,S., Nihei,Y., Ikeda,T., Suwa,K., synthetic route to stereoisomeric 3,6-dihydroxy- and 6-hydroxy-5

Ojima,Y., Tanaka,K., Tanaka,S., Aoshima,K. ez al. (2010) alpha-cholanoic acids. Steroids, 58, 362-369.



