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Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was
responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects
and survives within myeloid lineage cells, causing a potentially fatal disease if left
untreated. The only treatment option relies on chemotherapy, although immunotherapy
strategies are being considered as novel approaches to prevent progression of the
disease. To this aim, a deeper characterization of the molecular mechanisms behind the
immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time,
the host immune response during L. infantum infection through transcriptome sequencing
of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and
weighted gene co-expression network analyses were performed, resulting in the
identification of 5,461 differentially expressed genes (DEGs) and four key modules in
sick dogs, compared to controls. As expected, defense response was the highest
enriched biological process in the DEGs, with six genes related to immune response
against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten
most expressed genes; and two of the key co-expression modules were associated with
regulation of immune response, which also positively correlated with clinical stage and
blood monocyte concentration. In particular, sick dogs displayed significant changes in
the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-a, IFN-g, IL-21, IL-17, IL-15),
markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell,
monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R,
NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other
genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded
protein response, as well as one co-expression module associated with these processes,
which could be induced by L. infantum to prevent host cell apoptosis and modulate
inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were
differentially expressed in sick dogs, and one key co-expression module was associated
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with chromatin organization, suggesting that epigenetic mechanisms could also
contribute to dampening host immune response during natural L. infantum infection in
the lymph nodes of dogs suffering from clinical leishmaniosis.
Keywords: canine leishmaniosis, immunomodulation, parasite immune evasion, unfolded protein response,
cytokine, T cell exhaustion, RNA-seq, lncRNA
INTRODUCTION

Leishmaniosis is a zoonotic disease caused by Leishmania spp.
and transmitted by blood-sucking phlebotomine sand flies.
Despite affecting 200,000–400,000 people annually and causing
an estimated 20,000–40,000 deaths per year, leishmaniosis is still
one of the most neglected diseases in the world (1–3).
L. infantum was identified as the causative agent of the largest
outbreak of human leishmaniosis in Spain (4), which is also the
aetiological agent of canine leishmaniosis (CanL) in Europe. This
protozoan is an obligate intracellular parasite that lives within
myeloid lineage cells. It is capable of reprogramming the host
microenvironment to invade and persist within the mammalian
host cells, causing a systemic, chronic, and potentially fatal
disease if left untreated (5–8).

Treatment of this zoonotic disease is a major challenge as the
only option relies on chemotherapy (9, 10), and the emerging
anti-leishmanial drug resistances, coupled with long duration of
treatments and drug toxicity, further limit its efficacy (11).
Immunotherapy, in conjunction with anti-leishmanial drugs
(immunochemotherapy), could result in a synergic effect with
activation of the protective immunity of the host and direct
action of drugs against the parasite. Thus, immunotherapy and/
or immunochemotherapy might be a promising alternative
approach for treating leishmaniosis (12–15). In this regard,
the use of vaccines as immunomodulatory agents could also
help to reduce the parasite burden in infected dogs (13).
However, a deeper characterization and a better understanding
of the complex molecular mechanisms behind the
immunopathogenesis of L. infantum infection are necessary to
successfully develop efficient immunomodulatory drugs and
treatment strategies.

Currently, it is widely accepted that a delicate balance
between inflammatory and regulatory responses is required to
achieve the immune control of L. infantum (12). Specifically,
control of the infection relies on a successful macrophage
activation via interferon-g (IFN-g), produced mainly by
proinflammatory CD4+ T helper type 1 (Th1) cells and natural
killer (NK) cells stimulated by interleukin (IL)-12, that promotes
leishmanicidal activity mediated by nitric oxide (NO) (12,
15–17).

In contrast, the parasite’s survival is associated with a
predominant immunosuppressive response mediated by CD4+
T regulatory type 1 (Tr1) cells and populations of regulatory B
cells. These cells produce IL-10 and transforming growth factor-
b (TGF-b) (18), decreasing the proliferation of Th1 cells
producing IFN-g, and then resulting in a lack of M1
macrophage activation and parasite killing (12, 19, 20), which
org 2
might be also correlated with an increase on the alternatively
activated macrophages (M2). M2 macrophage polarization will
result in the induction of IL-10 and the inhibition of
proinflammatory signals (5). Additionally, it has been shown
that an incomplete activation or exhaustion of CD8+ cytotoxic T
lymphocytes (CTLs) and NK cells could also limit IFN-g
production and contribute to a more severe immunological
imbalance, favoring the parasite persistence (21).

Other cells, such as neutrophils, are additional components
involved in the immune response during Leishmania infection.
Although they are the first cells recruited to the infection site,
phagocytosis of Leishmania amastigotes by neutrophils could
lead to both parasite elimination, via neutrophil oxidative burst,
or to prolonged parasite survival within the parasitophorous
vacuole, avoiding inflammatory signals (12, 22, 23).
Furthermore, neutrophils release networks of extracellular
fibers composed of chromatin and granular proteins, also
known as neutrophil extracellular traps (NETs) (24), that may
help some Leishmania species to escape from extracellular
effector immune mechanisms and to stimulate M2 macrophages.

Even though these host-parasite interactions during
Leishmania infection have been well-studied in various species,
research and knowledge gaps remain, mainly regarding the
precise mechanisms involved in the immune evasion of the
parasite. Recent advances in next-generation sequencing,
specifically transcriptomics, help to overcome the drawbacks of
traditional methods and allow to expand the knowledge about
the immunopathogenesis of diseases (25–28). Furthermore,
emerging evidence suggests that intracellular pathogens can
modulate or even hijack their host gene expression processes
through non-coding RNA-mediated regulatory mechanisms as
an additional strategy to dampen the host immune response (29,
30). Non-coding RNAs (ncRNAs), which consist of microRNAs
(miRNAs) and long ncRNAs (lncRNAs), are transcripts that do
not encode proteins but still act as global and crucial biological
regulators (29–31). In particular, the expression of lncRNAs,
defined as transcripts longer than 200 nucleotides with no
protein-coding potential, are either up- or down-regulated
during infections, enhancing the host immunity, or even
promoting pathogen invasion or replication within the host
cells (29). Thus, they could be involved in the immune evasion
during L. infantum infection.

Here, we performed transcriptome analyses for deep profiling
of molecular basis of the host immune response during
L. infantum infection in the dog. Our main goal was to evaluate
gene expression signatures in the popliteal lymph nodes of
dogs with CanL compared to controls. Our data showed that
L. infantum infection induces strong transcriptional changes in
January 2022 | Volume 12 | Article 794627
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this tissue, which could regulate host immunity at multiple levels
to promote parasite persistence. These results provide new
insights into the underlying mechanisms behind CanL and
pinpoint potential targets for novel therapeutic strategies.
MATERIALS AND METHODS

Study Design and Sample Collection
We recruited client-owned dogs with a diagnosis of CanL of any
age, breed, or gender attending to the Consultant of Infectious
diseases at the Complutense Veterinary Teaching Hospital of
Madrid, Spain. Informed consent was obtained from each dog’s
owner before enrollment in the study. The main inclusion
criteria were a positive serology result for L. infantum by
immunofluorescence antibody assay (IFA) plus a positive
cytology and a PCR result obtained from bone marrow or
lymph node aspirates, as well as presenting with clinical signs
or clinicopathological abnormalities associated with clinical
stages II-III, according to LeishVet guidelines (32). Animals
were excluded if they met any of the following conditions:
(1) current or recent (past 90 days) treatment for CanL (e.g.,
allopurinol, methylglucamine antimoniate, miltefosine) or
immunomodulators, such as domperidone, ciclosporin and/or
corticosteroids; (2) current or recent (past 90 days) use of any
kind of special diet or supplements to improve their immune
response; (3) vaccinated against CanL; (4) current or recent (past
90 days) use of any drugs except flea’s, heartworm, and/or tick
prevention; (5) evidence of secondary immune-mediated disease
(e.g., neoplasia, other infectious diseases) based upon imaging
studies or infectious disease serology/PCR testing; (6) under one
year of age; (7) pregnant or lactating females. For each case, we
recorded breed, age, sex, clinical signs, relevant laboratory values
and clinical stage, based on LeishVet guidelines (32).

Healthy control dogs were also recruited considering the
following inclusion criteria: (1) negative serology result for L.
infantum by IFA test; (2) negative cytology and/or PCR result
obtained from bone marrow or lymph node aspirates; (3) an
unremarkable physical examination performed by a veterinarian;
(4) absence of clinicopathological abnormalities. Exclusion
criteria for control dogs were the same as for infected/sick
dogs. For each control dog, we recorded breed, age, and sex.

In order to perform aspirates from popliteal lymph nodes,
hairs were removed from the skin over the site of puncture and
asepsis was done with an alcoholic solution of 2% chlorhexidine.
The lymph node aspirates were done using a 25 x 20 mm needle
and a 10 ml syringe (Figure 1A). The lymph node samples
(approximately 50 µl) were preserved in 200 µl of RNAlater
(Qiagen, Valencia, CA) and stored according to the
manufacturer’s guidelines. For infected/sick dogs, lymph node
aspirates were collected prior to any therapeutic intervention.

Total RNA Isolation, Library Preparation,
and Sequencing
Total RNA was extracted from the lymph node samples with the
RNeasy mini kit (Qiagen) with on-column DNase I treatment
Frontiers in Immunology | www.frontiersin.org 3
according to the manufacturer’s protocol (Figure 1A).
Concentration and integrity of extracted RNA were measured
with a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE) and an Agilent 2100 Expert
Bioanalyzer (Agilent, Santa Clara, CA), respectively. Samples
with an RNA Integrity Number (RIN) < 7 were excluded from
downstream analyses. Approximately 1 mg of RNA from each
dog was submitted for library preparation and sequencing at the
DNA Link Sequencing Lab (Republic of Korea). cDNA libraries
were constructed using the TruSeq Stranded Total RNA library
Preparation Kit (Illumina, San Diego, CA), and a minimum of 5
Gb RNA-seq data per sample were generated using a NovaSeq
6000 System (Illumina) in paired-end read, 100 bp run mode.
Base calling was done by Real Time Analysis (Illumina), and the
output was demultiplexed and converted to FASTQ format with
Bcl2fastq (version 2.20; Illumina).

RNA-Seq Data Processing
Raw paired-end reads were checked for a possible low base score,
Illumina sequencing adapters and PCR contaminations with
FastQC v0.11.9 (33). Illumina sequencing adapters and low
quality sequences were removed with Trimmomatic v0.39 (34).

Illumina-RNA sequencing reads were pseudo-aligned to the
Ensembl 98 CanFam 3.1 reference transcriptome (35) using
Salmon v1.1.0 (36). Expression per gene were summarized
using tximport v1.14.2 (37) in R v4.1.0 (38) and Bioconductor
v3.13 (39).

Genes with a mean raw count lower than 5 across all samples
were removed for downstream analyses. Raw gene counts were
normalized and variance stabilized for exploratory data analysis
using principal component analysis (PCA) of the 1,500 most
variable genes.

Deconvolution of RNA-Seq Data
To estimate the abundance of immune cell subtypes and account
for potential tissue heterogeneity (Figure 1A), we used the
human validated signature matrix LM22 to deconvolute the
bulk lymph node gene expression mixture matrix of
orthologous human genes, in Fragments Per Kilobase of exon
model per Million reads, with CIBERSORTx online tool (40).
The LM22 matrix contains a total of 547 genes for distinguishing
22 hematopoietic cell subsets, including seven T cell types, naïve
and memory B cells, plasma cells, NK cells and myeloid subsets.
It was generated using Affymetrix HGU133A microarray data
(41), but it has been rigorously tested for the application to RNA-
Seq data and immune monitoring when samples cannot be
immediately processed (40–42), even for non-human
specimens (43–45). The fractions of immune cell types were
compared across different groups using Wilcoxon test, and
considering a statistical significance threshold of p-value ≤ 0.05.

Differential Expression Analysis
Differential expression analysis was performed using DESeq2
v1.26.0 (46) between uninfected versus infected samples
(Figure 1A), considering as a significant expression change
when the False Discovery Rate (FDR) ≤ 0.05. Additional gene
annotation was obtained using biomaRt v2.42.1 (47) to access
January 2022 | Volume 12 | Article 794627
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canine reference transcriptome (CanFam 3.1), such as biotype
(e.g. protein-coding or non-coding RNA) and gene names.

Weighted Gene Co-expression
Network Analysis
Gene co-expression analysis was performed to identified highly
co-regulated modules across infected samples (clinical stages II-
III) using WGCNA package v1.46 (48) (Figure 1A). Briefly, we
built a gene co-expression network of genes with a mean of
normalized counts across samples ≥ 7 by calculating Pearson’s
correlations between their expression values. Subsequently, a
Frontiers in Immunology | www.frontiersin.org 4
weighted adjacency matrix was established by raising the co-
expression similarity to apply a soft threshold power (b) of 12 to
fit a scale-free network model (49) (Figure S1). The topological
overlap measure (TOM) and its corresponding dissimilarity
(1-TOM) were calculated using the adjacency matrix, and
(1-TOM) was used as a distance between genes for hierarchical
clustering analysis.

Modules were defined using DynamicTreeCut algorithm (48)
with the following parameters: deep split = 2, cut height = 0.25,
minimal module size = 30 genes. Therefore, modules can be
defined as clusters of highly interconnected genes –with high
A B

C D

FIGURE 1 | (A) Overview of the study workflow (created with BioRender.com). (B) Principal component analysis of the samples showing PC1 and PC2.
(C) Heatmap of the most variable genes expressed in dogs with CanL vs. healthy dogs. Expression profiles for the 1,500 genes with the highest variability that
shown significant expression changes in dogs with CanL (right) and healthy dogs (left). Red represents genes overrepresented in CanL samples, and blue indicates
genes overrepresented in controls. (D) Volcano plot where mean log2FC is plotted against the –log10 FDR adjusted P-values for all expressed genes. Each point
represents a gene, and those with FDR < 1x10-26 and/or log2FC > 7 are displayed as triangles. Genes that reach the cut-off values (FDR < 0.05 and absolute log2FC
> 0.5) are highlighted. Labels are displayed for the most significant (FDR < 10-8 and absolute log2FC > 2.5) protein-coding genes.
January 2022 | Volume 12 | Article 794627
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topological overlap– and each of them will be identified with a
color. The module-trait relationships were also estimated by
calculating the correlations between Module Eigengenes (ME), a
summarized expression profile of the module and inter-
connected with intra-modular genes, and clinical features of
patients (e.g. clinical stage, age, sex, haematological and
biochemical parameters) (Table S1). In addition, Pearson’s
correlation between expression profile of each gene and ME
was calculated to identify the Module Membership (MM).
Modules were potential biologically interesting and
significantly associated with the variables when they had a
correlation > 0.6 and a p-value ≤ 0.01 with clinical traits.

Gene Significance (GS), defined as the absolute correlation
between the gene and the trait, was used to quantify associations of
individual genes with clinical traits. The Module Significance
(MS), defined as the average absolute GS of all the genes
involved in the module, was calculated to evaluate the
association strength.

Functional Enrichment Analysis
Functional enrichment analyses for biological processes in the
Gene Ontology (GO) were performed either for differentially
expressed genes and genes within modules using enrichGO and
gseGO functions of clusterProfiler v4.1 (50) (Figure 1A). We
used all expressed genes as background, and only annotated
genes were included in the analyses. Later, multiple testing
correction was applied using Benjamini-Hochberg method and
selecting only as significantly enriched those GO terms with an
adjusted p-value ≤ 0.05. The most significant GO categories of
biological process were used to characterize the key modules.
RESULTS

Clinical Features of the Patients
A total of 18 dogs met the inclusion criteria and were recruited
for this study. Ten of these dogs were affected with CanL, and the
other were healthy non-infected dogs which served as controls.
The median age of animals included was 5 years, ranging from 1
to 12 years. The most represented dog breed was mixed breed,
followed by American Staffordshire Terrier. Seven patients were
clinically classified as stage II (moderate disease), and only three
cases were in clinical stage III (severe disease). Complete clinical
data is shown in (Table 1). Seven of the infected/sick dogs had
been treated with leishmanicidal and/or leishmaniostatic drugs
at some point before they were included in the study. However,
none of them had received any treatment for CanL within the last
90 days prior to inclusion.

Sample Distribution Based on Principal
Component Analysis
After mapping to canine transcriptome, relationships between
samples were evaluated by PCA, which explained 63% and 10%
sample variability (the first and second principal component,
respectively). The distribution of the samples was divided into
two clusters and no outlier samples were detected (Figures 1B, C).
Frontiers in Immunology | www.frontiersin.org 5
Proportions of Immune Cell
Subpopulations in Lymph Nodes
All samples were significant (p-value < 0.05) at the
deconvolution for immune cell subset identification and
considered acceptable for further analysis. CanL samples had
higher proportions of plasma cells, CD8+ T cells, gd T cells,
monocytes and M1 macrophages, and lower levels of memory B
cells, resting memory CD4+ T cells, naïve CD4+ T cells, follicular
T helper cells, activated dendritic cells, resting NK cells and
eosinophils than control samples. In addition, lymph nodes of
dogs with CanL in stage III showed higher amounts of activated
NK cells and tended to present higher proportions of M0
macrophages (Figure 2).

Differentially Expressed Genes in
Lymph Nodes
A total of 20,772 genes were expressed in lymph nodes, of which
14,134 had a normalized counts across samples ≥ 5 (Table S2
and Figure 1D). Comparison of gene expression between case
and control samples revealed 5,461 significantly differentially
expressed genes (Table S2); 2,689 had a positive log2 fold change
(log2FC) and 2,772 had a negative log2FC. In addition, 132 of the
20,772 genes were lncRNAs, of which 21 were significantly
differentially expressed.

Enriched GO Terms in the Differentially
Expressed Genes
To understand the functional role of relevant genes during CanL,
gene ontology (GO) enrichment analysis were performed to
explore the biological functions of the 2,689 DEGs with a
positive log2FC and the 2,772 DEGs with a negative log2FC.
Complete results of functional enrichment analyses are provided
in (Table S3).

In the DEGs with higher expression in CanL group, the
enriched GO terms in biological processes were related to
defense and immune responses (Figures 3, 4 and Table S3),
including: humoral immune response, mononuclear cell
migration, myeloid leukocyte activation and phagocytosis,
among others; moreover they are also associated with response
to endoplasmic reticulum (ER) stress and unfolded protein
response (UPR), mediated by the activation of ER stress sensor
inositol-requiring transmembrane kinase/endonuclease
1 (IRE1).

In the DEGs with lower expression in CanL group, cell-cell
adhesion via plasma membrane adhesion molecules,
transmembrane transport and cell-cell signaling, including
trans-synaptic signaling, were the most enriched GO terms in
biological processes (Table S3).

Gene Co-Expression Modules of Lymph
Nodes Correlate With Clinical Traits
Weighted gene co-expression network analysis was performed
on 12,155 genes, using a soft threshold power (b) of 12 (scale free
R2 = 0.85) to ensure a scale-free network (Figure S1). Initially,
187 modules were partitioned by dynamic tree cutting. Then, the
eigengenes of each module (ME) were identified and merged into
January 2022 | Volume 12 | Article 794627
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TABLE 1 | Clinical data for enrolled cases and controls.

Group Dog ID Age (years) Breed Sex IFA PCR Creatinine (mg/dL) UPC Clinical Stage RIN RNA-seq

Case C7915 12 Mongrel M 1/1600 Positive 0.90 3.19 III 9.0 Yes
C7916 6 English Setter M 1/1600 Positive 0.80 0.40 II 9.4 Yes
C7917 5 Spanish Greyhound M 1/800 Positive 0.60 0.10 II 6.3 No
C7918 5 American Staffordshire Terrier F 1/6400 Positive 1.00 0.40 II 9.2 Yes
C7920 1 American Staffordshire Terrier F 1/800 Positive 0.50 0.30 II 6.7 No
C7921 9 Labrador Retriever F 1/400 Positive 1.00 0.60 II 8.9 Yes
C7975 7 Mongrel M 1/1600 Positive 0.90 0.20 II 8.3 Yes
C7977 2 Mongrel M 1/6400 Positive 1.57 0.48 III 8.4 Yes
C7978 5 Pug F 1/6400 Positive 0.50 0.33 II 9.1 Yes
C7982 6 Spanish Greyhound M 1/800 Positive 0.90 2.93 III 8.4 Yes

Control C8065 1 Bullmastiff F Negative Negative – – Non-infected 6.2 No
C8066 4 Labrador Retriever M Negative Negative – – Non-infected 7.8 Yes
C8069 5 Labrador Retriever F Negative Negative – – Non-infected 6.4 No
C8071 2 Labrador Retriever F Negative Negative – – Non-infected 7.7 Yes
C8072 12 Yorkshire Terrier F Negative Negative – – Non-infected 7.0 Yes
C8073 6 Dalmatian M Negative Negative – – Non-infected 8.5 Yes
C8075 8 Mongrel F Negative Negative – – Non-infected 4.8 No
C8208 5 American Staffordshire Terrier M Negative Negative – – Non-infected 6.6 No
Frontiers i
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IFA, indirect immunofluorescent assay; UPC, urine protein:creatinine ratio; RIN, RNA integrity number. Samples with a RIN > 7 were included in the RNA-seq.
A

B

FIGURE 2 | The landscape of the cell composition in the lymph node aspirates based on their RNA-seq data. (A) Relative proportion of each immune cell type
across samples was inferred by CIBERSORTx. (B) Violin and dot plots of immune cell populations from deconvolution analysis that displayed significant differences
between groups, as estimated by Wilcoxon test. Significant differences between clinical stages II and III are highlighted in red. *p-value <0.05, **p-value <0.01, ***p-
value <0.001.
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16 main modules by applying a merging distance threshold of
0.45, which is a strict cut-off value that supported the reliability
of the module divisions (Figure S2). Finally, 4 of these modules
containing 6,835 expressed genes were associated with clinical
traits related to the infection (correlation > 0.6 and a p-value ≤
0.01) (Figure 5A and Table 2), and were considered key modules
associated with CanL and worthy of further exploration,
including: A module containing 3,706 genes; B module
containing 2,302 genes; C module containing 779 genes and D
module containing 48 genes (Table 2). Module eigengenes of A,
C and D modules correlated positively with blood monocyte
concentration, GPT levels and clinical stage, respectively, while B
Frontiers in Immunology | www.frontiersin.org 7
module corre lated inverse ly with blood monocyte
concentration (Figure 5A).

Enriched GO Terms in the Gene
Co-Expression Modules
The key modules were characterized based on the most significant
GO categories for biological processes (Figure 5B and Table S3).
Thus, the A module was associated with cell cycle process, ER
stress and UPR; the B module with the regulation of immune
response, leukocyte differentiation, activation and adhesion; the C
module with chromatin organization; and the D module with the
regulation of B cell apoptotic process (Table 2).
A

B

FIGURE 3 | GO enrichment of the differentially expressed genes with positive log2FC. (A) All enriched GO categories of biological process in the differentially
expressed genes with positive log2FC are displayed. The significance levels (FDR p-value) are represented by the color saturation, the size of the dots represents the
number of genes in the gene set associated with the GO term and the gene ratio is represented by the horizontal bar length. (B) Gene expression heatmaps of the
four most significant GO terms enriched in the differentially expressed genes with positive log2FC. Red through blue color indicates high to low expression.
January 2022 | Volume 12 | Article 794627
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DISCUSSION

In this study, we integrated whole transcriptome profiling and
bioinformatics analysis for identifying regulatory pathways in
canine lymph nodes associated with L. infantum natural
infection. This approach allowed us to get a deeper
understanding of the molecular mechanisms underlying the
immunopathogenesis of CanL and identified four key modules
associated with the disease, as well as several candidate genes
which may contribute to CanL. To the best of our knowledge,
this is the first study in the dog that evaluates the impact of L.
infantum natural infection on the immune response at whole
transcriptome level.

Induction of Endoplasmic Reticulum
Stress and Unfolded Protein Response
The ER is an organelle responsible for the synthesis, folding and
modification of proteins (51). However, the capacity of ER
functions can be exceeded under certain circumstances, such as
infections by intracellular parasites (52, 53), and lead to ER stress
due to the accumulation of misfolded proteins (54, 55). This
triggers the UPR, one of the main protective mechanisms of the
ER to resolve stress and dysfunction, which is also necessary for
the physiological function of the innate immune system (56).

In this study, ER stress and UPR signaling, specifically the
IRE1 and ER-associated degradation (ERAD) pathways, were
found: a) associated with CanL samples (Figure 3); b) linked to
module A from the WGCNA analysis; c) correlated with higher
blood monocyte concentrations in sick dogs (Figure 5 and
Table 2); d) which also tended to correlate with increased
monocyte abundances by cell deconvolution analysis (p-value =
0.074); and most important e) with increased M0 macrophage
Frontiers in Immunology | www.frontiersin.org 8
proportions in dogs in stage III of disease (p-value = 0.067)
(Figure 2). The IRE1 branch of the ER stress response is a key
signaling pathway in modulating innate and adaptive immune
responses (56, 57). It is highly expressed in macrophages, T cells,
plasma cells, dendritic cells, and NK cells in response to external
stimuli, and regulates the production of proinflammatory
cytokines through the activation of the X-box binding protein 1
(XBP1) (57–59). Thus, we could hypothesize that dysregulation of
UPR may contribute to the inflammatory/regulatory imbalance
during clinical leishmaniosis.

The role of ER stress in macrophages infected by L. infantum
was evaluated by Galluzzi et al. (60), who showed a significant
up-regulation of XBP1, suggesting that the parasite could
promote survival of host cells by inducing a mild ER stress
response. Similarly, we confirmed for the first time in naturally
infected dogs a significant induction of ER stress and UPR,
with an increased expression of XBP1. Other genes with a
significantly higher expression involved in the IRE1 branch
were ERN1, EDEM1, DNAJB9, WIPI1, HYOU1 and PDIA5.
Therefore, IRE1 could be a critical pathway implicated in the
immunopathogenesis of CanL.

Vascular endothelial growth factor-A (VEGFA) had also a
significantly positive log2FC. Endothelial growth factor family
members induce changes in the vascular network during
inflammation. In fact, VEGFA can mediate inflammation-
induced lymphangiogenesis and have intense effects on lymph
nodes (61–65). IRE1 powerfully regulates VEGFA expression
under various stress conditions (66–68), and infected
macrophages harboring Leishmania donovani release
extracellular vesicles that induce endothelial cells to secrete
VEGFA (69). Weinkopff et al. (70) also found that infection
with Leishmania major increases the expression of VEGFA and
FIGURE 4 | Th1, Th2, Th17, Tr1 gene expression signatures observed in the lymph nodes. Violin and dot plots of selected genes involved in Th1, Th2, Th17 and
Tr1 immune responses during canine leishmaniosis. *p-value <0.05, **p-value <0.01, ***p-value <0.001.
January 2022 | Volume 12 | Article 794627

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sanz et al. Immune Response Modulation During Leishmaniosis
A

B

FIGURE 5 | (A) Heatmap of the correlation of WGCNA modules with clinical traits. Red through blue color indicates positive to negative correlation. HCT,
hematocrit; HGB, hemoglobin; RBC, red blood cells; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin
concentration; PLT, platelets; WBC, white blood cells; NEU_S, segmented neutrophils; NEU_B, band neutrophils; LYM, lymphocytes; MON, monocytes; EOS,
eosinophils; GLU, glucose; CREA, creatinine; PT, total protein; GPT, glutamate pyruvate transaminase enzyme; UPC, urine protein,creatinine ratio; IFA, indirect
immunofluorescent assay; ALB, albumin; ALPHA_1, ALPHA_2, BETA, GAMMA, serum globulin fractions; A/G, albumin,globulin ratio. (B) GO enrichment of the A, B,
C and D modules. The top 10 enriched GO categories of biological process were selected with clusterProfiler package to avoid redundant GO terms (showCategory
= 10 and simplify = 0.5, 0.65, 0.95 and 0.75 for A (blue4), B (navajowhite1), C (chocolate2) and D (yellow2) modules, respectively). The significance levels (FDR p-
value) are represented by the color saturation, the size of the dots represents the number of genes in the gene set associated with the GO term and the gene ratio is
represented by the horizontal bar length.
TABLE 2 | Summary information of the key co-expression modules detected in the lymph nodes of dogs suffering from CanL.

Module ID Color Genes Biological process Clinical trait (correlation)

A blue4 3,706 Cell cycle, ER stress and UPR Blood monocyte concentration (0.89)
B navajowhite1 2,302 Regulation of immune response Blood monocyte concentration (-0.89)
C chocolate2 779 Chromatin organization GPT levels (0.87)
D yellow2 48 Regulation of B cell apoptosis Clinical stage (0.92)
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VEGF receptor-2 (VEGFR-2) at the site of infection, and it
correlated with lesion size and parasite burden, suggesting that
VEGFA-dependent lymphangiogenesis could be a mechanism
that restricts tissue inflammation and contributes to the severity
of leishmaniosis.

Modulation of Th1 and Th2
Expression Profiles
Defense response is the most relevant biological process modified
in the lymph nodes of dogs with CanL, and is highly enriched in
the DEGs with positive log2FC (Figure 3), with six of the ten
higher expressed DEGs (CHI3L1, SLPI, ACOD1, CCL5, MPO and
BPI) involved in immune responses against pathogens (71–76).
Moreover, we observed a significantly decreased expression of
tumor necrosis factor-a (TNF-a) (Figure 4). This cytokine is an
essential component of the Th1 response, as it contributes to
trigger nitric oxide production in activated macrophages, and
therefore, its deficit may increase the severity of leishmaniosis
(77). However, a significant increase in the expression of IFN-g, the
canonical Th1 cytokine, was found in the CanL group (Figure 4).
The expression of some key factors for IFN-g production were
significantly increased too, including T-box expressed in T cells
(TBX21), eomesodermin (EOMES), AP-1 transcription factor
subunit (JUN), Src kinase (SRC), b1 and b2 subunits of the IL12
receptor (IL12RB1; IL12RB2) (Figure 4). Nevertheless, even with
high IFN-g levels, the host may fail to control the infection,
probably due to an incomplete response to IFN-g (78).

Although the expression of IL-10 was slightly elevated, the IL-
6 receptor (IL6R) and the subunit a of the IL-10 receptor
(IL10RA) were the only Th2 interleukin-related molecules
significantly increased in the CanL group. In contrast, IL-4 and
IL-13 showed a tendency to decrease in infected dogs (Figure 4).
Alves et al. (79) detected a significant increase of TGF-b and IL-
10 expression in the lymph nodes of dogs with CanL, but their
expression remained stable in our study, with dogs in stage III
displaying just a slightly higher expression of IL-10 than those in
stage II. The expression of Th2 cytokines probably increase in
very severe CanL (clinical stage IV). Thus, it could not be
detected here, as we only included dogs with moderate to
severe disease (clinical stages II-III). In fact, we found the
expression of GATA3 significantly decreased in the CanL
group (Figure 4). Among other functions, this transcription
factor is critical for the induction of Th2 cytokine production
and growth of Th2 cells (80), supporting a lack of Th2 response
and a less relevant role of Th2 cells in the lymph nodes at these
stages of the infection. However, this hypothesis could not be
confirmed, since the clinical staging was not performed by Alves
et al. (79), and the transcriptional changes we observed may not
directly correlate with cell functionality.

Along with the dysregulated expression of pro- and anti-
inflammatory interleukins, significant changes in the expression
of some chemokines and chemokine receptors were also
detected: CCL3, CCL4, CCL5, CCL8, CCL22, CXCL10, CCR1,
CCR2 and CCR5. These chemokines play a vital role in
determining the Th1/Th2-mediated responses (81), and can
represent a potential prophylactic and therapeutic target to
Frontiers in Immunology | www.frontiersin.org 10
promote immune clearance of the parasite in CanL, specially
CCL5, as it is one of the ten most expressed DEGs.

Suppression of Th17 Response and
Neutrophil Activation
Th17 cells are an additional type of CD4+ T helper cells
contributing to defense response, mainly through the production
of IL-17. This interleukin synergizes with CCL3 and acts as a
potent activator of neutrophils (82–85). Therefore, the continual
production of IL-17 during clinical CanL may lead to an over-
recruitment of neutrophils to inflammatory sites (86), which could
result in the slightly higher expression of IL-8 we observed. The
overexpression of IL-8 may promote parasite persistence, as this
cytokine induces a massive and long-lasting accumulation of
neutrophils (87, 88), where the parasite may survive (12, 22, 23,
89). However, in an experimental model of canine L. infantum
infection, IL-17 transcription was reduced in lymph nodes,
suggesting that the hyperinflammatory response generated at the
beginning of the infection was suppressed as the disease
progressed (90). This is also in accordance with our results,
since three related members of the IL-17 gene family (IL17A,
IL17B and IL17C), as well as IL-22, had a significantly lower
expression in the case group (Figure 4).

Activation of Tr1 Response
The peripherally derived regulatory T cell subset CD4+ CD25-

Foxp3- type 1 regulatory T (Tr1) cells are induced by chronic
activation of CD4+ T cells by antigens in the presence of
tolerogenic conditions (91–93). These Tr1 cells suppress the
host immunity and down-regulate the activation and
proliferation of effector T cells, including Th1 (12, 92–94).
Increased activation of IL-10 producing Tr1 cells has been
shown in chronic cutaneous leishmaniosis in humans, as well
as in murine visceral leishmaniosis (95–98), although no changes
in the expression of IL-10 and TGF-b were detected in CanL (99).

Interestingly, we observed a significantly lower expression of
CD25 (IL2RA) and FOXP3 (Figure 4), which could be consistent
with an increase in the number of Tr1 cells in the lymph nodes of
CanL dogs, with no variation in the expression of IL-10 and TGF-
b. Furthermore, the expression of several Tr1 markers and
transcription factors were also significantly higher (LAG3,
IRF1, IRF4, CCR5, BATF, MAF, PRDM1, ENTPD1 and IL21)
(Figure 4). Many of these genes were included within the B
module, which negatively correlated with the concentration of
circulating blood monocytes and was enriched in GO terms
related to lymphocyte activation and proliferation (Figure 5). As
it was previously described, L. infantum may induce the
activation of Tr1 cells to suppress the inflammatory response
of the host (91, 93, 100), and we hypothesize that this
suppression could potentially reduce the abundance of the
blood monocyte population, although further research is
needed to confirm it.

Exhaustion of T and NK Cells
T cell exhaustion is a state of dysfunction triggered by a
prolonged antigen exposure during many chronic infections
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that prevents optimal control of pathogens, including
intracellular parasites (101–105). Indeed, T cell exhaustion has
already been described in CanL, where T cell proliferation and
functionality decreased as disease progresses (106). CD8+ T cells
typically show an impaired cytotoxic activity, and lose the ability
to produce IL-2 and TNF during the first stages of exhaustion,
while severe exhaustion may lead to a completely lack of the
ability to produce IFN-g, CCL chemokines or to degranulate.
More severe CD8+ exhaustion correlates with higher antigen
load and loss of help from CD4+ T cells (105, 107). Here, we
observed a lower expression of TNF and IL-2 receptor, as well as a
higher expression of several transcriptional markers previously
associated with the T cell exhaustion process, such as: surface
inhibitory receptors and their ligands (LAG3, CD244, CD160, Fas
and Fas ligand, TRAIL, and four TNF receptors), IL-10 receptor,
and some downstream transcription factors (Blimp-1, EOMES,
BATF and JUN) (102, 105), together with the Tr1 transcriptional
markers mentioned above. In addition, LAG3, TRAIL and Blimp-
1 (PRDM1) were also detected in the A co-expression module,
which was significantly associated with cell cycle processes.
However, these transcriptional factors can be expressed by
other cell types and could exert additional functions.

On the other hand, we found that the expression of IL-15 was
slightly but significantly increased in the case group. In lymph
nodes, this cytokine is produced by APCs and it promotes the
development and function of NK cells, priming them for
cytolytic activity and production of IFN-g (108–110). In fact,
we found that the proportion of activated NK cells was
significantly higher in the lymph nodes of dogs with CanL in
stage III than in stage II (Figure 2). Although we noted
overexpression of genes related to cytotoxic activity of NK
cells, including Fas (FAS), granzyme A (GZMA), granzyme B
(GZMB), perforin 1 (PRF1), natural killer receptor 2B4 (CD244)
and Killer Cell Lectin Like Receptor K1 (KLRK1), the expression
of CD69, a marker of NK cell activation (111, 112), was lower in
CanL dogs, compared with the control group.

These results are compatible with an exhausted phenotype or
bystander activation of CTLs and NK cells during CanL, which
could lead to incomplete activation of these cells, linked with
lower production of Th1 cytokines and enhanced cytotoxic
molecule expression. Similar changes are frequently observed
in chronic infections involving high levels of persistent antigen
(94, 107). In fact, a strong induction of cytotoxic transcriptional
signature associated with CTL and NK cell senescence was found
in cutaneous leishmaniasis lesions (113). This cytolytic
transcriptional signature correlated with treatment outcome
(114), and it was also found in the blood of L. braziliensis
patients (115), suggesting that dysfunctional states of T and
NK cells may have a major role in the immunopathology of
Leishmania infections.

Impaired Activation and Dysfunctions of
Monocytes and Macrophages
Monocytes and macrophages are the final host cells for
Leishmania and, therefore, these cells are crucial to disease
progression (116, 117). Here, we found that the B module was
Frontiers in Immunology | www.frontiersin.org 11
inversely correlated with the concentration of circulating blood
monocytes (Figure 5A and Table 2), which could be partially
explained by the fact that it was functionally enriched in
leukocyte adhesion GO terms, as shown in Figure 5B. A high
number of DEGs with positive log2FC were also involved in
mononuclear cell migration, specifically in monocyte chemotaxis
(Figure 3), such as AIF1, CCL3, CCL4, CCR2, ICAM1, ICAM2,
RAP1A, ITGB2, SELPG (118). We hypothesis that the increased
expression of these genes in lymph nodes may promote the
extravasation of monocytes from blood vessels and their
migration into infected tissues, where their interaction with the
parasite could lead to their activation into functional
macrophages (12).

Although IFN-g is critical for this activation and control of
macrophage infection by Leishmania species, mainly by inducing
the release of NO, the complete activation of macrophages to
effector cells requires CD40-CD40 ligand (CD40LG) interactions
(12, 119). However, the expressions of CD40 and CD40LG were
both decreased in the CanL group, although only CD40L
(CD40LG) reached a statistically significant value (Figure 4).
For instance, CD40LG, TNF-a and IFN-g were all detected in the
B co-expression module, which was associated with the
regulation of immune response and correlated with blood
monocyte concentration, suggesting that the expression of
these genes may influence the dynamics of monocytes and
macrophages during L. infantum infection.

In addition to CD40-CD40L, the activation of mitogen-
activated protein kinases (MAPKs) is needed to induce the
production of proinflammatory cytokines and NO in
macrophages (120–122). Interestingly, the disruption of the
MAPK signaling pathway is frequently observed during
Leishmania infections (6, 123–125) and we found MAPK4
among the ten DEGs with the lowest expression.

Another potential mechanism contributing to dampen
specific immune activation during L infantum infection in the
lymph nodes of dogs suffering from CanL may be the higher
expression of serine leucocyte proteinase inhibitor (SLPI) they
displayed, as it is a potent myeloid-derived anti-inflammatory
and microbicidal molecule that targets monocytes and
macrophages to modulate innate and adaptive immune
responses (126–128), and has been shown to dysregulate the
M1/M2 response during other Leishmania infections (129).

Moreover, we observed a higher expression of the IL-1
receptor antagonist and a lower expression of the Nod-like
receptor protein 3 in the CanL group. These genes has been
previously shown to contribute to the suppression of
inflammatory responses and NO production via signaling
through IL-1R, favoring the parasite survival in macrophages
(130–132). However, additional mechanisms affecting these or
other molecules cannot be ruled out, such as receptor
instabilities, post-translational modifications, diminished
DNA binding activity of transcription factors or the influence
of Leishmania exosomes on immune cells, among others
(133, 6, 134).

Overall, our results may suggest that the upstream signaling
events leading to the production of IFN-g are expressed in the
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lymph nodes of dogs with CanL, but we did not find any
significant variations in the expression of inducible nitric oxide
synthase (iNOS) or arginase 1 (Arg1), the two main enzymes
involved in NO metabolism during the infection of macrophages
by Leishmania spp. (5, 135, 136).

On the other hand, it is worth noting that solute carrier family
11 member 1 (SLC11A1), formerly known as natural resistance-
associated macrophage protein 1 (NRAMP1), was identified
among the overexpressed DEGs involved phagosome
maturation (137). This gene has been widely investigated for
its potential role in susceptibility to leishmaniosis (138), as it
pumps the metal ions out of the parasitophorous vacuole (139) to
deprive the parasite of iron and block its development (140).

B Cell Dysfunction and Humoral Immunity
Impaired humoral immunity could play a critical role in the
progression of CanL, as hypergammaglobulinemia, nonspecific
polyclonal antibodies and circulating immune complexes
correlate with clinical progression of the disease (12, 141–143).
However, participation of B cells in the immunopathogenesis of
leishmaniosis is not only related to antibody production, but also
to their functions as regulatory and APCs (144).

Human visceral leishmaniosis is associated with an increased
expression of Blimp-1, which dampen the antigen presentation
machinery in B cells and promotes their differentiation into plasma
cells, leading to the observed hypergammaglobulinemia during
clinical disease (143). The overexpression of two anti-apoptotic
and survival signals for plasma cells are also key in the
immunopathogenesis of visceral leishmaniosis: B-cell maturation
antigen (BCMA) and transmembrane activator, calciummodulator
and cyclophilin ligand interactor (TACI) (143, 145, 146). Our
results were in line with these findings, as the three markers
(Blimp-1, BCMA and TACI) were highly expressed in the CanL
group, and hypergammaglobulinemia was observed in these
patients (Table S1), which also presented higher proportions of
plasma cells (Figure 2). Furthermore, we detected a co-expression
module, the D module, associated with the regulation of B cell
apoptotic process and significantly correlated with the clinical
stage of CanL (Figure 5 and Table 2), suggesting that B cell
homeostasis could be a key factor in the progression of CanL. All
these provided clues regarding the involvement of B cells in
promoting leishmaniosis, as they may have compromised
abilities and would produce high antibody titers, which are
detrimental during the chronic infection.

Regulation of Gene Transcription:
LncRNAs and Chromatin Organization
Finally, it is worth noting that lncRNAs might participate in the
immunopathogenesis of CanL, as they are critical regulators of
gene transcription during immune response through regulating
protein-protein interactions or via their ability to assemble
with RNA and DNA (147–150). Accordingly, we found
that changes in the expression of several lncRNAs were
significantly associated with CanL, including an antimicrobial
peptide NK-lysin-like (LOC608395) and JUN, which play
immunomodulatory roles (151, 152). In particular, JUN could
be a key immune regulator during L. infantum infection, since it
Frontiers in Immunology | www.frontiersin.org 12
is the second most differentially expressed lncRNA in the lymph
nodes of dogs with CanL and regulates proinflammatory
cytokines, chemokines and NO production (152), essential to
achieve parasite control.

Chromatin organization is also crucial for transcriptional
regulation in the immune system (153, 154). In fact, the immune
response induced by antigen exposure led to an increase in the level
of chromatin activation and RNA content in the popliteal lymph
nodes of dogs (155), suggesting that modification in the chromatin
structure is essential to mount an effective immune response.
Therefore, regulation of chromatin organization could be
targeted by intracellular parasites to evade their host defense
mechanisms. For instance, some parasites provoke changes in the
chromatin states through sequence-specific DNA-binding proteins
or ncRNAs to inhibit inflammatory responses (156). Here, we
identified a significant association between the C co-expression
module and the chromatin organization GO term (Figure 5B and
Table 2). This module was also correlated with age and glutamate-
pyruvate transaminase (GPT) serum levels (Figure 5A), which is
not surprising, as aging influences both chromatin structure (157)
and liver function (158). Then, changes in chromatin organization
are likely to contribute to shaping the immune response during
Leishmania infection, and age could impact this immune
modulation, although the precise underlaying mechanisms
involved in the pathogenesis cannot be established at this stage
of the study.
CONCLUSION

In summary, we identified 5,461 differentially expressed genes and
four key modules involved in several biological processes related to
immune responses in dogs with CanL. Altogether, these data
showed that L. infantum infection induces strong transcriptional
changes in canine lymph nodes. These alterations could regulate
host immunity at multiple levels to promote parasite persistence,
such as: increasing host cell survival through the expression of the
IRE1 branch of the UPR; dysregulating the expression of cytokines
which are key in determining Th1, Th2, Th17 and Tr1-mediated
responses; fostering T cell and NK cell exhaustion processes;
and disrupting monocyte, macrophage and B cell activation and
functionality. Furthermore, L. infantum infection could influence
gene transcription by modulating lncRNA’s expression profiles
and chromatin organization. Further investigation into these
biological processes may lead to new immunomodulatory
strategies to control Leishmania infections. Future studies are
also warranted to further characterize the role of differentially
expressed lncRNAs in the immunopathogenesis of CanL, as they
display the potential to be targets for immunotherapy.
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