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Abstract: The alarmingly rising trend of type 2 diabetes constitutes a major global public health
challenge particularly in the Middle Eastern and North African (MENA) region where the prevalence
is among the highest in the world with a projection to increase by 96% by 2045. The economic boom
in the MENA region over the past decades has brought exceptionally rapid shifts in eating habits
characterized by divergence from the traditional Mediterranean diet towards a more westernized un-
healthy dietary pattern, thought to be leading to the dramatic rises in obesity and non-communicable
diseases. Research efforts have brought a greater understanding of the different pathways through
which diet and obesity may affect diabetes clinical outcomes, emphasizing the crucial role of dietary
interventions and weight loss in the prevention and management of diabetes. The purpose of this re-
view is to explore the mechanistic pathways linking obesity with diabetes and to summarize the most
recent evidence on the association of the intake of different macronutrients and food groups with the
risk of type 2 diabetes. We also summarize the most recent evidence on the effectiveness of different
macronutrient manipulations in the prevention and management of diabetes while highlighting the
possible underlying mechanisms of action and latest evidence-based recommendations. We finally
discuss the need to adequately integrate dietetic services in diabetes care specific to the MENA region
and conclude with recommendations to improve dietetic care for diabetes in the region.

Keywords: type 2 diabetes; dietary management; MENA region; obesity; insulin resistance; insulin
glucose homeostasis

1. Introduction

The rising burden of diabetes mellitus is one of the major public health challenges
of the current century and its prevalence among adults worldwide has more than tripled
over the past 2 decades [1]. In 2010, diabetes was projected to reach around 438 million
people globally by 2025. With more than five years remaining, this estimate has already
been exceeded by 25 million cases with currently around 463 million people suffering
from diabetes worldwide [1]. Despite the considerable scholarly and medical efforts to
improve diabetes prevention, diagnosis and care, diabetes continues to impose a substantial
burden on healthcare systems, societies and individuals globally, in addition to a rising
death toll (11.3% of global deaths), partly due to unmanaged or poorly managed disease
courses [1]. It is important to note that more than half of the adults living with diabetes
are unaware of their condition which further increases their risk of developing serious
health complications [1]. According to the International Diabetes Federation’s (IDF) most
recent reports, the Middle Eastern and North African (MENA) region has the highest adult
age-adjusted prevalence of diabetes in the world (12.2%) which is projected to increase to
13.3% by 2030, and by 2045 one out of every 8 persons is expected to suffer from diabetes [1].
Figure 1 summarizes the prevalence of diabetes in different countries of the MENA region,
where Egypt, with an age adjusted prevalence of 17.2%, ranks amongst the top 10 countries
with the highest diabetes prevalences worldwide. The magnitude of diabetes is especially
challenging in the Gulf Cooperation Council (GCC) region where economic prosperity,
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driven by the energy and oil booms of the past decades, brought exceptionally rapid shifts
in eating habits and dramatic rises in the levels of chronic diseases. The IDF reports that
one in five people in GCC countries currently has type 2 diabetes mellitus (T2DM), which
is amongst the highest prevalences worldwide. Currently, four of the top 20 countries
with highest rates of diabetes per capita worldwide are located in the GCC region (United
Arab Emirates (UAE), Saudi Arabia, Qatar and Bahrain) with an average prevalence of
around 15% [1]. The diabetes numbers in the region are alarming by themselves but
even more concerning in the midst of the current coronavirus disease 2019 (COVID-19)
pandemic putting these groups at particularly higher risk to suffer and die from this
emerging infection [2].

Figure 1. Diabetes prevalence in countries of the Middle Eastern and North African (MENA) region based on International
Diabetes Federation (IDF) estimates 2019 [1]. MENA countries include Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait,
Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, State of Palestine, Sudan, Syrian Arab Republic, Tunisia, United
Arab Emirates, and Yemen.

Compared to the World Health Organization (WHO) European region, the prevalence
of diabetes in MENA countries is considerably higher (17% versus 12.2%) [1–4]. The rising
prevalence of T2DM is influenced by a complex interchange between genetic, epigenetic
and environmental factors [4]. In the MENA region, genetics may be an important con-
tributing factor given that exclusive patterns of single nucleotide polymorphisms (SNPs)
for T2DM were identified among Arab ethnicities [5]. Other considerations such as lack of
health education and multiple pregnancies may also play a role in the increasing diabetes
prevalence in the MENA region [6]. In addition to that, socioeconomic and demographic
factors as well as older age were shown to be associated with a higher prevalence of T2DM
among certain subgroups in Eastern Mediterranean countries [7]. Moreover, due to gender
segregation, restrictions on outdoor activities, and compulsory wearing of full-length gar-
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ments, women in the Arab world are disproportionally more sedentary than men, putting
them at a particularly higher risk for obesity, insulin resistance, prediabetes, and ultimately
diabetes [8,9].

A growing body of evidence associates the surge in diabetes and other non-communicable
diseases with increased income per capita, economic development, technological advances,
urbanization, industrialization, and expansion of global trade [10]. The most prominent
factors in the MENA region are rapid urbanization, industrial development and economic
growth, which have collectively and fundamentally changed the way people eat and
live [3,11]. The high and increasing prevalence rates of obesity in the region with its
underlying shifts in lifestyle, dietary habits and physical activity patterns have also fueled
the diabetes epidemic in the region [12]. The rapid shifts in diet towards unhealthy
westernized patterns, increased consumption of food, and sedentarism are amongst the
characteristics of the nutrition transition phenomenon observed in the MENA region and
the developing world, and are at the core of the accelerating obesity and non-communicable
diseases epidemics.

The purpose of this review is to explore the mechanistic pathways linking obesity
with diabetes and to summarize the most recent evidence on the association of various
dietary patterns, as well as the intake of different macronutrients and food groups with
the risk of T2DM. We also summarize the most recent evidence on the effectiveness of
different macronutrient manipulations in the prevention and management of diabetes
while highlighting the possible underlying mechanisms of action and latest evidence-based
recommendations.

Electronic databases (MEDLINE, PubMed, Scopus, and Google Scholar) were searched
for original research articles, meta-analyses and systemic reviews published between 2005
and 2020. International organizations and governmental websites were also explored.
The main search terms were “type 2 diabetes”, “nutrition”, “diet”, “MNT”, “MENA region”,
“obesity”, “nutrition transition”, “mechanism of action”, “prevention” and “management”
in combination with specific terms on nutrients or dietary patterns. Publications in the last
5 years were largely selected; however, frequently referenced and highly regarded older
publications were not excluded. Additionally, the selected articles’ reference lists were
scrutinized, and research articles were further selected based on their relevance.

2. Risk Factors and Diabetes
2.1. Nutrition Transition and Diabetes in the Middle Eastern and North African (MENA) Region

Over the past decades, countries of the MENA region have witnessed fast rates of
epidemiological and demographic changes, driven by economic development, improve-
ments in sanitation, infrastructure and urbanization, which have significantly impacted
the nutritional and health status of the populations in the region [13]. The improved
standards of living have been accompanied by shifts in disease type and prevalence, that
are closely related to the ongoing nutrition transition characterized by divergence from
traditional healthy diets and lifestyle towards energy-rich westernized dietary patterns
and sedentarism [13,14]. The Mediterranean diet is the traditional diet in many countries
of the region and is widely recognized as one of the healthiest dietary patterns available.
The Mediterranean diet majorly consists of fruits, vegetables, grains, extra virgin olive
oil, fish, red wine, and other minimally processed foods, which are all rich sources of
unsaturated fats, complex carbohydrates and fibers. The Mediterranean diet’s protective
health effects have been consistently highlighted in T2DM as well as many other condi-
tions [15–17]. In obese individuals, the Mediterranean diet has been shown to be correlated
with greater improvement in insulin resistance compared to other nutritional interventions.
Moreover, recent in vivo studies have reported encouraging results on the insulin sensi-
tizing properties of certain nutraceuticals derived from Mediterranean foods in different
insulin resistance related diseases including T2DM [18]. A recent study by Greco et al. has
also shown a decrease in body weight and body mass index (BMI) and a significant increase



Nutrients 2021, 13, 1060 4 of 27

in insulin and leptin sensitivity in obese individuals following a moderate hypocaloric
Mediterranean diet [19].

Paradoxically, adherence to this dietary pattern in its native countries has been de-
creasing over the past decades as it is being gradually replaced by a diet rich in highly
processed animal-sourced foods and simple refined carbohydrates [20,21]. A recent study
by Naja et al. (2020) noted a significant decline in adherence to the Mediterranean diet
among Lebanese adolescents between 1997 and 2015, from 35.03% to 27.63% respectively,
using country-specific indices. This decline in adherence to the Mediterranean diet was
shown to be largely driven by the decreasing consumption of whole fruits and vegetables
from around 6% and 6.5% of total energy intake respectively in 1997 to around 3.4% and
3.8% respectively in 2015, and the increasing intake in parallel of “unhealthy” foods such
as salty snacks and sugar sweetened beverages contributing respectively to 7.6% and 7% of
adolescents’ total energy intake [22]. Gulf countries have also reported a rapid change in
dietary habits and lifestyle over the past 3 decades whereby the traditional diet consisting
of dates, milk, rice, brown bread, fish, and vegetables shifted to a more westernized type
of diet [20]. In a recent study by Baker et al. (2020), a systematic analysis of the global
and regional consumption trends of ultra-processed foods and beverages is presented. Al-
though ultra-processed foods and beverages sales were the highest in high income regions
such as North America, Europe and Australasia, significant growth in the consumption
of these foods was noted in the MENA region where income per capita is rising. Notably,
the consumption of vegetable oils, particularly sunflower oil, was the highest in the MENA
region in 2019 compared to other regions of the world, and has increased by more than
40% since 2006 [23]. Hydrogenated vegetable oils are major sources of trans fatty acids and
their increased consumption contributes to the fattening of the diet which is considered as
a central feature of the western dietary pattern, and is closely associated with the develop-
ment of health and metabolic issues including insulin resistance, cardiovascular diseases
(CVD) and T2DM [24]. Moreover, a sub-optimal diet (e.g., low intakes of fruits, vegetables,
whole grains, seafood and high intakes of processed meat, trans fats, sugar sweetened
beverages) was found to be associated with cardiometabolic disease mortality, including
T2DM, in 20 Middle Eastern countries [25]. There is growing awareness on the social,
environmental and economic dimensions that fall behind the erosion of the Mediterranean
diet in some countries of the MENA region and these include the abandonment of the
traditional and cultural habits together with the globalization of food systems, and pos-
sibly the prohibitively increasing cost of certain components of this diet which was once
considered to be the diet of the poorest societies [26,27]. The scale of the dietary change in
the region highlights the importance of monitoring these changes, developing population
wide interventions and strategies to preserve the traditional dietary patterns of the region,
and mitigating the looming health threats including that of the diabetes epidemic.

2.2. Obesity and Diabetes

Obesity is a primary etiological contributor in the development of diabetes and is by
far the leading risk factor behind the rising prevalence of diabetes worldwide [6]. Over the
past few decades, the MENA region has witnessed major economic, social, lifestyle, and
political changes that have potentially contributed to the rise in obesity prevalence [28].
The significant association between diabetes and obesity has been documented in several
countries of the MENA region [29–31]. In Saudi Arabia, Qatar, and Lebanon, around
46%, 76.3% and 36% of individuals with diabetes were respectively found to be also
obese [32–34]. In Kuwait, the prevalence of T2DM among obese males and females was
noted to be around 48% and 77%, respectively [35]. In Bahrain, after adjusting for all
factors, obesity was the found to be the strongest risk factor for developing diabetes [36].
Indeed, obesity is thought to account for 80–85% of the risk of developing T2DM [37].
Moreover, compared to non-obese counterparts, obese diabetic patients are at higher risks
for microvascular complications, worse diabetes prognosis, and death [38].
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The understanding of the mechanistic links between obesity and diabetes has grown
over the past decades and a number of factors relating these two conditions have been
identified including insulin resistance, pro-inflammatory cytokines, endothelial dysfunc-
tion, dysregulated lipid metabolism, and mitochondrial dysfunction among others [39–41].
The interaction between these pathways is highly complex and their relative significance
is far from being completely uncovered. The influence of obesity on the risk of CVD and
diabetes is not only determined by the degree of obesity, but more potently by individuals’
body composition and fat distribution [41,42]. Visceral adiposity in particular, reflected in
a high waist to hip ratio, has been closely linked to increased risk of metabolic disorders
including hyperinsulinemia and T2DM [43]. Effectively, the association between abdomi-
nal obesity and diabetes has been observed in Egypt [44], Jordan [45], Iran [46], Iraq [47],
Oman [48] and Saudi Arabia [49]. In obesity, the accumulation of fat and the excessive
expansion of the white adipose tissue in the abdominal area induce an inflammatory re-
sponse and the release of adipokines and pro-inflammatory cytokines (e.g., Tumor Necrosis
Factor-α, Interleukin-6), which decreases the expression of insulin receptors at the levels of
adipocytes, hepatocytes and skeletal muscles cells, leading to insulin resistance and organ
dysfunction, and eventually contributing to the development of T2DM [50] (Figure 2).

Figure 2. Overview of mechanistic links between obesity and type 2 diabetes. NEFA: Non-esterified fatty acids. Large
arrows indicate influence.

The surging flow of cytokines is also known to cause a reduction in the levels of
adiponectin, a hormone known to be protective against T2DM and other metabolic and car-
diac conditions due to its potent anti-atherogenic effects and remarkable insulin sensitizing
properties [51]. In obese and insulin-resistant models, adiponectin is consistently found
to be reduced [52–54], although this could be explained by the state of oxidative stress in
these diseases or certain genetic mutations [51,55].

The suppressed activity of insulin, known to be a major inhibitor of lipolysis, leads
to increased lipolysis in adipocytes which consequently results in the production of non-
esterified fatty acids (NEFA). The expanding plasma volume of NEFA further increases
lipolysis, boosting NEFA release into circulation thus exacerbating the insulin-resistant
state (Figure 2). High NEFA plasma levels have also been associated with decreased
pancreatic beta-cells functions, essential in glucose homeostasis [56,57]. The association
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between elevated levels of NEFA and obesity has been firmly entrenched in the literature,
however, a growing body of evidence is suggesting that this association may not be always
true, as the predicted disparities between obese and non-obese individuals in NEFA levels
and their effects on insulin resistance were shown to be inconsistent [50,56,58]. Whether
subcutaneous fat exhibits any significant pathological effects is a yet to be proven matter
that requires further investigation.

Beyond the effects of body fat distribution, the literature also distinguishes between
the different subtypes of the adipose tissue as these may have different metabolic functions
and play different roles in glucose homeostasis [59]. While white adipose tissue is generally
involved in energy storage and associated with the inflammatory response that is respon-
sible for the dysregulation of glucose homeostasis, the brown adipose tissue is thought
to have a thermogenic role, dissipating heat and contributing to the regulation of body
temperature and weight [60]. The process of differentiation of beige adipocytes within
white adipose tissue, also known as browning, has become a key focus area for research
against diabetes and obesity due to brown adipose tissue’s fat-burning and heat-producing
potential [61]. Further research may elucidate additional pathophysiological mechanisms
and common pathways connecting obesity and T2DM which could become therapeutic
targets addressing issues of excess weight gain and diabetes control concurrently.

One of the most important underlying etiological pathways common to both obesity
and T2DM is increased exposure to unhealthy foods exceeding energy needs. While
diabetes is mostly treated using pharmacotherapy, dietary and lifestyle interventions
remain a cornerstone of effective treatment strategies.

3. Dietary Management of Diabetes
3.1. Significance and Barriers

Nutrition and lifestyle interventions are acknowledged as integral components of
successful T2DM management plans. Compelling evidence supports the effectiveness and
cost-effectiveness of medical nutrition therapy (MNT) administered by licensed dietitians in
improving clinical outcomes and quality of life of diabetic patients [62–64]. A rich body of
evidence corroborates the effectiveness of nutrition therapy as a complement to medication
in reducing HbA1c levels in diabetic patients by up to 2% at 3 months, and sustaining this
reduction on the longer term [62,65–67]. MNT was also shown to improve glucose tolerance,
lipid profile, blood pressure, and obesity-related outcomes, and resulted in decreasing
doses of glucose-lowering medications [62]. Indeed, in the Look AHEAD (Action for Health
in Diabetes) trial, intensive lifestyle interventions for weight loss in patients with diabetes
significantly improved glucose control and resulted in greater odds of partial remission of
T2DM, as compared to a control condition of general support and education [68]. Dietary
and lifestyle interventions were also shown to be crucial to prevent the progression of
pre-diabetes and obesity into T2DM [62]. Notably, adherence to the Mediterranean diet in
subjects at high cardiovascular risk was associated with lower diabetes incidence when
compared to a low-fat diet, wherein diabetes incidence was reduced by 52%. The lower
diabetes risk was also evident in the absence of significant changes in body weight and
physical activity levels [69]. Additionally, findings from the MENA region (Diabetes
Intervention Accentuating Diet and Enhancing Metabolism (DIADEM-1) trial)) show that
intensive lifestyle interventions resulted in significant weight loss after 1 year, and were
associated with diabetes remission in over 60% of participants [70].

Given the predominantly Islamic population in the MENA region, individuals with
diabetes often show an intense desire to fast during the month of Ramadan, despite
being exempted from fasting by the Qu’ran. However, the effects of intermittent fast-
ing in Ramadan on glycemic control remain controversial [71]. Although some studies
showed that Ramadan fasting resulted in significant reductions in fasting plasma glucose,
HbA1c and BMI [72,73], other studies in the MENA region demonstrated a deterioration
in glycemic control [74,75], which was more evident in patients on insulin or oral hypo-
glycemic agents [75,76]. Thus, it was concluded that Ramadan fasting may be deemed safe
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for individuals with mild and stable medical conditions however, for high-risk diabetes
patients, individualized MNT is required [77,78].

Despite the proven significance and the progress in establishing evidence-based
and systematic dietary guidance, the implementation of dietary management in diabetes
care continues to be challenging for many reasons including the difficulty of behavioral
change, and adherence to a life-long nutritional plan that may be different from the cultural
diet, in addition to the lack of awareness on the importance of diet in the management
of diabetes [79,80]. These barriers could be overcome with professional guidance from
certified dietitians, who are trained to provide patients with practical tools to modify
their diet and lifestyle and address their specific needs and targets based on individual
preferences and within cultural contexts [62,81]. The involvement of dietitians with other
healthcare practitioners in providing dietary counselling and management for diabetes has
been previously shown to lead to better clinical outcomes including improved levels of
HbA1c fasting blood glucose, cholesterol and plasma triglycerides [82–85]. Despite this fact,
the under-utilization of dietetic services in diabetes management is evident in countries of
the MENA region as well as worldwide [81,86,87]. In Lebanon, only 34% of T2DM patients
were referred to dietetic services by their physicians which was the primary determinant
for consulting a dietitian for the management of their condition [79]. Similar findings were
noted in Qatar where only 17% of outpatient diabetic programs were reported to involve
dietitians [88]. In the United Arab Emirates (UAE), 46% of surveyed diabetic patients
reported never consulting with a dietitian since their diagnosis [87]. The suboptimal inter-
disciplinary referrals and under-utilization of dietetic services in the MENA region cast
serious doubts over the quality of diabetes care and underline lost opportunities to benefit
from cost-effective solutions to combat the diabetes epidemic in a region where more than
half of its countries are resource constrained [79].

While acknowledging the importance of dietary interventions in the management of
diabetes, there has been a greater understanding of the optimal dietary advice for diabetes
and the different pathways through which food may affect health outcomes including
weight, lipid metabolism, and glucose homeostasis, which all directly impact the risk of
diabetes and its associated complications [89]. Many dietary guidelines and systematic
reviews have assessed the evidence on the best dietary approach in the management of
diabetes as summarized in Table 1.

Table 1. Selected systematic reviews and meta-analyses comparing different dietary approaches in diabetes management.

Author Sample Size Duration Outcomes Comparison Result

Ajala et al.
(2013) [90]

3073 adults with
T2D ≥6 months

Glycemic control;
lipid profile;
weight loss

7 dietary
approaches (LC, V,
vegan, low GI, HF,

MD. HP) vs.
control diets

MD, LC, HP and low GI all
improved glycemic control

MD showed largest effect size
MD and LC showed greater

weight loss
All diets increased HDL

except HP

Jannasch et al.
(2017) [91]

16 study
populations

(non-diabetic
participants)

- Diabetes incidence MD, DASH, HEI,
AHEI

MD, DASH and AHEI
showed great potential for

diabetes prevention

Schwingshackl
et al.

(2018) [92]

4937 adults with
T2D ≥12 weeks

HbA1c (%); fasting
blood glucose

(mmol/l)

9 dietary
approaches (LF,

LC, MC, HP, MD,
low GI/GL and PD

vs. control)

LC achieved greatest HbA1c
reduction

(SUCRA: 84%)
MD achieved best results for

fasting blood glucose
(SUCRA: 88%)

Neuenschwander
et al.

(2019) [93]
5360 adults with

T2D ≥12 weeks
LDL-C (mmol/l);
HDL-C (mmol/l);

TG (mmol/l)

9 dietary
approaches (LF,

LC, MC, HP, MD,
low GI/GL and PD

vs. control)

MD was the most effective to
manage diabetic dyslipidemia

(SUCRA: 79%).
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Table 1. Cont.

Author Sample Size Duration Outcomes Comparison Result

De Carvalho
et al. (2019)

[94]
Adults with T2D 8 weeks–4

years HbA1c (%)

Dietary patterns
favoring glycemic
control vs. control

diets

Vegan, V, MD and DASH
achieved greatest reduction

Abbasnezhad
et al.

(2020) [95]
1130 adults with

T2D
2 weeks–3

years
Systolic and
Diastolic BP

11 dietary
approaches (Vegan,
LF, LS, HF, LP, HP,
LC, Low GI, PD,

MD, Korean
traditional diet)

LS achieved greatest
reduction for systolic BPHF
achieved greatest reduction

for diastolic BP

T2D: Type 2 diabetes; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; TG: triglycerides; BP: blood
pressure; WC: waist circumference; LF: low fat; MD: Mediterranean diet; HP: high protein; LP: low protein; LC: low carbohydrate; MC:
moderate carbohydrate; V: vegetarian; PD: paleolithic diet; GI: glycemic index; GL: glycemic load; LS: low sodium; HF: high fiber; DASH:
Dietary Approach to Prevent Hypertension; HEI: Healthy Eating Index; AHEI: Alternative Healthy Eating Index; SUCRA: surface under
cumulative ranking curve.

While different dietary approaches can be used to manage diabetes with varying
levels of effectiveness, the Mediterranean, Dietary Approach to Prevent Hypertension
(DASH) and plant-based eating patterns are shown to most consistently improve diabetes
clinical outcomes in populations from different settings as shown in Table 1. The effects
of these diets are thought to be directly linked to their unique combinations of foods
which encourage a higher unsaturated to saturated fatty acids ratio, a lower intake of
trans fatty acids, and a higher intake of dietary fibers and nutrients with anti-inflammatory
properties [96,97]. In addition to that, these diets are thought to indirectly promote diabetes
prevention and control through their effects on weight loss even though findings remain
controversial [97]. In the MENA region, various dietary interventions for weight loss and
glycemic control have shown superior results for carbohydrate-restricted, Mediterranean
and American Diabetes Association (ADA) diets. However, higher quality, longer-duration
and culture-sensitive studies are still needed to clearly describe an effective dietary strategy
specific to the region [28]. The current dietary guidelines endorse the use of these healthy
dietary patterns and recommend individualizing nutrition therapy and tailoring it to
patients’ eating patterns, preferences, and metabolic goals [98].

In the below narrative, we provide an overview of the current literature on the
association between different dietary components with diabetes and explore the potential
mechanisms underlying their actions. We also summarize the most recent evidence on the
effectiveness of dietary manipulation and different interventions in the prevention and
management of diabetes. Additionally, we shed the light on the important role of nutrition
therapy in T2DM prevention and management, and recommend steps to improve diabetes
management in countries of the MENA region where integration of dietetics in diabetes
care has been shown to be suboptimal.

3.2. The Metabolic Effects of Dietary Components in Diabetes
3.2.1. Carbohydrates

Diabetes has long been considered as a disease of carbohydrate metabolism given
its cardinal feature of hyperglycemia. Hyperglycemia is indeed the reason behind di-
abetes’s symptoms and associated complications such as retinopathy, neuropathy and
nephropathy, and the control of blood glucose and lipid levels are primary goals in diabetes
management [99].

Before insulin was developed as a treatment for hyperglycemia, reducing carbohy-
drate intake was the main strategy in the management of diabetes [89]. Although there is
no clear consensus on a formal definition or composition, low carbohydrate diets typically
consist of 60–130 g/day of carbohydrates (or 26–45% of daily energy needs), and do not
seek to induce ketosis as opposed to very low carbohydrate diets which generally limit
carbohydrate intake to 20–50 g per day and promote nutritional ketosis [100]. The effec-
tiveness of low-carbohydrate diets in the management of glycemia has been extensively
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studied; however, findings have been inconclusive. Some studies asserted the superiority
of low carbohydrate diets in glycemic control compared to other diets (usually low-fat
diets), suggesting a dose-dependent relationship whereby a greater carbohydrate restric-
tion results in better glycemic control, while others warned against the unsustainability of
this approach’s effects or indicated no advantage at all [89,101–105]. Moreover, depending
on the choice of foods that replace carbohydrates, low carbohydrate diets may be associ-
ated with adverse metabolic outcomes and micronutrient deficiencies [106]. On the other
hand, a healthy, low carbohydrate, low glycemic index (GI) diet that is high in protein has
shown superior micronutrient levels when compared to a conventional diet (moderate
GI, moderate protein) [107]. More frequently, the inherently higher fat content of low
carbohydrate diets, specifically saturated and trans-fat, has been linked to detrimental
effects on lipid markers and cardiovascular health [89]. In patients with T2DM, several
studies did not find an association of low carbohydrate intake with worsened lipid pro-
file; however, longer-term studies are still needed to confirm these conclusions [108,109].
Generally, reducing dietary carbohydrate levels may result in improved clinical outcomes
in the management of diabetes. Nevertheless, addressing concerns related to adherence
to this kind of regimen and appropriately classifying low carbohydrate diets are required.
Furthermore, additional research is needed to investigate the true effects of carbohydrate
reduction on HbA1c independently of its effect on reducing requirements for diabetes
medications [110]. The ADA has newly revised its lifestyle management guidelines, stating
that very low carbohydrate diets are a feasible approach for those with hyperglycemia who
wish to reduce glucose-lowering medications [98]. The mechanisms by which very low
carbohydrate diets exert their effects was proposed to be related to the production and use
of ketone bodies as more than an alternative fuel source, but as signaling molecules that
may have positive physiological influences such as reducing inflammation and improving
insulin sensitivity [100].

Another approach that has been explored in the management of diabetes is increas-
ing intake of unrefined carbohydrates which some studies have found to be at least as
effective as reducing carbohydrate intake in improving clinical outcomes in people with
diabetes [102,111]. Owing to its usually lower fat content, a diet rich in carbohydrates has
been associated with lower serum cholesterol [111]. However, evidence from large popula-
tion studies indicates that the quantity of carbohydrates as a percentage of daily caloric
intake is less significant than carbohydrates’ quality in determining the risk for metabolic
diseases and obesity [112,113]. Whereas the consumption of foods like refined grains and
sugar-sweetened beverages increases the risk, the intake of fresh and minimally processed
starches, fruits and vegetables is often associated with improved clinical outcomes and a
lower diabetes risk [112,114,115]. Indeed, the current guidelines assert that the evidence
from isoenergetic comparisons of different carbohydrate-focused diets is inadequate to rec-
ommend an optimal carbohydrate amount or one dietary approach over others. The ADA
advocates an individualized approach that matches the quantity of carbohydrate intake
with habitual consumption and caloric needs, and guarantees long-term adherence.

On the other hand, a strong case could be made for the causality of certain types
of carbohydrate in the development of diabetes and obesity, where the intake of refined
starches and added sugars appears to be detrimental, and the intake of whole grains,
legumes, fruits and vegetables is deemed protective [98].

Several systems have been in use to characterize different types of carbohydrates
and evaluate their quality based on their chemical structure and properties (chain length,
viscosity, type of starch), fiber content and effects on post-prandial blood glucose, with
varying significance to diabetes health outcomes [112,116]. Two empirical indices are
frequently used to rank carbohydrate containing foods based on their effects on post-
prandial glycemia: glycemic index (GI) and glycemic load (GL) [117]. A plethora of studies
have examined the clinical utility of these two measures in predicting post-prandial blood
glucose and the risk of diabetes with mixed findings [118–121]. At least three mechanis-
tic pathways relate a high GI/GL diet to T2DM which include increased glucotoxicity,
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lipotoxicity and increased obesity, particularly abdominal obesity, which are all known
to compromise beta-cells function [122]. The relationship between GI/GL and diabetes
risk had been postulated to be related to the fiber content of foods, namely cereal fiber,
though a meta-analysis of 3 large prospective cohort studies found GI to be significantly
associated with increased risk of T2DM, independently of the intake of cereal fiber [123].
Moreover, a recent meta-analysis by Livesey et al. (2019) based on long-term interventions
studies (4–26 years) found sufficiently strong evidence to support a cause–effect relation-
ship between GI/GL and T2DM, and to recommend their inclusion in dietary guidelines
for people with diabetes. [122].

The effects of carbohydrates on post-prandial glucose are largely related to the rates
of their digestion and absorption which directly impact insulin secretion, and are deter-
mined by a number of factors such as carbohydrate processing and chemical properties
(e.g., viscosity, type of starch), as summarized in Figure 3.

Figure 3. Summary of considerations, concerns and recommendations for macronutrient-focused diets in diabetes manage-
ment.GI: glycemic index; GL: glycemic load; SSB: sugar sweetened beverages; PUFA: polyunsaturated fatty acids; MUFA:
monounsaturated fatty acids; SFA: saturated fatty acids.

Viscosity of a meal plays a significant role in the reduction of post-prandial glucose
and is thought to induce satiety by increasing levels of glucagon like peptide 1 (GLP-1) and
peptide YY (PYY), decreasing that of ghrelin, and delaying gastric emptying [116,124].

3.2.2. Dietary Fiber

Post-prandial glucose may also be influenced by the presence of specific dietary ingre-
dients. Amongst all, dietary fibers are known to have the strongest impact on the digestion
and absorption of carbohydrates, and can influence post-prandial blood glucose levels
primarily through their fermentation by the gut microbiota, and the production of short
chain fatty acids (SCFA) [116]. The metabolic benefits of SCFAs, namely acetate, butyrate
and propionate, on lipid and glucose metabolism are well-documented in the literature and
include modulation of appetite via increasing hypothalamic satiety hormones, mitochon-
drial activity, hepatic gluconeogenesis, and lipogenesis [125]. The influence of dietary fiber
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on the risk of T2DM and CVD is also mediated via several other mechanisms including the
modulation of body weight and reduction of inflammatory markers [116,126,127]. The ef-
fect of regularly consumed soluble dietary fiber on HbA1c in people with diabetes was
reported whereby soluble fiber alone resulted in a reduction in HbA1c by about 60% [128].
In addition to the intake of soluble dietary fiber, a high intake of cereal fibers, which com-
prise insoluble, non-viscous and poorly fermentable fibers, has been shown to be inversely
associated with the risk of T2DM in prospective studies [129,130]. In parallel, recent sys-
tematic reviews and meta-analyses on dietary fiber in diabetes management have shown
that moving from lower to higher intakes of dietary fiber resulted in improved measures of
glycemic control, blood lipids, body weight and inflammation, as well as a reduction in
premature mortality. Nonetheless, due to the limited quantity of trials studying dietary
fibers and whole grain interventions, the GRADE criteria continue to classify the evidence
relating most clinical outcomes with dietary fiber as moderate, and with whole grains as
low quality. Therefore, clinical trials are needed in order to strengthen the evidence base
related to dietary fibers’ preventive and therapeutic effects in diabetes [131].

Despite being strongly encouraged in T2DM, the intake of fiber-rich foods (fruits, veg-
etables, legumes, nuts and whole grains) remains below recommendations amongst MENA
populations [132]. The WHO estimated that around 85% of adults in the Arabian Gulf
region do not adhere to the recommended 5 daily servings of fruits and vegetables [133].
In addition, studies from this region have highlighted the marked decrease in consumption
of whole grains which are being replaced by refined cereals [134]. Indeed, low intakes of
fruits and whole grains have been associated with the greatest number of diabetes and
cardiometabolic deaths in 20 Middle Eastern countries, underlining the need to adopt
better eating habits to halt the soaring NCD and obesity epidemics in the region [25].

3.2.3. Proteins

The role of protein in T2DM often receives less attention than the other macronutrients
in terms of both its metabolic and nutritional effects, although accumulating research has
linked perturbations in amino acid profiling and altered protein metabolism to the risk
of developing insulin resistance and diabetes [135]. The plasma levels of branched chain
amino acids (BCAA) and aromatic sulfur amino acids (SAA) have been most potently
implicated in metabolic diseases including diabetes, dyslipidemia and metabolic syndrome,
and have been consistently found to be higher in insulin-resistant, diabetic and obese indi-
viduals compared non-diabetic or non-obese counterparts [135–140]. BCAA are primarily
derived from dietary intake of foods of animal origins including meat, dairy, eggs and fish
but also from plant-based products such as cereals and starches [141,142]. The observed
alteration in the levels of these amino acids in obese and diabetic individuals has been
postulated to result from a perturbed metabolism at the level of the adipose tissue or to
be a consequence of insulin resistance which is associated with decreased expression of
BCAA catabolic enzymes [143,144]. Additionally, research implicates a dietary pattern rich
in animal-derived protein in contrast to a diet rich in vegetable protein which appears
to exert a rather protective effect [144–147]. Similarly, dietary patterns favoring animal
protein sources (beef, lamb, pork and chicken) were linked to higher mortality as compared
to those favoring plant protein sources (vegetables, whole grain breads, nuts and peanut
butter) [148]. In the United States, where animal-derived foods including red meat and
dairy products constitute the major contributors to BCAA plasma levels, the consumption
of BCAA was associated with an increased risk of T2DM as shown by several studies
including a meta-analysis of 3 large prospective studies [141,146,149], although with some
inconsistent findings [142,150]. Notably, this association was found to be inversely true in
a Japanese cohort, where BCAA are primarily derived from cereals, fish and shellfish, high-
lighting a possible significant role to the quality and source of dietary protein in modulating
metabolic risk and link between proteins and diabetes [151]. Moreover, the levels of total
and animal-derived protein intake, but not the levels of vegetable protein, were associated
with a 30% increased risk of diabetes in a 10-year follow up study [118]. Similar findings



Nutrients 2021, 13, 1060 12 of 27

were also obtained in a more recent study showing a dietary pattern rich in plant protein
to be negatively associated with the risk of diabetes as opposed to a dietary pattern where
animal and red meat is the main source of dietary protein [152]. Whether the relationship
between BCAA levels and metabolic risk is causative or simply correlational remains highly
elusive and requires further investigation. The mechanisms underlying this association
intake are also still unclear.

Beyond BCAA content, the source of dietary protein is thought to influence metabolic
risk due to multiple other factors such as difference in iron and amino acid content [153,154].
Observational studies have shown an association between ferritin and T2DM suggesting a
role of high iron stores in diabetes development [155]. However, this underlying association
may be more complex than this simple link and has been reported to require further
investigation [156]. As a pro-oxidant element, iron, namely heme iron, may catalyze certain
cellular pathways that produce reactive oxygen species (ROS), thus leading to damage
in cellular tissues including pancreatic B-cells. The reduction in reserves of iron has been
suggested to be one of the advantages of reducing the intake of animal protein, which is
the major source of the bioavailable heme iron, in contrast to plant protein which contain
the less bioavailable and harder to absorb form of iron [157]. Moreover, plant proteins are
thought to be higher in L-arginine, an amino acid that was found to exert beneficial effects
on clinical outcomes of diabetic patients in a number of long-term RCTs [154,158,159].
Indeed, replacing around 35% of daily intake of animal protein with plant derived protein
led to significant improvements in levels of HbA1C, fasting insulin and fasting glucose in
diabetic patients compared to controls [154]. However, it is important to note that most of
the evidence differentiating between the metabolic effects of animal and vegetable proteins
are derived from prospective studies and need corroboration from randomized controlled
trials [96].

The optimal quantity of protein intake is another topic of controversy. High protein
diets have been advocated by diabetes experts arguing for the diet’s lower energy density
and higher satiating effect favoring weight loss, and lower endogenous and exogenous in-
sulin needs which is thought to reduce insulin induced lipogenesis and improve blood lipid
markers [160]. De novo lipogenesis is typically stimulated by the intake of carbohydrates
and is known to raise the levels of circulating triglycerides in the blood and promote the
development of fatty liver [160,161]. Besides, a high-protein hypocaloric diet was reported
to be more effective in reducing liver fat than a low protein diet, which was largely due to
reductions in hepatic fat uptake and lipid biosynthesis [162]. Further arguments in support
of high protein diets are related to their counteracting effects to the loss of muscle mass
and sarcopenia which are associated with chronic diseases and older age [163]. However,
skepticism surrounds the advantages of high-protein diets due to their higher content in
animal protein and its correlation with metabolic diseases and kidney function abnormali-
ties. Moreover, a number of studies have found that diets high in BCAA and protein in
general may increase the risk of insulin resistance by blocking intra-cellular insulin sig-
naling pathways and increasing plasma glucose levels via gluconeogenesis [136,164,165],
although opposite effects were reported elsewhere [166]. On the other hand, restricting the
intake of BCAA, particularly leucine, can trigger mitochondrial efficiency at the level of the
adipose tissue, alter the composition of the gut microbiome in favor of SCFA producing
species, and reduce insulin secretion by pancreatic beta cells without causing an increase
in glucose levels, which implies improved postprandial insulin sensitivity. In a recent
study by Karusheva et al. (2019), a diet low in BCAA was associated with a 20% increase
in insulin sensitivity compared to a high-BCAA diet in patients with T2DM [167]. In the
MENA region, the intake of BCAA and its association with risk of diabetes in a population
specific context have not been evaluated before with the exception of one Jordanian study
which found elevated BCAA plasma levels to be a feature of diabetic patients, congruently
to other populations [168].

Despite the evidence on the role of proteins in the development and management
of diabetes, current guidelines from the United States, United Kingdom and Canada do
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not address the risks or benefits of high protein diets [98,169,170]. The most recent ADA
standards of medical care (2019) maintains the position that adjusting the amount of
ingested protein beyond daily intake (which is typically 1–1.5 g/kg body weight/day
or 15–20% total calories) does not influence glycemic control nor CVD risk in diabetic
individuals without nephropathy. The ADA continues to recommend an individualized
approach with regards to protein intake [98]. To fill the gap in guidance, the Diabetes
Nutrition Study Group (DNSG) assessed the available evidence and found a protein intake
of 10% to 20% of daily energy intake (%E) (or 0.8–1.3 g/kg body weight) to be safe for
T2DM patients below 65 years of age, and a range of 15–20% of %E for people older than
65 years [160].

3.2.4. Fats

Research published over the past decades indicates that plasma fatty acids can me-
diate the risk for several metabolic disorders including insulin resistance and T2DM [58].
However, the evidence for an ideal amount of total fat intake for people with diabetes is
inconclusive, with fat quality appearing to be far more important than quantity. Different
types of fats exert different metabolic influences on glucose-insulin homeostasis. Whereas
the intake of animal derived fat, namely saturated fatty acids (SFA), and trans fatty acids
(TFA), has been historically associated with detrimental cardiometabolic outcomes such as
impaired insulin sensitivity, glucose intolerance, and T2DM, unsaturated fatty acids have
been generally thought to be protective [93]. Existing dietary guidelines for the prevention
and management of cardiometabolic diseases and diabetes generally recommend restricted
intake of SFA, TFA, and cholesterol, and higher consumption of monounsaturated fatty
acids (MUFA) and polyunsaturated fatty acids (PUFA) rich in omega 3. Current guidelines
also recommend a diet low in total fat and animal fat, and high in vegetable fat [98,169].
Despite these guidelines being based on a plethora of observational and experimental
evidence from ethnically and geographically diverse populations, the link between dietary
fat consumption and cardiometabolic health continues to be one of the vexed public health
issues. It appears that, although reducing dietary saturated fat was associated with a
lower risk of combined cardiovascular events, it had little or no impact on diabetes diag-
nosis [171]. Similarly, recent meta-analyses of large long-term studies have reported an
inverse association or no association of SFA with T2DM, challenging the traditional views
that SFA can only lead to adverse metabolic effects [171–175] (Table 2).

Table 2. Selected systematic reviews and meta-analyses on association of dietary fat with diabetes outcomes.

Author Sample Size Follow-up Objective Result

De Souza et al.
(2015) [173] - -

Association of fat
intake with mortality,

CVD and T2D

SFA not associated with
all-cause mortality, CVD

mortality, total CHD mortality,
ischemic stroke or T2D

Total TFA associated with
all-cause mortality, CHD and

CHD mortality but not ischemic
stroke or T2D

Industrial but not ruminant TFA
associated with CHD and CHD

mortality
Ruminant TFA inversely

associated with T2D

Imamura et al.
(2016) [176] 4220 adults with T2D 3–166 days

Effects of fat intake on
blood glucose, insulin,

HbA1c, insulin
sensitivity, and insulin

secretion

Isocaloric substitution of SFA
and carbohydrates with PUFA
significantly improved fasting

glucose and HOMA-IR, but not
fasting insulin

Schwingshackl et al.
(2017) [177]

187,068 adults with or
without T2D 2 weeks–22 years

Association between
intake of olive oil and

glycemic control

Highest versus lowest intake of
olive oil associated with 16%

decreased T2D risk
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Table 2. Cont.

Author Sample Size Follow-up Objective Result

Wanders et al.
(2019) [178]

576 adults with and
without T2D 3–16 weeks

Effects of plant-derived
PUFA on fasting

glucose, fasting insulin,
HOMA-IR, HbA1c,

post-challenge
measures of glucose

metabolism and
markers of insulin

sensitivity

-Isocaloric substitution of SFA or
carbohydrates with PUFA

reduced fasting insulin and
HOMA-IR, but not glucose

-Highest PUFA intake associated
with larger effects on fasting

insulin and HOMA-IR

Brown et al. (2019)
[179] - ≥24 weeks

Effects of dietary fat
intake on diabetes
diagnosis, fasting

glucose, fasting insulin,
HbA1c, HOMA-IR

T2D incidence associated with
omega 6 FA and inversely

associated with higher linoleic
acid and

Jiao et al.
(2019) [180]

11,264 adults with T2D
based on 2 cohort

studies

Cohort 1:
1980–2014
Cohort 2:

1984–2014

Association between
dietary fat intake and

mortality

-PUFA associated with lower
CVD and total mortality
-PUFA n-3, linoleic acid

associated with lower total
mortality

-MUFA of animal but not plant
origin associated with greater

total mortality
-Replacing 2% of energy from
SFA with PUFA or linoleic acid
associated with 13% and 15%

decreased CVD mortality
respectively and 12% decreased

total mortality for PUFA

Neuenschwander
et al.

(2020) [181]
53,185 adults 4.1 years–32 years

Association between
intake of different types
of dietary fat and T2D

incidence

-Vegetable fat (PUFA,
plant-based linoleic acid)

associated with lower T2D
incidence at low doses

-Animal derived long chain
omega 3 FA associated with

increased T2D incidence
-SFA, total omega 3 FA, trans FA
and MUFA not associated with

T2D incidence

T2D: type 2 diabetes; FA: fatty acids; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty
acids; TFA: trans fatty acids; HOMA-IR: homeostatic model assessment for insulin resistance; CHD: coronary heart disease; CVD:
cardiovascular diseases.

In a meta-analysis of 16 prospective cohort studies, an inverse association was found
between levels of odd-chain SFA and risk of T2DM [174]. Furthermore, higher intake of
dairy products, which are rich sources of SFA, has been associated with lower diabetes
risk [182–184].

Similar equivocal findings have been obtained on the effects of TFA in diabetes devel-
opment. While the traditional longstanding view has focused on TFA’s atherogenic effects
based on a considerable body of evidence associating TFA levels with negative metabolic
outcomes (e.g., worse fasting glucose, fasting insulin, HbA1c, insulin resistance index) [185],
more recent evidence differentiates between industrial TFA, found in processed foods,
and ruminant-derived TFA, which is produced by bacterial metabolism of PUFA in rumi-
nants’ stomach, and is correlated with decreased incidence of T2DM [173,185,186]. Due to
their detrimental effects on health, the Food and Drug Administration (FDA) has recently
determined that industrial TFA are no longer deemed to be generally recognized as safe
(GRAS), and banned their addition to foods [96].

One reason behind the divergence in the literature on dietary fat is that foods, despite
having similar fat content, include other constituents that interact within a complex food
matrix that provides foods with different functionalities and behaviors than those observed
when considering single nutrients in isolation [187]. Researchers have, indeed, argued
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that the current dietary recommendations fail to consider the food matrix and should
shift focus from single nutrients to whole foods. Moreover, recommendations to reduce
the intake of certain fatty acids without considering the type and composition of foods
may unnecessarily restrict the intake of other nutrients that reduce the risk of T2DM and
other NCDs, which may contribute to malnutrition and nutritional inadequacies, further
increasing vulnerability to adverse health outcomes [188].

The effects of reducing the intake of one nutrient are also thought to be dependent
on the replacing nutrient [89]. For decades, substituting SFA with PUFA has been recom-
mended and was associated with improved metabolic outcomes. The benefits of PUFA
intake, especially when in the place of SFA, are well-documented in the literature and are
thought to be possibly related to PUFA’s anti-inflammatory effects, reducing inflamma-
tion, and improving insulin sensitivity. In addition to that, PUFA, particularly those of
long-chains (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic
acid), are thought to be potent ligands and stimulators of G-protein coupled receptors
(GPCR), which have direct effects on insulin secretion. The binding of PUFA to GPCR is
also thought to indirectly increase the expression of GLUT-4 (glucose transporters type 4) in
adipocytes and muscle cells, which increases glucose uptake [189]. In a dose-response meta-
regression analysis of 102 randomized feeding trials by Imamura et al. (2016), the isocaloric
replacement of SFA or carbohydrates with PUFA was associated with significant reduc-
tions of fasting blood glucose, lowered HbA1c, and improved insulin secretion capacity
in patients with diabetes [176]. On a global scale, the PURE (Prospective Urban Rural
Epidemiology) study, which included more than 135,000 individuals from 18 countries,
found the substitution of carbohydrates with PUFA to be associated with lower mortality.
Moreover, this study associated a higher intake of total fat, SFA, MUFA, and PUFA with
lower total mortality, and found intake of SFA to be inversely associated with the incidence
of stroke [190].

Taken together, emerging evidence raise concern over current guidelines to restrict
the intake of certain fatty acids without considering the type of food and the replacing
nutrient, and highlight the need to consider a whole food approach instead of a single
nutrient approach in formulating dietary guidance for the management of diabetes.

3.2.5. Food Groups

Recently emerging evidence have prompted a global movement towards food-based
rather than nutrient-based guidelines for the prevention and dietary management of
diabetes. Dietary guidelines have accordingly reformulated their recommendations to
highlight the importance of limiting the consumption of specific foods and beverages that
are known to be associated with an increased risk of diabetes including red and processed
meats, sugar sweetened beverages (SSB), and refined carbohydrates, and increasing the
intake of foods that are thought to be protective such as whole grains, fruits, vegetables,
and dairy products [169,191].

The link between red and processed meats and risk of diabetes has been evaluated
by multiple meta-analyses and estimated to be between 1.13 to 1.19 and 1.19 to 1.51 per
100 g per day for red meat and processed meats respectively [191–196]. Based on data
from animal studies and published clinical trials, red and processed meats contain several
detrimental compounds that potentially contribute to their negative effects on insulin
resistance and diabetes risk, namely BCAA, advanced glycation end products (AGE),
trimethylamine N-oxide (TMAO), and nitrites, which have all been closely correlated
with altered glucose homeostasis and insulin resistance [195]. However, more recent
meta-analyses have revealed little or no effect of red and processed meat consumption
on risk of diabetes, and a very small reduction in T2DM risk with dietary patterns that
are lower in red and processed meat consumption [196–198]. Hence, further studies are
required to clarify the underlying mechanisms and investigate interactions among different
dietary components in order to make firm recommendations on red and processed meat
consumption [193].



Nutrients 2021, 13, 1060 16 of 27

The intake of SSB has been similarly strongly correlated with the risk of diabetes with
a pooled effect estimate of 1.31 (95% confidence interval 1.21–1.39) [199]. The consumption
of SSB acutely raises blood glucose levels, and fructose in SBB has been shown to promote
hepatic de novo lipogenesis and worsen insulin resistance which increases the risk of
T2DM [191,200]. In a meta-analysis of prospective studies by Schwingshackl et al. (2017),
the daily consumption of risk-increasing foods (red and processed meats, SSB, and eggs) at
respectively 170 g (2 servings), 105 g (4 servings), 750 mL (3 servings), 55 g (2 servings),
increased diabetes risk by 3-folds compared to non-consumption of these foods. Restricting
the intake of these foods was thought to decrease the risk of diabetes by around 70% [191].

Moreover, increasing the consumption of protective foods, namely whole grains, dairy
products, fruits, and vegetables was inversely correlated with diabetes risk. High diet
quality, as measured by Haines et al.’s Diet Quality Index [201], was associated with lower
prevalence of diabetes in Iran [202]. Moreover, increasing vegetable intake was protective
as compared to higher carbohydrate and meat consumption among Saudi adults [203].
In addition to that, increasing the consumption of whole grains to up to 50 g/day has
been associated with a 25% decrease in diabetes risk. Several mechanisms could possi-
bly underlie the protective effects of whole grain consumption including its association
with decreased adiposity and lower fasting glucose and insulin levels [204]. Additionally,
a number of nutrients such as resistant starches, soluble fibers, and phytochemicals may
mediate the health effects of whole grains [205].

For the consumption of fish, a different direction in the association with diabetes risk
was found based on geographical regions of the studies, whereby a strong and positive
association was found for studies conducted on American populations and an inverse as-
sociation was found in studies conducted on Asian populations. This regional discrepancy
was highlighted in other studies as well [206,207], and could be explained by variations in
the type of fish consumed, cooking methods, and levels of exposure to pollutants [206].

The association between consumption of dairy products and diabetes risk was sim-
ilarly dependent on geographical region, whereby an inverse association was found in
Asian and Australian but not in American or European studies [201]. In addition to that,
no association was found with dairy products of high fat content in the aforementioned
studies and meta-analyses [201,208]. Accordingly, it has been concluded that avoiding
harmful foods and increasing the intake of protective foods could cumulatively decrease
risk of diabetes by about 80% [201]. The findings of Schwingshackl et al. (2017) have been
corroborated by other studies and meta-analyses [176,209–211].

4. Improving Dietetic Care for Diabetes in the MENA Region

The prevalence of diabetes in the MENA region is increasing across all countries
but at remarkably staggering rates in the GCC region where economic development and
income per capita is the highest compared to other Mediterranean countries (Figure 1).
Relative to their wealth, GCC countries, particularly Oman, Qatar, UAE and Kuwait, ap-
pear to be substantively under-investing in NCD related research with notably greater
commitment to cancer research as compared to diabetes or CVD research, despite the
latter causing the most significant health burden [212]. Due to the ongoing demographic
transition and economic development in the region, the at-risk of NCDs population in
MENA countries is expected to grow larger, compounded by an increasing exposure to an
obesogenic environment where a westernized dietary pattern is widely prevalent [212,213].
The significant contribution of this type of diet rich in sugar and processed foods to the
escalating disease burden in the region has been extensively discussed in the literature
and re-iterated in this review. A systematic review on the association of dietary factors
and T2DM in the Middle East showed that fast food and refined grains consumption is
linked to a higher risk of diabetes, whereas consumption of whole grains consumption
is associated with a reduced risk [214]. Furthermore, data from Saudi Arabia revealed
that consumption of an unhealthy diet significantly increased the risk of T2DM among the
Saudi population. In a case-control study, the routine consumption of Kabsa (a traditional
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rice-based dish in Saudi Arabia), bakery items, and French fries was found to significantly
increase the risk of T2DM [203]. Alternatively, a cross-sectional study in Tehran indicated
that whole-grain intake was protective, whereby the highest quartile of whole-grain con-
sumption was associated with a lower risk of T2DM [215]. In Lebanon, a case-control study
evaluating the association between different dietary patterns and T2DM showed that a
dietary pattern rich in refined grains, desserts, and fast-foods significantly increases the
T2DM risk, while the traditional Lebanese pattern exhibits a protective effect [29]. Despite
the pervasively recognized benefits of the traditional Mediterranean diet in the prevention
and management of diabetes, obesity, and several other diseases, its adoption in its native
countries is eroding, which constitutes an additional public health challenge for the efforts
to prevent and manage NCDs epidemics. Many countries of the region have set action
plans and interventions targeting dietary habits as an important modifiable risk factor in
NCDs. Nevertheless, responses have been lagging and discordant with the magnitude
of the problem, with many challenges that hinder effective implementation [212]. Indeed,
6 out of 15 countries in the region do not have a national strategy for diabetes, and many
still do not have a national action plan against overweight and obesity which are major
risk factors for NCDs [216].

A number of dietary priorities have been identified in the literature and highlighted in
this review that need to be addressed in order to improve dietary management of diabetes
and NCDs in general in the MENA region. At the level of the individual, lack of knowledge
and appreciation of the role of the dietitian in diabetic care are salient factors that negatively
influence dietary behaviors and disease management and constitute a major barrier for
effective self-management of diabetes in countries of the region [217].

Improving dietetic care for diabetes also requires greater investment in diabetes
and nutrition research, and gathering region-specific and country-specific data on food
consumption patterns, in addition to increasing healthcare expenditure which ranged
between 3% and 7.6% in 2015 and was way lower than the world average of 9.9% [216].

Actions to improve dietetic care of diabetes in the region require political commitment
and the creation of a clear research agenda that identifies knowledge gaps and informs
policy makers about the most effective and most feasible action plans to mitigate the health,
social, and economic burdens of diabetes and NCDs [212]. Recently, a few governments in
the MENA region have devised several policies, programs and strategies to address the
growing prevalence of diabetes. Consequently, new taxes, legislations, and government
policies are driving demand for fiber-enriched, sugar-reduced, lower fat foods, and dairy
alternatives, in order to combat lifestyle diseases. Examples of legislation across the region
include the implementation of sin taxes on sugar and trans fats in a few countries such
as Saudi Arabia, Kuwait, Oman, Qatar and UAE. Furthermore, it has been reported that
consumers in the Middle East are becoming more aware of the relevance of healthy eating
as a result of several educational programs that addressed the importance of lowering
intake of trans fats and added sugars. One example of such programs is the Healthy Food
Strategy introduced by the Saudi government in 2018 in order to promote healthy lifestyles
in an effort to combat obesity and its complications, most notably T2DM [216].

Finally, further implementation of a comprehensive whole food system approach
targeting the obesogenic environment and food supply chain is ought to be adopted
in the MENA region to foster the adherence to the traditional Mediterranean diet as a
cost-effective and sustainable dietary pattern against NCDs. The adoption of a whole
food system approach requires concerted efforts from different stakeholders and sectors
including individuals, policy makers, the food industry, and research communities to
improve the quality of diabetic care in the region and mitigate its morbidity and mortality.

5. Conclusions

Dietary and lifestyle interventions and adhering to recommendations of specialized
healthcare professionals are a cornerstone for the effective prevention and management
of diabetes. Research to understand NCDs’ risk factors and optimize dietary advice to



Nutrients 2021, 13, 1060 18 of 27

diabetics is ongoing and emerging evidence is challenging many longstanding notions.
Over the past decade, dietary guidelines have moved away from focusing on single
nutrients to studying the effects of whole foods, food groups or dietary patterns. Diets
focusing on single nutrients or macronutrients whether they are carbohydrate, protein or fat
are often associated with adverse effects and fail to consider the substituting nutrient, other
nutrients’ interactions among each other and the source of foods, among other confounders.
While nutrient-based research is crucial to uncover the mechanisms of actions underlying
the effects of foods on health, a dietary pattern focused approach has been advocated to
become the foundation for dietary guidelines as recommending intake of foods instead of
nutrients is more readily translatable into practical advice [218]. The translation of nutrition
guidelines into easy practical advice is especially important for individuals with diabetes
who are required to have advanced skills of counting carbohydrate intake depending on
their insulin dosage and reading nutrition labels [219]. Moreover, until today, the evidence
to confirm the superiority of any particular macronutrient distribution over the other
for the prevention and management of diabetes remains lacking. The Mediterranean and
DASH diets are considered amongst the healthiest dietary patterns available and are almost
consistently associated with health benefits. These diets largely consist of consuming fresh
and unprocessed foods such as fruits, vegetables, nuts, legumes, whole grains and olive
oil that are known to be associated with positive health outcomes, while limiting the
consumption of unhealthy, often processed foods such as processed red meat and SSB.
In the context of diabetes, the benefits of the Mediterranean and DASH diets specifically
include prevention of diabetes, decreasing mortality and CVD risk and improving glycemic
control, in addition to their positive association with weight loss in the obese [219,220].

In the MENA region, where the prevalence of obesity and NCDs are soaring, adherence
to the native Mediterranean diet is eroding and challenged by rapidly occurring nutrition
transition driven by economic growth, globalization, and urbanization. Relative to the
available resources in rich countries of the region, efforts to halt the obesity and NCD
epidemics are lagging and do not match the magnitude of the burdens. One of the key
priority areas in the region to improve care for diabetes and other NCDs is the need to
increase biomedical research investments in order to fill the gaps in region-specific data
and nutrition research, as most of the current knowledge is extrapolated from the western
part of the world. The potential role of dietetic care as cost-effective clinical and public
health interventions is also far from being realized, challenged by the lack of awareness
and appreciation of its evident effectiveness in the prevention and management of this
disease at the levels of the public, healthcare providers, and governments. Scaling up
the action against NCDs and obesity requires devising policies and strategies to better
integrate dietetic services within the multi-disciplinary framework of care for diabetes,
and increase their utilization by the public and referring physicians. While no single
intervention can halt the rising NCD and obesity epidemics, sustained and consorted
efforts from all stakeholders, greater political and fiscal commitments, and adopting a
whole system approach that creates and fosters a healthy food environment and promotes
the adherence to the region’s native Mediterranean diet are desperately needed.
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