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In proliferative diabetic retinopathy (PDR), activated Müller glial cells (MGCs) exhibit 
increased motility and a fibroblast-like proliferation phenotype that contribute to the 
formation of fibrovascular membrane. In this study, we investigated the capacity of high 
glucose (HG) to regulate the expression of cell surface receptors that may participate 
in the proinflammatory responses of MGCs. We found that MGCs express a G-protein 
coupled chemoattractant receptor formyl peptide receptor 2 (Fpr2) and fibroblast growth 
factor receptor 1 (FGFR1), which mediated MGC migration and proliferation in response 
to corresponding ligands. HG upregulated Fpr2 through an NF-κB pathway in MGCs, 
increased the activation of MAPKs coupled to Fpr2 and FGFR1, which also further 
enhanced the production of vascular endothelial growth factor by MGCs in the presence 
of HG. In vivo, Fpr2 was more highly expressed by retina MGCs of diabetic mice and the 
human counterpart FPR2 was detected in the retina MGCs in fibrovascular membrane 
of PDR patients. To support the potential pathological relevance of Fpr2, an endogenous 
Fpr2 agonist cathelin-related antimicrobial peptide was detected in mouse MGCs and 
the retina, which was upregulated by HG. These results suggest that Fpr2, together with 
FGFR1, may actively participate in the pathogenesis of PDR thus may be considered as 
one of the potential therapeutic targets.
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inTrODUcTiOn

Diabetic retinopathy (DR) is a severe complication of diabetes and the leading cause of blindness. 
Many abnormalities seen in the retina of diabetes patients are associated with inflammation (1). 
Consequently, anti-inflammatory therapies significantly reduce the progression of DR in animal 
models. DR is staged based on levels of severity to mild, moderate, and severe nonproliferative 
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DR, followed by advanced proliferative DR (PDR). In PDR, 
proliferative neovasculature and fibrovascular tissues extend 
from the retina into the vitreous. Tractional forces originating 
within these tissues cause vitreous hemorrhage, retinal scars, and 
tractional retinal detachment, leading to irreversible vision loss. 
Although the origin and the process of fibrovascular membrane 
formation remain unclear, it is believed that inflammation linked 
to hyperglycemia is the basis for DR (2).

Diabetic epiretinal membrane cells including glial cells, par-
ticularly, Müller glial cells (MGCs) and infiltrating immune cells 
play a central role in the formation of DR (3). MGCs span the 
entire thickness of the retina and are involved in retinal glucose 
metabolism and regulation of blood flow (4). Under pathological 
conditions, MGCs act as regulators of immune and inflammatory 
responses (5), becoming a major source of inflammatory and 
angiogenetic factors (6). In addition, MGCs have the capacity 
to transdifferentiate into myofibroblastic cells (2). Therefore, 
MGCs are involved in three key steps during the progression 
of fibrovascular membrane formation (7): (1) translocation to 
above or below the retina; (2) increases in cell number through 
mitosis; and (3) generation of tractional forces through contrac-
tion of preexisting or newly synthesized extracellular matrices. 
Moreover, MGCs produce angiogenetic factors such as vascular 
endothelial growth factor (VEGF), which is essential for the 
progression of DR.

Müller glial cells sense the microenvironment changes, 
including those that associated with high glucose (HG) through 
cell surface receptors and sensors. Fibroblast growth factor (FGF) 
is reported to play a role in the development of DR mediated by 
MGCs (8–10) by promoting MGC proliferation and migration. 
However, the contribution of G-protein-coupled chemoattract-
ant receptors (GPCRs) which are specialized in mediating cell 
chemotaxis, to MGC recruitment and adhesion in PDR remains 
unclear.

In this study, we report that HG not only upregulates the 
function of fibroblast growth factor receptor 1 (FGFR1) on 
mouse MGCs but also enhances the expression and function of a 
chemoattractant GPCR, formyl peptide receptor 2 (FPR2, Fpr2 in 
mice) to exacerbate MGC chemotaxis, proliferation and produc-
tion of VEGF, therefore contributing to the progression of PDR.

MaTerials anD MeThODs

animals
To induce diabetes, 6-week-old C57BL/6 mice were given five 
consecutive intraperitoneal injections of streptozotocin (STZ; 
60  mg/kg body wt/day) (Sigma-Aldrich). Twelve weeks after 
injection, mice were sacrificed and eyes were harvested and 
embedded in OCT for sectioning. Animal study was approved 
by the Animal Care and Use Committee of the National Cancer 
Institute at Frederick, NIH.

reagents
Anti-Fpr2 (GM1D6) monoclonal antibody and anti-CRAMP 
(anticathelin-related antimicrobial peptide) (R-170) poly-
clonal antibody were from Santa Cruz (Santa Cruz, CA, USA).  

Anti-FGFR1, antiglutamine synthetase (anti-GS) and anti-
Vimentin antibodies, and an FGFR antagonist PD 173074 
were from Abcam (Cambridge, UK). The Fpr2 antagonist 
(WRW4) was purchased from Tocris Bioscience (R&D Systems,  
Minneapolis, MN, USA). Mouse CRAMP (NH2-ISRLAGLLRK  
GGEKIGEKLKKIGQKIKNFFQ KLVPQPE-OH) was synthe-
sized by New England Peptide LLC (Gardner, MA, USA). Mouse 
b-FGF was purchased from Pepro Tech (Rocky Hill, NJ, USA). 
Sphingosine-1-phosphate (S1P) was purchased from Cayman 
Chemical Company (MI, USA). Antibodies specific for total 
ERK1/2, ERK1/2 phosphorylated at Tyr-204, phosphor (P)-p38 
MAPK, and total p38 MAPK, were purchased from Cell Signaling 
Technology (Beverly, MA, USA). The IκB-α inhibitor BAY 
11-7082 was purchased from Selleckchem (TX, USA). fMLF was 
obtained from Sigma-Aldrich.

Mgc culture
Primary mouse retinal MGCs were obtained from newborn 
wild-type (WT) C57BL/6J and Fpr2−/− mice (11) using a modified 
protocol (12). Following euthanasia, mice were rapidly enucle-
ated and their globes immersed in Dulbecco’s modified Eagle’s 
medium (DMEM) containing 1:1,000 penicillin/streptomycin in 
the dark at room temperature (RT) for 6  h. The eyeballs were 
subsequently rinsed in phosphate-buffered saline (PBS), incu-
bated for 25 min at 37°C with 0.05% trypsin in 0.5 mM EDTA 
and 200  U/mL collagenase, and then rinsed three times with 
DMEM containing 10% FBS (Gibco/Invitrogen, Carlsbad, CA, 
USA) to terminate the digestion reaction. Retinas removed from 
the eyeballs and dissociated by trituration were gently pipetted 
out and placed in culture dishes containing DMEM/F12 (Gibco, 
Gaithersburg, MD, USA) with 10% FBS and 1% penicillin–strep-
tomycin. Culture medium was replaced 24  h after seeding. At 
3- to 4-day intervals, cultures were shaken vigorously to detach 
non-adherent cells, which were then removed from the culture by 
aspiration. When the remaining adherent cells reached 80% con-
fluence, they were detached from the plastic using 0.05% trypsin, 
resuspended in fresh DMEM containing 10% FBS, and replanted 
into new flasks. Immunohistochemical staining of the adherent 
cells showed >98% parity MGCs evidenced by immunopositivity 
for GS and vimentin. Experiments with MGCs were performed 
with cells at passages 4–8. All cells were maintained at 37°C in 5% 
CO2, 95% air, and media were changed every 2 days. To study the 
effect of HG, the cells were exposed to either normal (physiologi-
cal) glucose (NG) (5.5 mM) or HG (25.0 mM) concentrations for 
indicated time points.

rT-Pcr
An RNeasy mini kit (QIAGEN) was used to extract total mRNA 
from MGCs. The expression of Fpr2 and mFGFR1 was examined 
by RT-PCR. The primers for Fpr2 were: forward, CCT GGC CCA 
TGA AAA CAT AG; reverse, ACA GCA GTT GTG GCT TCC 
TT. The primers for mFGFR1 were: forward, GAG GGT AGA 
ACT GGA CAG AAA C; reverse, GAC CAA CCA ACC AAC 
CAA AC. β-actin primers were: forward, TGT GAT GGT GGG 
AAT GGG TCA GAA; reverse, TGA TGT CAC GCA CGA TTT 
CCC TCT. All PCR products were resolved on 1.5% agarose gel by 
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electrophoresis and visualized after ethidium bromide staining. 
For quantitation, gels were scanned and the pixel intensity of each 
band was determined using ImageJ software (NIH Image) and 
normalized against the amount of β-actin.

chemotaxis assays
Chemotaxis assays for MGCs were performed with 48-well 
chemotaxis chambers as described previously (13). Wells in the 
lower compartment were filled with 25–27 µl medium containing 
different concentration of chemoattractants. The lower compart-
ments were then covered with 10-µm pore polycarbonate mem-
branes (NeuroProbe, Cabin John, MD, USA), which were coated 
with 200 µg/ml metrigel (Corning, NY, USA). Cells in RPMI 1640 
containing 1% BSA (50 µl, 1.8 × 106/ml) were placed in wells of 
the upper compartment. After incubation of the chambers at 
37°C for 180  min, the membranes were collected, removed of 
non-migrating cells on the upper surface of the membrane, fixed 
and stained with Three-Step Stain Set (Thermo). The results are 
expressed as the mean ± SD of migrated MGCs counted in three 
high powered fields of the light microcopy or as the chemotaxis 
index (CI), representing the fold increase in the number of 
migrated cells in response to chemoattractants over spontaneous 
cell migration (to control medium without chemoattractant). 
For inhibition of MGC chemotaxis by FGFR or Fpr2 antagonist, 
MGCs were pretreated with the Fpr2 antagonist WRW4 or the 
FGFR inhibitor PD 173074 for 30  min before measurement of 
chemotaxis.

Mgc Wound closure
Müller glial cell wound closure was evaluated by incubating 
the cells in 10% FBS-containing media until confluent. Several 
parallel straight scratch lesions were made on the cell monolayer 
with a sterile 1,000 µl plastic pipette tip, producing 1 mm wide 
scratches. The culture media were replaced with DMEM con-
taining 1% FBS in the absence or presence of HG. The cultures 
were supplemented with or without CRAMP, S1P, or b-FGF. The 
wound closure was determined by phase contrast microscopy at 
designated time points.

cell Proliferation
Müller glial cells (5 × 104) were seeded in each well of a six-well 
plate and incubated for 24 h in DMEM with 10% FBS, followed 
by culture in the absence or presence of CRAMP or b-FGF in 
DMEM with 2% FBS. Cells were digested then counted after 24, 
48, and 72 h under phase-contrast microscopy.

immunostaining
Müller glial cells were seeded at 1.0  ×  104 cells/well on 8-well 
chamber slides (Nalge Nunc, Naperville, IL, USA), washed twice 
with PBS and fixed for 10  min with 4% paraformaldehyde in 
PBS, followed by Triton X-100 (0.1%) for 15 min. The cells were 
then incubated with 5% BSA in PBS for 1 h followed by addi-
tion of primary antibodies (Abcam, Cambridge, UK) overnight 
at 4°C. Secondary antibodies coupled to Alexa Fluor® 488 and 
Alexa Fluor® 555 (Abcam) (45 min, RT) were then added to the 

culture. After staining with DAPI to visualize nuclei, the cells 
were analyzed under a fluorescence microscope (Olympus IX 71).

Western immunoblotting
Müller glial cells grown in 60-mm dishes to subconfluency were 
cultured overnight in FBS-free DMEM. After treatment with 
CRAMP (10−6 M) or b-FGF (10 ng/ml), the cells were lysed with 
1× SDS sample buffer, sonicated for 15  s, and then heated at 
100°C for 5 min. Cell lysates were centrifuged at 12,000 rpm (4°C) 
for 5 min and the protein concentration in the supernatant was 
measured by the Micro bicinchoninic acid protein assay system 
(Pierce, Rockford, IL, USA). Cell lysates were then electro-
phoresed on 10% SDS-PAGE-precast gels (Invitrogen, Carisbad, 
CA, USA) under reducing conditions and then transferred onto 
Immunoblot polyvinylidene membranes (Bio-Rad, Hercules, 
CA, USA). The membranes were blocked with 5% nonfat milk 
then were incubated with primary antibodies overnight at 4°C. 
After incubation with a HRP-conjugated secondary antibody 
for 1 h at RT, images were quantified using a G-BOX GeneSnap 
system (SYNGENE). For detection of total p38, ERK1/2 and IκB 
the membranes were stripped with Restore Western blot strip-
ping buffer (Pierce, Rockford, IL, USA), followed by incubation 
with respective antibodies.

enzyme-linked immunosorbent assay
Confluent MGC layer was treated with CRAMP (10−6  M) or 
b-FGF (10  ng/ml) in DMEM with 2% FBS. The conditioned 
media were then collected at 24 h for analysis of VEGF-A ELISA 
kit (eBioscience) according to the supplier’s instructions.

Patients and Tissue samples
Study of patient materials was conducted according to the 
principles of the Declaration of Helsinki and was approved by 
the Affiliated Hospital and the Ethical Committee of Nantong 
University, China. Fibrovascular membranes and vitreous from 
patients with PDR, macular epiretinal membrane and vitreous 
from patients with idiopathic macular epiretinal membrane but 
without diabetic ocular diseases, were collected at the Affiliated 
Hospital of Nantong University (Nantong, China). All patients 
gave informed consent before enrollment. The tissues were 
embedded in OCT for sectioning. Undiluted vitreous samples 
were collected before the start of the conventional 3 ppp vitrec-
tomy (23 Gauge, Constellation, Alcon Instruments, Fort Worth, 
TX, USA) without an infusion of artificial fluid. The samples 
were collected by manual suction into a sterile syringe from the 
vitrectomy then transferred into sterile 1.5 ml Eppendorf tubes 
and immediately frozen at −80°C until analysis.

statistics
Unless otherwise specified, all experiments were performed 
at least three times. Data are presented as the mean  ±  SD. A 
two-tailed Student’s t-test or ANOVA was used for evaluating 
statistical significance of the difference between testing and con-
trol groups. A P value less than 0.05 was considered statistically 
significant.
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FigUre 1 | The expression of formyl peptide receptor 2 (Fpr2) by mouse Müller glial cells (MGCs). Primary mouse MGCs were exposed to normal glucose (5.5 mM, 
NG) or high glucose (25.0 mM, HG) for 24 h. (a) Staining of the cells with vimentin (green) and glutamine synthetase (GS; red) to confirm the nature of MGC.  
(B) Increased Fpr2 mRNA in HG-treated MGCs. *Indicates significantly increased Fpr2 mRNA in HG-treated MGCs compared with cells treated with NG (p < 0.05). 
(c) Increased level of Fpr2 shown by fluorescence intensity in HG-treated MGCs. No Fpr2 immunoreactivity was detected in MGCs from Fpr2−/− mice. *Indicates 
significantly increased Fpr2 in fluorescence intensity in HG-treated MGCs compared with cells treated with NG (p < 0.05). (D) Western blotting showing 
phosphorylation of IκBα in MGCs induced by HG at the indicated time points. (e) The effect of IκB/NF-κB inhibitor BAY 11-7082 on Fpr2 expression by  
MGCs under HG for 24 h.
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resUlTs

hg Upregulates the expression of Fpr2 
and FgFr1 by Mgcs
We first investigated the expression of Fpr2 and FGFR1 in MGCs. 
The nature of MGCs was confirmed by their expression of the mark-
ers vimentin and GS (Figure 1A). Fpr2 expression was analyzed 
with RT-PCR and immunofluorescence. As shown in Figure 1B, 
Fpr2 mRNA was expressed by primary mouse MGCs and signifi-
cantly increased after 12 h incubation with HG. Figure 1C shows 
low level of Fpr2 immunoreactivity detected in MGCs cultured in 
NG. In contrast, after HG culture, there was a significant increase 
in Fpr2 immunofluorescent intensity in MGCs (Figure 1C). Fpr2 
was expressed on the membrane of MGCs and the fluorescence 
intensity (Figures S1A,B in Supplementary Material) and the 
protein levels of Fpr2 on cells treated with HG were significantly 
higher as compared with the cells treated with NG (Figure S1C in 
Supplementary Material). MGCs from Fpr2−/− mice did not show 
Fpr2 immunofluorescent staining (Figure 1C). The upregulation 
of Fpr2 mRNA and protein by HG was likely mediated through an 

NF-κB dependent signaling pathway as shown by increased IκB-α 
(Figure 1D) and NF-κB phosphorylation (Figures S1D and 2A in 
Supplementary Material) in HG-treated MGCs. The effect of HG 
on Fpr2 mRNA expression was attenuated by an IκB-α inhibitor 
BAY11-7082 (Figure 1E), which also inhibited CRAMP-induced 
phosphorylation of NF-κB-p65, but not p38, in MGCs (Figure 
S2B in Supplementary Material), indicating the specificity of 
BAY11-7082 on IκB/NF-κB pathway. FGFR1 expression was also 
analyzed with RT-PCR and immunofluorescent staining. HG did 
not affect FGFR1 mRNA expression, but significantly upregu-
lated FGFR1 protein in MGCs (Figures S2C–E in Supplementary 
Material). Mannitol, as a control for glucose, did not show any 
effect of the expression and function of Fpr2 or FGFR (data not 
shown).

hg enhances the Function of Fpr2 and 
FgFr1 expressed by Mgcs
The increased expression of Fpr2 and FGFR1 by MGCs treated 
with HG was associated with enhanced cell chemotaxis induced 
by Fpr2 and FGFR1 agonists. As shown in Figure 2A and Figure 
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FigUre 2 | Formyl peptide receptor 2 (Fpr2)- and fibroblast growth factor receptor 1 (FGFR1)-mediated chemotaxis of Müller glial cells (MGCs). MGC chemotaxis 
was measured by 48-well chambers. The results are expressed by the chemotaxis index (CI) defining the fold increase in cell response to chemoattractants vs. 
medium control (BM). (a) Migration of MGCs treated with normal glucose (NG) (5.5 mM glucose) or high glucose (HG) (25.0 mM, glucose) in response to cathelin-
related antimicrobial peptide (CRAMP). (B) Inhibition of CRAMP (10−5 M)-induced chemotaxis of MGCs by the Fpr2 antagonist WRW4. (c) Absence of chemotaxis 
of MGCs from Fpr2−/− (RS2 KO) mice in response to CRAMP. (D) MGC migration in response to b-FGF. (e) Inhibition of b-FGF (10 ng/ml) induced chemotaxis of 
MGCs cultured in HG by the FGFR antagonist PD 173074 (PD). (F) Chemotaxis of MGCs from Fpr2−/− mice in response to b-FGF. *Indicates significantly (p < 0.05) 
increased migration of MGCs cultured with HG compared with cells treated with NG. *Indicates significant (p < 0.05) inhibition of CRAMP-induced chemotaxis of 
HG-cultured MGCs.
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S3A in Supplementary Material, MGCs exposed to HG exhibited 
increased chemotaxic response to the Fpr2 ligand CRAMP as 
compared with cells cultured in NG. MGC chemotaxis induced 
by CRAMP was inhibited by the Fpr2 antagonist, WRW4 
(Figure 2B; Figure S3B in Supplementary Material), indicating 
the involvement of Fpr2 in CRAMP-induced MGC chemotaxis. 
The result was also verified by using MGCs from Fpr2−/− mice 
that failed to show any chemotaxis response to CRAMP, despite 
exposure to either NG or HG in culture (Figure  2C; Figure 
S3C in Supplementary Material). MGCs cultured in HG also 
showed increased chemotaxis to b-FGF, which was abolished 
by the FGFR inhibitor PD 173074 (Figures 2D,E; Figures S3D,E 
in Supplementary Material). MGCs from Fpr2−/− mice retained 
chemotaxis response to b-FGF, indicating the receptor specificity 
(Figure  2F; Figure S3F in Supplementary Material) for either 
Fpr2 or FGFR1 expressed by MGCs.

hg accelerates the rate of craMP- and 
b-FgF-induced Wound closure by Mgcs
The motility of MGCs was further measured by a scratch-wounding 
model, in which HG increased the rate of wound closure by MGCs 
in response to CRAMP and b-FGF. Combination of CRAMP 
and b-FGF showed an additive effect on the capacity of MGCs 
to move toward the center line of the wound (Figures  3A,B). 
Increased MGC movement toward the wound center in the pres-
ence of HG with CRAMP or b-FGF was attenuated by WRW4 
and PD 173074, the inhibitors of Fpr2 and FGFR1, respectively 
(Figures 3C,D) and FGFR1 (Figures 3E,F). We also compared 
the functions of Fpr2 ligand with S1P, which has been reported to 

promote the proliferation and migration of MGCs by activating 
sphingosine-1-phosphate receptor 1 (S1PR1) (14, 15). Our study 
confirmed that S1P promotes the proliferation and migration of 
MGCs in monolayer scratching experiments (Figures S4A,B in 
Supplementary Material), which were enhanced by HG (Figure 
S4C in Supplementary Material). However, S1P failed to induce 
the directional migration, i.e., the chemotaxis, of MGCs (Figures 
S5A,B in Supplementary Material).

hg enhances the Proliferation of Mgcs in 
response to Fpr2 agonist craMP
We then investigated the effect of Fpr2 on MGC proliferation. 
MGCs cultured in the presence of HG showed a significantly 
increased proliferation as compared with MGCs treated with 
NG (Figure 4A). Treatment with CRAMP further enhanced the 
proliferation of MGCs cultured in HG (Figures 4B,C). However, 
treatment with CRAMP did not enhance the proliferation of 
MGCs cultured in NG (Figure 4D). b-FGF showed the similar 
effect on MGCs as CRAMP (Figures  4E–H). Thus, Fpr2 and 
FGFR1 upregulated by HG amplified proliferation of MGCs in 
response to their respective ligands.

hg increases the activation of erK1/2 
and P38 in Mgcs by Fpr2 and FgFr1 
ligands
MAPK-signaling pathway plays an important role in multiple cel-
lular programs such as proliferation, differentiation, chemotaxis 
and production of cytokines. We therefore examined the capacity 
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FigUre 3 | The effect of high glucose (HG) on formyl peptide receptor 2 (Fpr2)- and fibroblast growth factor receptor 1 (FGFR1)-mediated Müller glial cell (MGC) 
wound closure. Wound closure was measured to analyze the effect of cathelin-related antimicrobial peptide (CRAMP) (10−6 M) and b-FGF (10 ng/ml) on MGC 
migration toward the centerline of the wound under normal glucose (NG) or HG. (a) Wound closure measured at 12 h in the presence or absence of CRAMP or 
b-FGF. (B) Quantitative measurement of the distance of cell migration. *Indicates significantly increased rate of wound closure shown by MGCs cultured in HG 
compared with cells treated with NG (p < 0.05). (c) Inhibition by Fpr2 antagonist WRW4 of wound closure by MGCs under HG for 12 h. (D) Quantitative cell 
migration distance based on results shown in (c). *Indicates significant (p < 0.05) inhibition of CRAMP-induced wound closure by MGCs cultured in HG by the 
WRW4. (e) Inhibition by FGFR1 inhibitor PD 173074 (PD) of wound closure by MGCs under HG for 12 h. (F) Cell distance measured based on results shown in  
(e). *Indicates significant (p < 0.05) inhibition of FGF-induced wound closure by MGCs cultured in HG by the FGFR1 inhibitor PD 173074 (PD).
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of Fpr2 to activate MARKs in MGCs in the presence of HG. 
MGCs cultured in HG showed increased sensitivity than the cells 
cultured in NG by more rapid phosphorylation induced by b-FGF 
(5 min) (Figures 5A–D) and CRAMP (1 min) (Figures 5E–H). 
HG-cultured MGCs also displayed more higher levels of phos-
phorylation of NF-κB-p65 than NG-cultured cells in response 
to CRAMP (Figures S6A,B in Supplementary Material). These 
results suggest that HG prepares MGCs for amplified responsive-
ness to proinflammatory stimulants.

Mgcs activated by hg Promotes the 
Production of VegF in the Presence of 
Fpr2 and FcFr agonists
Proliferative DR is characterized by rigorous neovascularization. 
Since MGCs are major source of VEGF critical for angiogenesis 
in the retina, we measured VEGF production by MGCs. HG 
increased the production of VEGF by MGCs, which was further 
enhanced by CRAMP (Figure  6A) and b-FGF (Figure  6B) 

treatment. Thus, MGCs activated by HG are capable of producing 
increased VEGF after stimulation with Fpr2 and FGFR agonists. 
To corroborate the clinical relevance, we measured VEGF in 
vitreous of patients with PDR. Figure 6C shows higher levels of 
VEGF in vitreous of PDR, suggesting the potential of HG to pro-
mote proinflammatory responses and angiogenesis in the retina.

increased expression of Fpr2 in Diabetic 
Mouse retina and in Fibrovascular 
Membrane from PDr Patients
We further examined the expression of Fpr2 in MGCs in the 
mouse retina. In normal mouse retina, Fpr2 was expressed in 
the inner nuclear layer as measured by immunofluorescence 
(Figure 7A). The expression of Fpr2 was markedly upregulated 
in the retina of diabetic mice, with increased proliferation of 
MGCs to form a thicker layer (Figure 7B). In patients with PDR, 
FPR2 was also highly expressed in the fibrovascular membrane 
(Figure 7C), suggesting the involvement of FPR2 in the develop-
ment of fibrovascular membrane in DR.
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FigUre 4 | The effect of formyl peptide receptor 2 (Fpr2) and fibroblast growth factor receptor 1 (FGFR1) on Müller glial cell (MGC) proliferation in the presence or 
absence of high glucose (HG). MGC proliferation was examined in the presence of cathelin-related antimicrobial peptide (CRAMP) (10−6 M) or b-FGF (10 ng/ml) 
under normal glucose (NG) or HG for 24, 48, and 72 h. (a–D) CRAMP-induced MGC proliferation under HG or NG condition. (e–h) b-FGF-induced MGC 
proliferation under HG or NG condition. Graphs represent the mean ± SEM of triplicate samples (n = 3). *Indicates significantly (p < 0.05) increased MGC 
proliferation in HG compared with the cells in NG. #Indicates significantly (p < 0.05).
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hg Upregulates the expression of Fpr2 
agonist craMP in Mgcs and in Diabetic 
Mouse retina
To investigate the possibility of Fpr2 expressed by MGCs to interact 
with endogenous agonist CRAMP in the retina, we used immu-
nofluorescence to detect CRAMP in isolated MGCs and in the 
mouse retina. Figures 8A,B shows that primary MGCs under NG 
exposure contained a low level of CRAMP, which was significantly 
increased after treatment with HG. In vivo, CRAMP was readily 
detectable in normal mouse retina and its level was markedly 
increased in MGCs from diabetic mouse retina (Figures 8C,D). 
The potential participation of endogenous agonist CRAMP in 
the pathophysiology of retina was evidenced by the observation 
that MGC proliferation in the presence of HG was attenuated by 
the Fpr2 antagonist WRW4 in the absence of CRAMP, FGF or 
S1P stimulation (Figure  3C; Figures S4A,B in Supplementary 
Material). These observations suggest the existence of an Fpr2-
CRAMP interactive axis in the retina, which may respond to HG 
present in diabetes to promote inflammation and angiogenesis.

DiscUssiOn

In this study, we have shown that HG enhanced the expression 
and function of Fpr2 and FGFR1 in MGCs through an NF-κB 
dependent signaling pathway. HG promotes MGC proliferation, 
random migration and directional chemotaxis and VEGF secre-
tion in response to the agonists for Fpr2 and FGFR1 that may 
exacerbate the pathogenesis of fibrovascular membrane forma-
tion in PDR.

Sphingosine-1-phosphate is a sphingolipid synthesized by 
sphingosine kinase (SphK), which has been reported to promote 

the proliferation and migration of MGCs by activating S1PR1, 
one of the five S1PR subfamily members (S1PR1-5) (14). MGCs 
synthesize S1P, which signals through S1P3 to activate PI3K 
and ERK/MAPK pathways to induce MGC migration in wound 
scratching assays (15). Our study confirmed that S1P promotes 
the proliferation and migration of MGCs in monolayer scratch-
ing experiments, which are enhanced by HG. However, while 
S1P increases the migration of MGCs in monolayer scratching 
assays where S1P is not present as a gradient, it fails to induce the 
directional migration, i.e., chemotaxis, of MGCs. This is distinct 
from the effect of Fpr2, which not only increases MGC prolif-
eration and healing of monolayer wound under HG but also the 
directional migration (chemotaxis), a key event for cell recruit-
ment under inflammatory conditions. Therefore, S1P receptors 
and Fpr2 may contribute to the pathogenesis of MGC-mediated 
DR at different disease stages.

Diabetic retinopathy differs from traditional pathogenic 
microbe-induced inflammation in the eye, manifesting a low-
level, chronic, and atypical inflammatory process. Cytokines, 
chemokines, adhesion molecules, prostaglandins, and inflam-
matory cells including macrophages and neutrophils participate 
in a complex chain of events in DR (16–18). Leukocytosis is 
particularly present in the retinas of diabetic mice (19). In rats, 
leukocytosis is associated with retinal endothelial cell injury and 
death (20). MGCs are a major source of inflammatory mediators 
(21). High-throughput profiling demonstrates diabetes-induced 
expression of genes in MGCs that are mostly associated with 
inflammation (22), suggesting that MGCs contribute to inflam-
matory responses during exposure to HG and the development 
of DR. An important angiogenic factor VEGF is rapidly released 
from MGCs in early DR, enhancing the extension of microves-
sels with concomitant decrease in anti-angiogenic pigment 
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FigUre 6 | Production of vascular endothelial growth factor (VEGF) by Müller glial cells (MGCs). MGCs were treated with (a) cathelin-related antimicrobial peptide 
(CRAMP) (10−6 M) or (B) b-FGF (10 ng/ml) for 12 h followed by ELISA to measure the production of VEGF in the supernatants. *Indicates significantly increased 
production of VEGF (p < 0.05). (c) VEGF production in the vitreous homogenate from patients with or without diabetic retinopathy (DR). *Indicates significantly 
increased production of VEGF in the vitreous from patients with proliferative DR compared to patients without DR (p < 0.05).

FigUre 5 | Activation of p38 and ERK1/2 MAPK in Müller glial cells (MGCs). Western blotting was performed to examine the phosphorylation of p38 and ERK1/2 
MAPKs in MGCs. (a) p38 phosphorylation induced by fibroblast growth factor (FGF) (10 ng/ml) in MGCs cultured with normal glucose (NG) or high glucose (HG).  
(B) Densitometry quantification of phosphorylation p38 (P-p38) normalized against total p38 based on results shown in (a). The results are presented as fold 
changes. *Indicates significantly (p < 0.05) increased FGF-induced P38 phosphorylation in MGCs cultured in HG compared to cells in NG. (c) ERK phosphorylation 
induced by FGF (10 ng/ml) in MGCs cultured with NG or HG. (D) Densitometry quantification of P-ERK normalized against total ERK. The results are presented as 
fold changes. *Indicates significantly (p < 0.05) increased ERK phosphorylation induced by FGF in MGCs cultured in HG compared to cells in NG. (e) p38 
phosphorylation induced by cathelin-related antimicrobial peptide (CRAMP) (10−6 M) in MGC cultured with NG or HG. (F) Densitometry quantification of P-p38 
normalized against total p38. The results are presented as fold changes. *Indicates significantly (p < 0.05) increased p38 phosphorylation induced by CRAMP in 
MGCs cultured in HG compared to cells in NG. (g) ERK phosphorylation induced by CRAMP (10−6 M) in MGCs cultured with NG or HG. (h) Densitometry 
quantification of P-ERK normalized against total ERK. The results are presented as fold changes. *Indicates significantly (p < 0.05) increased ERK phosphorylation 
induced by CRAMP in MGCs cultured in HG compared to cells in NG.
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FigUre 7 | The expression of formyl peptide receptor 2 (Fpr2) in Müller glial cells (MGCs) in mice with streptozotocin (STZ)-induced diabetic retinopathy (DR)  
as well as FPR2 in the fibrovascular membrane in patients with proliferative DR (PDR). Immunofluorescence staining of Fpr2 (red) and vimentin (green) was 
performed in retinas of normal mice and mice with STZ-induced DR. FPR2 fluorescence was also examined in the fibrovascular membrane of PDR patients.  
(a) Immunofluorescence. Green: vimentin; red: Fpr2; blue: nucleus. (B) Fpr2 immunofluorescence intensity quantified based on images in (a). *Indicates significant 
increased Fpr2 intensity in DR mouse retina compared with normal mouse retina (p < 0.05). (c) FPR2 immunofluorescence in the fibrovascular membrane of PDR 
patients, red: FPR2, green: GS. Scale bar: 50 µm.
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epithelium-derived factor (23, 24). In VEGF deficient mice, 
diabetes-induced retinal inflammation, vascular leakage, and 
vascular degeneration are considerably attenuated (23). Thus, 
increased glucose constitutes an important initiator of proinflam-
matory and angiogenic cascade in diabetes-associated retinal 
pathology (25). HG has been shown to enhance the production 
of inflammatory cytokines by MGCs through the activation of 
p38 MAPK/NF-κB signaling pathway (21). This HG-activated 
pathway in MGCs also is exploited by the cells to enhance the 
expression and function of FPRs, which are important GPCRs 
to regulate innate inflammatory responses including immune 
cell migration in response to a variety of chemotactic agonists 
including CRAMP (human LL37) (26). In our study, we found 
that mouse MGCs express one of the FPR members Fpr2 and its 
expression was upregulated by exposure to HG, providing a basis 
for amplified inflammatory cell responses.

Formyl peptide receptors (Fprs) regulate innate inflammatory 
responses and mediate cell migration in response to a variety of 
chemotactic factors (26). Fpr2 and its human counterpart FPR2 
interact with a great number of bacteria-derived and endogenous 
chemotactic molecular patterns. FPR2 (mouse Fpr2), which 
is expressed not only on myeloid cells but also colonic crypt 

epithelial cells, mediates N-formylpeptide–dependent epithelial 
cell proliferation and renewal. Colonic epithelial cells in Fpr2-
deficient mice displayed delayed mucosal restoration after injury, 
and increased azoxymethane-induced tumorigenesis (27). By 
interacting with host derived agonists, Fpr2 also contributes to 
the healing of wounds in the skin and gastric mucosa (28, 29).

Cathelin-related antimicrobial peptide as a host-derived 
endogenous Fpr2 agonist exhibits direct antibacterial activity but 
also induces chemotaxis of myeloid cells. Recently, owing to the 
development of genetically engineered mouse strains, the in vivo 
role of Fpr2 and CRAMP has been increasingly recognized. Our 
previous study showed both Fpr2 and CRAMP control dendritic 
cell trafficking in inflammatory and immune responses (30, 31). 
The human LL-37 enhances wound healing in diabetic mice, 
suggesting that LL-37 actively participates in re-epithelialization 
and granulation of retina tissue (32). Our current study shows 
that both Fpr2 and CRAMP are increased in MGCs from diabetic 
mouse retina both in vivo and in vitro, which may attribute the 
Fpr2 and CRAMP axis to increased proliferation, migration, and 
secretion of VEGF by MGCs to aggravate DR.

b-FGF has been implicated in the development of DR mediated 
by MGCs. Our study found that FGFR1 is expressed by MGCs 
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FigUre 8 | The expression of cathelin-related antimicrobial peptide (CRAMP) in Müller glial cells (MGCs) and in the retina of mice with streptozotocin (STZ)-induced 
diabetic retinopathy (DR). CRAMP was measured by immunofluorescence in isolated primary mouse MGCs and in the retina of normal (Nor) and diabetic (DR) mice. 
(a) Increased level of CRAMP (green) fluorescence intensity in MGCs under high glucose (HG) compared with cells under normal glucose (NG). (B) Relative intensity 
of CRAMP immunofluorescence. *Indicates significantly (p < 0.05) increased CRAMP in MGCs cultured in HG compared with cells in NG. (c) Immunofluorescence 
of CRAMP (green) in normal and DR mouse retinas. (D) Relative intensity of CRAMP immunofluorescence in mouse retinal sections. *Indicates significantly (p < 0.05) 
increased CRAMP intensity in DR mouse retina compared with normal mouse retina. Scale bar: 50 µm.
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and HG further increased its functional expression. The FGFR 
superfamily consists of four different isoforms FGFR1–4 (33). It 
has been shown that in vivo astrocytes express FGFR1 mRNA and 
protein (34). In the retina, FGFR1 (SR1) was distributed mainly 
in the inner nuclear layer and was detected in the radial fibers 
of retinal MGCs. FGF2 and FGFR1 mRNA levels are greatly 
increased in light-induced retinal degeneration (35). MAPK-
signaling through FGF receptors regulates the proliferation of 
MGCs and stimulates the cells to become more neuroprotective 
against excitotoxicity (36). Our study shows that FGFR1 similar 
to Fpr2 is upregulated by HG in MGCs and interestingly, Fpr2 
and FGFR1 additively mediated the migration and proliferation 
of MGCs under HG. Thus, in PDR, it is plausible that Fpr2 and 
FGFR1 cooperate to mediate pro-inflammatory and angiogenic 
responses of MGCs and constitute potential targets for alleviat-
ing PDR.
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