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The fundamentals of biotribology and its application
to spine arthroplasty
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bstract

The biological effect of wear of articulating surfaces is a continued concern with large joint replacements and, likewise, of interest for
otal disc replacements. There are a number of important biotribological testing parameters that can greatly affect the outcome of a wear
tudy in addition to the implant design and material selection. The current ASTM and ISO wear testing standards/guides for spine
rthroplasty leave many choices as testing parameters. These factors include but are not limited to the sequence of kinematics and load,
hasing, type of lubricant, and specimen preparation (sterilization and artificial aging). The spinal community should critically assess wear
tudies and be cognizant of the influence of the selected parameters on the test results.
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The bone and joint sequelae associated with wear of
rticulating surfaces are continuing concerns of total joint
eplacement, and are similarly highlighted for total disc
eplacements (TDR). For TDRs, this focus is primarily
ased on the expectations of even longer implantation life-
imes because of the implantation in younger patients than
otal joints, difficulties with anterior revision surgery, and
he presence of periprosthetic neural elements. Although the
iterature helps to avoid past total joint errors and accelerate
esigns, research is still needed to adapt this technology to
pinal motion preservation. Because there are gaps in our
nderstanding of biomechanics and wear behavior of TDRs,
ariations in test methods have resulted. Standardized meth-
ds are being adopted, but the variety in spinal motion
evices has prompted manufacturers to customize wear test-
ng techniques. This can lead to concerns about the rele-
ance of some test methods. A thorough discussion of total
isc wear testing methodology may help compare wear test
ethods and, therefore, interpret results in terms of test

alidity. Although not within the scope of this paper, the
iocompatibility of wear debris, which depends on particle
ize, shape, and composition, is a critical factor in interpret-
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ng wear test results. Wear rates of devices with different
aterials cannot be directly compared due to different bio-

ogical response, particle portability, and biological byprod-
cts.

The biotribological performance of devices depends on
any factors, including implant inputs, such as bearing
aterials (metals, ceramics, polymers, and elastomers) and

earing design, and test conditions, such as, applied mo-
ions, loads, and fluid environment. In general, soft bearing
ear, such as with polyethylene and other polymers (eg,
oly[aryl-ether-ether-ketone] [PEEK] ), tends to be domi-
ated by adhesive wear while metal-on-metal (MOM) bear-
ng wear, with cobalt alloy or stainless steel, is dominated
y abrasive and surface fatigue wear. Wear mechanisms
etermine the type of damage, volume of wear, wear rate,
article size, and overall trends such as steady-state behav-
or and run-in, and can be sensitive to test conditions. For
xample, cyclic, unidirectional (reciprocating curvilinear)
otions represent the greatest challenge for MOM bearings,

ecause of roughening due to abrasive wear,1,2 but the least
hallenge for polyethylene bearings due to polymer chain
lignment.3,4

Wear test methods must also consider bearing kinemat-
cs. Ideally, devices are cycled so that they accurately rep-
icate implanted motion patterns, which requires careful

xturing and test frame design. For conforming, fixed center

e Surgery. Published by Elsevier Inc. All rights reserved.

mailto:megan.harper@medtronic.com


o
R
A
C
C
(
(
w
F
b
m
s
i

t
c
fl
p
w
e
r
u
fl
b
fl
b
a
p
b
g
c
a

s
o
m
o
i
d
f
F
W
t
M
t
e
s
s
o
u
(
i
l
e
a
r

p
t
T
a
w
o
d
o
w
m

I

p
a
c
t
e

L

a
l
d
o
t
(
t
s
s
t
p
r
w
a
t
r

m
p
i
t
d
w
g
b
n
a
e
m
t
t
t

126 M.L. Harper et al. / SAS Journal 3 (2009) 125–132
f rotation (COR) devices such as the ProDisc-L Total Disc
eplacement (Synthes, West Chester, PA) and Maverick
rtificial Disc (Medtronic, Memphis, TN), the device’s
OR is usually aligned with the simulator’s COR. Variable
OR devices, like those of the Charite Artificial Disc

DePuy Spine, Raynham, MA) or the Prestige Cervical Disc
Medtronic, Memphis, TN), may be setup in multiple ways,
hich may produce significantly different motion patterns.
or example, a Charite disc may be placed so that one or
oth of the core’s bearing surfaces slide, and a Prestige disc
ay be fixtured to either slide or roll in its trough. Which

etup is chosen should depend on the device’s demonstrated
n vivo behavior.

Although the fluid environment has been shown to affect
otal joint wear,5–8 little is known about the fluid volume,
ontent, or turnover in the disc space, post-discectomy. The
uid volume could vary in vivo with the formation of a
seudocapsule, as the device would be immersed; other-
ise, the disc space would be merely wet. There is some

vidence from disc retrievals that suggests the fluid envi-
onment contains protein content,9 but the exact content is
nknown. Additionally, little is known with regards to the
uid turnover. If the fluid is replenished, the particles may
e removed from the bearing region to local tissues; or if the
uid is static, the particles could be recaptured by the
earing and accelerate wear as third bodies. As research into
nswering these questions continues, the currently accepted
ractice for wear testing is to immerse the implants in a
ovine serum solution with a protein concentration up to 30
/L.10 The test fluid is replaced every 500,000 to 1,000,000
ycles to minimize the effect of serum degradation on wear
nd inspect the test specimens.

There is currently 1 wear test standard and 1 wear test
tandard guide for TDRs. Although both reflect a consensus
f the organizations’ members from industry, academia,
edicine, and regulatory agencies, these standards devel-

ped independently and arrived at different procedures us-
ng different philosophies. While generally quite alike, they
iffer in their scope and kinematics. The American Society
or Testing and Materials, International (ASTM), ASTM
2423-05 Standard Guide for Functional, Kinematic, and
ear Assessment of Total Disc Prostheses11 is a guide and,

herefore, less specific in its protocol than a Standard Test
ethod. It encompasses both articulating bearings and elas-

omeric devices and allows for motions to be applied in
ither unidirectional or multidirectional (coupled) paths. (It
hould be noted that the ASTM Standard Guide, like other
tandards, continues to evolve.) It prescribes larger ranges
f motion, close to the maximum ranges of healthy individ-
als. In contrast, the International Standards Organization
ISO) test method, ISO18192-1:200810 is specific for slid-
ng bearings and prescribes multidirectional, relatively
ower ranges of motion, reflecting the ISO committee’s
xpectation of actual in vivo usage. It should be noted that
lthough attempts have been made to make the test methods

elevant to physiologic conditions, neither document is a d
erformance standard and both documents caution the user
hat clinical performance may differ from the test results.
he documents advise considering other testing methods to
ssess other potential failure mechanisms and even different
ear conditions. Both standards assess just 1 of the 4 modes
f wear defined by McKellop.12 Wear can be produced by
ifferent surface interactions, and both standards investigate
nly the intended wear mode, as opposed to third-body
ear, impingement wear, or extraneous wear due to micro-
otion against the vertebral endplate.

nfluential wear parameters

There are a number of important biotribological testing
arameters, such as load and kinematics, test fluid media,
nd specimen preparation, that can greatly affect the out-
ome of a wear study. For in vitro biotribological evalua-
ions of TDR to be clinically relevant, these testing param-
ters must be carefully selected.

oad and kinematics

Load and kinematics can influence the wear, wear rate,
nd type of wear mechanism generated in a wear test. The
oad and motion profiles, which essentially describe the
irection and extent to which one component slides over the
ther under a described compressive force, is typically con-
rolled by the user’s selection of the amplitude, waveform
typically a constant or cyclical load), phasing (ie, timing of
he motion in one direction against that in another), and
pecimen orientation. Specimen orientation can introduce
hear loads between the articulations, as recommended by
he ISO standard10; but the effect may depend on the im-
lant design. The test frequency combined with total device
ange of motion determines the sliding speed and distance,
hich can, in turn, affect surface temperatures, lubrication,

nd wear (volume and mechanisms). Proper selection of
hese parameters will allow the implant to be evaluated in a
ealistic, in-service state.

The bearing biomaterial and the type and magnitude of
otion between the articular components are of great im-

ortance with respect to implant wear. For example, cross-
ng-path motion, which occurs when a specific location on
he implant is subjected to motion in different directions
uring a wear cycle, can influence wear. The analysis of
ear tracks on explanted ball-in-socket lumbar TDRs sug-
ests crossing-path motion.9,13 This result is not surprising,
ased on the published literature characterizing lumbar spi-
al motions for various activities of daily living.14–16 The
nalysis of wear tracks on cervical TDRs suggests curvilin-
ar motion for a ball-in-trough design17 and asymmetrical
otion patterns for a ball-in-socket design.18 It is important

o consider the biomaterial, bearing design, and spine loca-
ion when selecting the type of motion to apply in a wear
est.

The proposed motions in the ISO 18192-1 wear stan-

ard10 lead to crossing-path motion for both the lumbar and
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ervical test conditions. However, because the phasing be-
ween the 3 degrees of freedom (flexion-extension, lateral
ending, and axial rotation) are not defined in the ASTM
2423-05 guidance document,11 it is possible to obtain both
urvilinear motion or crossing-path motion depending on
he input profile selected by the user. Additionally, the
pecified range of motion differs between the two standards
hich will affect the total sliding distance and wear

Table 1).
It has been shown that MOM articulations made from

obalt alloys demonstrate a propensity for self-polishing
nder crossing-path motion, usually resulting in less wear
han with curvilinear motion.1,2 In contrast, wear of ultra-
igh-molecular weight polyethylene (UHMWPE) is sub-
tantially lower when tested under curvilinear compared to
rossing-path motion conditions.3 This finding is typical for
oncrosslinked polymeric material, because of the prefer-
ntial alignment of the polymer chains with the direction of
otion.19–21 In simulator and retrieval studies of hip arthro-

lasty, it has been shown that curvilinear motion can un-
erestimate the wear rate of UHMWPE in vivo and, possi-
ly, overestimate MOM wear rates.22

While flexion extension (FE), lateral bending (LB), and
xial rotation (AR) are applied simultaneously per the ISO
8192-1 wear standard10 (Figs. 1 and 2), various test con-
itions are allowed in the ASTM F2423-05 guidance doc-
ment.11 Per the latter, the user can impose each degree of
reedom (flexion-extension [FE], lateral bending [LB], and
xial rotation [AR]) sequentially (on the same device), con-

able 1
ange of motion comparison between the two wear standards

IS0 18192-110 ASTM F2324-0511

ervical
Flexion extension �7.5° �7.5°
Lateral bending �6.0° �6.0°
Axial rotation �4.0° �6.0°

umbar
Flexion extension �6°/�4° �7.5°
Lateral bending �2.0° �3.0°
Axial rotation �2.0° �6.0°
vFig. 1. ISO 18192-110 motion and load curves for the cervical spine.
urrently, or as a combination of both, as long as each
otion is applied for 10 million cycles (MC). This results in
testing duration of 30 MC in the first case, 10 MC in the

econd, and 20 MC in the third. This sequential testing order
s not only expected to have significantly different results
rom a simultaneously multidirectional wear test, but as
escribed above, the difference in results will also vary
ccording to materials. The type and magnitude of wear will
e affected by the testing sequence, as the topography of the
rticular surfaces will change after every motion, resulting
n surface damage prior to the next test sequence.2

In addition to kinematics, the loading conditions play an
mportant role on the wear behavior of TDRs. The wave-
orm and magnitude of load affect the type of lubrication
nd contact stresses. An increase in load or test frequency
an raise the flash temperature, which, in turn, can alter the
ubricant properties and influence the wear mechanism. As
emperature increases, the viscosity changes and the serum
oses its lubricating properties5; and when it exceeds a
ertain temperature, the proteins can decompose, especially
nder shear.23 For polymers such as polyethylene, as the
ash temperature approaches the glass transition tempera-

ure, a sharp decrease in the hardness and Young’s modulus
an occur, resulting in greater wear.24 For metallic compo-
ents, the increased contact pressure associated with a
igher load can increase adhesive and abrasive wear be-
ween the surfaces through subsurface fatigue.25

The nature of the applied load, ie, having a constant or
arying magnitude, can have a negative or positive influ-
nce on wear. A cyclic load can lead to fatigue and fracture
f the asperity tips in the contact area between the articular
urfaces. However, cyclic load can possibly reduce wear by
enerating squeeze film lubrication if there is biological
uid present unlike a constant load. An increase in the
requency of the motion profiles can increase the potential
or lubrication. As relative speed between the mating com-
onents increases, so does the entrainment velocity. It
hould be noted that most TDR wear tests are conducted at
requencies of 1 Hz or higher, mostly to expedite a 10
illion cycle wear test. This contrasts with the expected in

Fig. 2. ISO 18192-110 motion and load curves for the lumbar spine.
ivo cycle frequency, which may be less than 1 Hz. The
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reatest effect the sliding speed can produce on wear is to
hange the dominant wear mechanism, especially from
oundary lubrication to fluid film lubrication. However,
uid film lubrication may not be possible in most articulat-

ng TDRs due to the implant geometry and sliding distance,
uggesting that the frequency is less important. There is,
owever, another set of competing factors: while the surface
liding speed of TDRs, even at 2 Hz, is lower than that of
ips (due to the respective radii), nearly the entire surface of
TDR is worn throughout the cycle (assuming very low

iametric clearance in hard-on-hard bearings), which is in
ontrast to hips which have bearing regions that experience
o stress at some point in the wear cycle.

Lastly, there have been very few reports describing the
ctivities of daily living for lumbar or cervical spines. Al-
hough there is some understanding of the load magni-
udes26–28 and the extent of motion,29–34 the motion com-
inations and their daily frequency is not well reported35–37

r understood. Without a good understanding of this daily
ctivity, and without long-term well-placed clinical retriev-
ls, the predictive value of wear test methods may be lim-
ted.

So far, the influence of dynamics on wear regardless of
he equipment has been discussed. In reality, different sim-
lator designs have distinct Euler angle sequencing between
he motions, ie, because a simulator mechanically applies
ne motion on top of another, a specific final orientation
esults which is different from a simulator using a different
echanical linkage,38 although the differences may be mi-

or.39 As with all comparisons, one should exercise caution
hen comparing the biotribological results from different

imulators.

est fluid media

Review of in vitro wear simulation literature in regards
o hip and knee testing has clearly shown that the type of
ubricant used has a significant affect on both the magnitude
f wear and morphology of the wear particles.40–42 The
arge joint literature indicates that use of nonphysiological
ubricants, such as deionized water and saline, can lead to
ear, which is highly unrepresentative of in vivo re-

ults.40,43–45 Physiological based lubricants with protein
oncentrations similar to that found in human synovial fluid,
oupled with appropriate load and motion inputs, have been
hown to allow for close predictions of in vivo wear per-
ormance for total hip and knee replacements.

Today, within the hip and knee community, it is gen-
rally accepted that bovine and/or calf serum is an ac-
eptable lubricant for in vitro wear testing,42,46 where the
imulator fluid ideally mimics the synovial joint proteins,
n type and concentration. That being said, there is still
onsiderable discussion on the specifics of the fluid.
ang et al.40 demonstrated the influence of protein con-

entration on the wear rate of UHMWPE, with no mea-
urable wear when no proteins were present and clini-

ally relevant wear rates with protein concentration from s
to 25 g/L for a synovial hip joint. Studies have shown
hat wear rates can differ by up to 15% within this range.
chwenke et al.,41 in a recent study, showed a 50%
ifference in wear rates of total knee components, using
he same bovine serum but with different protein concen-
rations and additives. They speculated that additives can
ffect the coefficient of friction at the articular surfaces
nd may even alter material properties of the implant
irectly, thereby directly affecting wear of the compo-
ents. For metal-on-metal bearings relying on boundary
ubrication, a similar sensitivity to protein concentration
s expected due to the importance of fluid film thickness47

hich depends on fluid viscosity. In general, lubricant
lays a critical role in determining the accuracy and
alidity of simulator testing.

In addition to protein concentration, additives are
ommonly employed to treat the serum for specific issues
elated to the benchtop test environment. These additives
tabilize and prevent protein degradation, thus minimiz-
ng bacterial and fungal contamination. Ethylene-diami-
etetraacetic acid (EDTA) can be added to serum to bind
o the calcium in the bovine serum, thus minimizing
recipitation of calcium phosphate onto the bearing sur-
aces. While these additives are more standardized and
ess controversial than the serum concentration, failure to
nclude them may cause surface changes affecting fric-
ion and wear properties.5

Review of ASTM and ISO standards for wear testing of
otal hip, total knee, and total disc components shows sig-
ificant differences in their prescribed lubricants (see Table
). While bovine/calf serum has become the standard, pro-
ein concentration and type and amount of additives have
ot been fully defined. Regarding TDRs, little is known
bout the fluid volume or content, and the standards have
een based off of knowledge gained from the large joint
ndustry. This may not fully translate to the intervertebral
isc space after implantation.

pecimen selection and preparation

Most devices come in various sizes in order to accom-
odate patient anatomy. With some designs, the bearing

ize or shape may also change. Hip wear studies have
hown that changing the bearing size (ie, bearing radius)
ignificantly affects wear results.52 It is important to
onsider whether the worst-case device is being tested,
nd whether all potential failure modes are being ad-
ressed. For example, wear testing of the Discover Arti-
cial Cervical Disc (DePuy Spine, Raynham, MA),53

hich features 2 different sizes of metal-on-polyethylene
earings, showed that while the smaller diameter bearing
ad a lower wear volume, the larger diameter bearing had
smaller wear rate through its thickness (akin to hip liner
enetration). For metal-on-metal devices, hip studies
ave shown the importance of manufacturing toler-
nces.47 In particular, the diametric clearance has been

hown to affect steady-state wear rate.54,55 In addition,
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tudies have shown decreasing wear rates for increasing
earing radii47,55–58 and decreasing surface roughness.59

or these devices, wear testing should probably be per-
ormed on the smallest devices.

The preparation of specimens for a wear test will
epend on the materials used in the TDR. For all com-
onents regardless of materials, pretest characterization
an include, but is not limited to surface profilometry,
imensional analyses, material characterization, and pho-
odocumentation. Additional consideration must be taken
ith polymeric specimens, as several factors, such as

terilization methods, oxidation potential and presoaking,
an influence wear test results.

There are several different sterilization methods, such
s ethylene oxide, gas plasma and gamma radiation at
arious doses, that can influence the wear of polymers.
odern sterilization and packaging techniques minimize

he effects of shelf aging,60,61 but implantation may cause
ome level of oxidative changes of the exposed surfaces
imilar to that seen in retrieved hip liners. As with hips
nd knees, these changes may cause some decrease in
echanical properties and potentially an increase in wear

ate. Artificial aging procedures can be used to precon-
ition test specimens in order to accelerate oxidative
egradation that would replicate shelf-aging or in vivo
xidation during a wear test. Consideration of the type of
olymer,62– 64 fabrication methods, and ability of the
olymer to degrade must be made when preparing poly-
eric components.

ear assessment

The standardized method for assessing wear is gravi-
etric weight loss. Volumetric wear is subsequently de-

ermined by dividing the mass loss with the density of the
pecimen material. Although this is usually straightfor-
ard, in some cases it can become complicated, such as
hen determining volumetric loss in devices with a dif-

erent material coating because the coating may have a
ifferent density than the substrate, thus making wear
ssessment difficult after a delamination event or wear
hrough of the coating. For all materials, a high-precision

able 2
est media recipes as defined by ASTM and ISO standards

Serum

STM 1714 Hip48 Filtered bovine Blood serum
STM 1715 Knee49 Filtered bovine Blood serum
STM F2423-05
Disc11

Bovine serum, 20 g/L

SO 14242 Hip50 Filtered (2 �m) Calf serum, not less than 17
SO 14243 Knee51 Filtered (2 �m) Calf serum, not less than 17
SO 18192-1 Disc10 Filtered (2 �m) Calf serum, 30 � 2 g/L

* Or other suitable antibiotic.
cale with accuracy and reliability greater than �10 �g is o
mployed to ensure detection of very small losses in
eight. Even still, variations due to specimen cleaning,

nvironmental conditions, and operator technique may
ause apparent “negative wear” in extremely low-wear-
ng devices. To help ensure accuracy and repeatability of
he scale, standard calibrated masses are weighed before
nd after the wear test specimens.

Fluid uptake by polymeric specimens is capable of mask-
ng wear. This error, due to fluid sorption, can be reduced by
resoaking the polymeric TDR specimens until they reach
aturation, which may require several weeks. Additionally,
oad soak control specimens are used to compensate for the
urther increase in fluid sorption occurring under cyclic
oading. These control specimens are cleaned and weighed
long with test specimens to determine the remaining fluid
orption. Vacuum drying prior to weight assessment is also
sed typically to minimize this potential error source.

Several other methods can be used to further characterize
ear and help identify wear mechanisms through the ob-

erved damage modes. Surface characterization can be per-
ormed both macroscopically and microscopically to look
or the presence of damage modes such as burnishing,
brasion, scratching, pitting, plastic deformation, fracture,
atigue damage, and embedded debris. The amount of sur-
ace damage may not correlate with the amount of wear. For
xample, a polyethylene component may exhibit consider-
ble surface damage, even though very little wear has oc-
urred.65 Conversely, if the polyethylene is undergoing
apid wear, any scratches or pits that happen to form in the
ontact zone may soon be polished out, leaving a smooth
urface with little damage. Confusion may also occur with
he appearance of metal bearings and actual wear, as large
reas of abrasion may not result in significant mass loss.
urface characterization typically includes profilometry and
hotodocumentation which are used to monitor the size,
hape and roughness of the wear scar.9

Additionally, serum samples obtained during a wear test
an be analyzed by inductively coupled plasma mass spec-
rometry (ICP-MS) to determine metal ion concentra-
ion.56,66 This method has been successfully used with very
ow wearing metal-on-metal hips to determine wear, be-
ause it removes any variability from cleaning and handling

Sodium azide (%)
(anti-microbial)

EDTA
(mM)

Temperature
(°C) pH

0.2* 20 37�3
0.2 to 0.3* 20 21 to 39 (�3)
0.2* 20 37�3

May be added* 37�2 Monitor
May be added* 37�2 Monitor
May be added* 20 37�2 Monitor
g/L
g/L
f the specimens. Chemical tracers67 may also be used to
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etermine wear from the fluid bath for polymer articula-
ions. Tracers are added to polymer powder before manu-
acturing, and as the polymer specimen wears the tracer is
eleased into the test serum. Both metal ion and chemical
racer levels correlate with wear and are indicative of the
ear curve phase (eg, run-in or steady-state). Several 3-D
apping techniques (coordinate measuring machine, mi-

roCT, radiostereometric analysis, etc.) have been devel-
ped to determine wear or penetration rate with varying
egrees of accuracy, depending on the method and equip-
ent, and have also been used in retrieval analysis to val-

date in vitro wear tests. For polymers, the dimensional
easurements will include changes due to creep and wear,
hich can be separated through analysis of load soak con-

rols.
Lessons learned from the large joint industry can be

pplied to TDR, but additional research in the areas of
iomechanics and wear behavior of TDRs is still ongoing in
rder to fully adapt this technology to spinal motion pres-
rvation. Currently, wear tests are best used to compare
esigns, which is the explicit purpose of the current test
tandards; but, ideally, tests are developed to simulate im-
lantations, which reflect the totality of the in vivo usage.
imulations will be validated by correlating the preclinical

n vitro wear tests results with explant analyses, including
urface characterization, wear penetration rates, and wear
article size and shape. Ideally, tests replicate long-term and
uccessful implantions, as well as predict early failure
odes. Without long-term explant results with various de-

igns, one cannot necessarily declare that one device has
uperior wear resistance over another. Better in vitro per-
ormance does not necessarily mean better in vivo perfor-
ance; both may be acceptable.
Despite the limitations on the current knowledge base on

DR wear testing, and the variety of parameters that may be
mployed, the rates and case reports of osteolysis are
ow68,69 and retrievals linked to implant wear, either from
mplant damage leading to instability or height loss or from
nflammation from debris, are also low. Long-term clinical
esults from various designs and materials are needed. Nev-
rtheless, wear testing is a critical gating item for preclinical
valuation. Research will improve the predictive power of
est results and thus discriminate between dangerous, ac-
eptable, and over-engineered designs.

onclusions

The biotribological performance of TDRs depends on
any factors, including bearing design and material selec-

ion. Additionally, there are a number of important biotri-
ological testing parameters (eg, kinematics and load, phas-
ng, test fluid medium, etc.), that can greatly affect the
utcome of a particular wear study. The spine wear testing
tandards/guides leave many open-ended choices that will
nfluence results (eg, test sequence). It is essential to com-

are the test method to what is expected in vivo. Does the
est method reflect a genuinely possible worst-case condi-
ion for that material and design? The spinal community
eeds to be critical in their assessment of wear test results so
hat clinicians can better judge implant designs. Retrievals
eed to be thoroughly studied for all designs. Furthermore,
he interpretation and comparisons of wear results across
evice designs, laboratories, and standards need to be made
ith an understanding that some tests better reflect in vivo
sage than others.
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