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Abstract: Protein kinases (PKs), being key regulatory enzymes of a wide range of signaling pathways,
are potential targets for antifungal agents. Wheat blast disease, caused by Magnaporthe oryzae Triticum
(MoT), is an existential threat to world food security. During the screening process of natural metabo-
lites against MoT fungus, we find that two protein kinase inhibitors, staurosporine and chelerythrine
chloride, remarkably inhibit MoT hyphal growth. This study further investigates the effects of stau-
rosporine and chelerythrine chloride on MoT hyphal growth, conidia production, and development
as well as wheat blast inhibition in comparison to a commercial fungicide, Nativo®75WG. The growth
of MoT mycelia is significantly inhibited by these compounds in a dose-dependent manner. These
natural compounds greatly reduce conidia production in MoT mycelia along with suppression of
conidial germination and triggered lysis, resulting in deformed germ tubes and appressoria. These
metabolites greatly suppress blast development in artificially inoculated wheat plants in the field.
This is the first report of the antagonistic effect of these two natural PKC inhibitory alkaloids on MoT
fungal developmental processes in vitro and suppression of wheat blast disease on both leaves and
spikes in vivo. Further research is needed to identify their precise mechanism of action to consider
them as biopesticides or lead compounds for controlling wheat blast.

Keywords: antifungal secondary metabolites; alkaloids; biocontrol; abnormal germ tube; abnormal
appressoria; wheat blast

1. Introduction

Protein kinase C (PKC) is a serine/threonine kinase that is found in all eukaryotes
and plays a key role in a wide range of signaling pathways, including cell growth and
proliferation, sensitivity to external stimuli, DNA damage response, metabolic regulation,
and death [1,2]. The PKC is a promising target for antifungal agents due to its functional
significance [3]. A large number of natural protein kinase inhibitors have a relatively higher
level of selectivity for a specific protein kinase [4]. Almost all of the protein kinase inhibitors
are ATP-competitive, but their specificity is based on the interactions with residues that
directly bind to the ATP [5,6]. During the screening of several natural secondary metabolites
against the deadliest phytopathogen wheat blast fungus Magnaporthe oryzae Triticum (MoT)
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pathotype, we find potential antifungal activity from two PKC inhibitors, staurosporine
and chelerythrine chloride.

Staurosporine is an indolo [2,3-a] carbazole alkaloid compound originally extracted
from Streptomyces staurosporeus and Streptomyces roseoflavus strains [7–9]. It is known as a
protein kinase inhibitor that regulates ATP binding to kinases and impacts cell viability
through engaging in the apoptotic process [10–12]. Chelerythrine chloride, a benzophenan-
thridine alkaloid, is another highly specific PKC inhibitor. It was extracted from herbal
plants, including Chelidonium majus and Macleaya cordata [13–15]. Chelerythrine appears to
be a powerful and selective inhibitor of group A and group B kinases by competing with
the conserved catalytic domains of PKC [16–18]. Staurosporine and chelerythrine chloride
have biological significance because the alkaloids are well known for their antifungal,
antiviral, anticancer, anti-inflammation, and anti-tumor effects [19–22]. Staurosporine and
chelerythrine have also been shown to have antifungal properties against Trichoderma viride,
Fusarium oxysporum, Vermicularia capsica, and Verticillium dahlia [23,24]. Staurosporine and
chelerythrine chloride were found recently in our lab study to inhibit MoT.

The MoT is a hemi-biotrophic ascomycetous fungal pathogen of wheat, which causes
the most severe wheat blast disease [25,26]. In 1985, the disease was initially detected in the
Brazilian state of Paraná [25], and it quickly spread to adjacent countries like Bolivia [27],
Paraguay [28], and Argentina [29,30]. Then, wheat blast has posed a severe threat to the
wheat production in the southern cone of South America’s tropics and subtropics. Wheat
blast made its first appearance outside of South America in Bangladesh in 2016 [26,31], and
it has the possibility to spread to other main wheat-growing neighboring countries like
Pakistan, India, and China, where wheat is a principal food crop for a billion people [32]. It
has also recently been detected in Zambia in Africa [33].

The infection cycle of MoT begins when three-celled hyaline conidium lands on
wheat leaf and adheres to it via an adhesive. Then, it germinates, forming a slender
germ tube with an appressorium on the tip. At the bottom of the appressorium, a thin
penetration peg forms, collapsing the cuticle and permitting entrance into the wheat
epidermis. Bulbous, vigorous mycelium permeates wheat plasma membranes and invades
epidermal cells, causing plant tissue invasion [34–36]. During all phases of growth, it affects
the wheat plant’s aerial portions, particularly leaves, spikes, stems, and nodes [37–39]. MoT
predominantly infects spikes. Bleaching of infected spikes results in a malformed seed or
no seed production. The severely affected wheat head may die, leading to a significant drop
in production. The most prevalent symptom is the bleaching of spikelets and the whole
head [26,40,41]. Conidia of this fungal pathogen are not known to disperse far by wind [42],
but seedborne inoculum probably have aided the pathogen’s long-distance dissemination
and allowed it to infiltrate other agroecosystems in South America, Southeast Asia, and
now Africa [26,30,33,43–45]. Contaminated agricultural wastes and seeds may also harbour
this fungus [46].

Because of the development of synthetic pesticide-resistant fungi, detrimental impacts
of residual chemicals on ecosystem, excessive rate of application with several outdated
compounds, and rising regulatory needs, there is a constant need for novel crop protection
agents against emerging pathogens [47–49]. The purpose of the natural product search is to
find new, bioactive metabolites that could be used as novel commercial products or as new
lead compounds for chemical synthesis.

Microorganisms and plant-derived secondary metabolites have received increasing
interest in research as tools for pest and disease control in agriculture [36,50]. They have
complex structures with a specific mechanism of action, which may be amenable to a
higher degree of application selectivity. In the biosphere, a microbial or plant-based pes-
ticide degrades quickly, resulting in low residue levels, and it offers several advantages
as pesticides or fungicides [51,52]. We have found two natural alkaloids, staurosporine
and chelerythrine chloride, with an inhibitory effect against wheat blast fungus. These
compounds may be a better alternative for controlling wheat blast disease. To date, no data
has been published on the antimicrobial properties of alkaloid antibiotics for managing
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wheat blast disease. This is, to the best of our knowledge, the first reporting of alkaloid
antibiotics being used to control the damaging wheat blast disease with biorational com-
pounds. The specific objectives of this study were to (i) assess the effects of staurosporine
and chelerythrine chloride on MoT mycelial growth; (ii) evaluate their inhibitory effects on
conidia production, germination, and developmental transitions; (iii) evaluate the efficacy
of these alkaloids tocontrol wheat blast disease in vivo; and (iv) compare the efficiency of
these two alkaloids with a commercial fungicide, Nativo®75WG.

2. Materials and Methods
2.1. Fungal Strain, Growth Medium, and Plant Materials

In 2016, the MoT strain BTJP 4 (5) was isolated from the blast-infected wheat cv. Prodip
(BARI Gom-24)’s spikelets of Jhenaidah in Bangladesh. For this work, a single spore culture
was preserved at 4 ◦C on dried filter paper [26]. The isolate was re-cultured for 7 days on
Potato Dextrose Agar (PDA) medium at 25 ◦C. Ten-day-old PDA-grown fungal cultures
were cleaned in an aseptic condition in a laminar flow hood using 500 mL deionized water
to exclude aerial mycelia and then maintained at room temperature (25–30 ◦C) for 2–3 days
to stimulate profuse conidia formation [26,53]. After applying 15 mL of water to each plate,
a glass slide was used to scrape out the conidia. The conidial and hyphal solution was
filtered using double layered cheese cloth and set to 1 × 105 conidia/mL in concentrations.
Using a compound microscope, conidial germination was observed and counted. For the
bioassay on leaves, wheat blast sensitive variety Prodip (BARI Gom-24) five-leaf phase
seedlings were utilized [54–56].

2.2. Chemicals

Staurosporine and chelerythrine chloride (Figure 1) were purchased from Sigma-
Aldrich Co., St. Louis, MO, USA. The fungicide Nativo®75WG (1/2% mixture of trifloxys-
trobin and tebuconazole) was bought from Bayer Crop Science Ltd. in Dhaka, Bangladesh.
Small volumes of DMSO (dimethyl sulfoxide) were utilized to prepare stock solutions of
test compounds, which were subsequently diluted using water. The final solution con-
tained no more than 1% (v/v) DMSO, which had no effect on MoT mycelial development
or sporulation [55].
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Figure 1. Chemical structures of (A) staurosporine and (B) chelerythrine chloride.

2.3. Mycelial Growth Suppression and Morphological Impacts on Mycelium

The mycelium growth inhibition of MoT isolate BTJP 4(5) by these PKC inhibitors and
the commercial fungicide Nativo®75WG was determined using a modified disc diffusion
method described by Chakraborty et al. [55]. Briefly, required amounts of alkaloids and the
Nativo®75WG were dissolved in ethyl acetate and water to prepare a series of concentra-
tions that ranges from 0.05 to 20 µg/disc. The test compound solutions were absorbed by
nine-millimeter diameter filter-paper discs (Sigma-Aldrich Co., St. Louis, MO, USA). The
treated discs were positioned 2 cm away from the one side of 9 cm diameter Petri dishes
with 20 mL of PDA. The filter paper disc with the test compounds were put on the opposite
side of the 5 mm diameter mycelial plugs of actively developing 7-day-old MoT cultures
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on PDA. As a positive control, Petri dishes inoculated with fungal hyphal plugs against
Nativo®75WG were utilized. Filter paper discs were coated with ethyl acetate, and then
evaporated in room temperature as a negative control. Amid 10 days of culture, a sup-
pression of fungal hyphal growth was observed. The plates representing control treatment
were kept at 25 ◦C until fungal culture covered the whole agar surface. Each concentration
included five replications, and the test was conducted five times. Radial growth of the
fungal culture was estimated in centimeters using a ruler and two perpendicular lines
made on the lower edge of each plate. Inhibition zone formed by tested metabolites and the
corresponding hyphal growth were measured and recorded. From mean data, the radial
growth inhibition percentage (RGIP) (± standard error) [57] was determined as:

RGIP % =
Radial growth in control plate − Radial growth in treated plate

Radial growth of control
× 100%

A digital camera of Canon DOS 700D was used to capture the disc diffusion test.
A Zeiss Primo Star microscope was employed to examine the mycelial morphology at
the sharp end of the cultures confronting the treated and the control discs at 40× and
100× magnification. A Zeiss Axiocam ERc 5s was utilized to acquire photos of the mycelium
via the microscope.

2.4. Conidia Formation (Conidiogenesis) Suppression

Each PKC inhibitor’s stock solutions were prepared in 10 µL of DMSO and afterward
diluted using distilled water to achieve concentrations of 50, 100, 200, and 300 µg/mL. The
final solution contained no more than 1% (v/v) DMSO, which had no effect on MoT hyphal
development or sporulation. The required quantity of material was mixed with distilled
water to prepare a 5 mL solution of Nativo®75WG at concentrations of 50, 100, and 200, and
300 µg/mL serves as a positive control. We have established a conidiogenesis inhibition
assay of MoT in our laboratory, which was followed by [55,56]. Shortly, a 10-day-old MoT
Petri dish culture’s mycelium was washed to deplete nutrients and stimulate conidiogene-
sis [53,58]. MoT hyphal agar blocks of 10 mm were treated with 50 µL of each metabolite
and Nativo®75WG at the aforementioned concentrations before being placed in Nunc
multi-well plates. As a negative control, the same quantity of sterile water was added to
the mycelial agar block of MoT with 1% DMSO. MoT hyphal agar blocks that had been
treated were kept at 28 ◦C and >90% RH for 14 h of light and 10 h of darkness. With a Zeiss
Primo Star microscope, conidiogenesis was studied at 40× magnification and after 24 h,
photos were taken with a Zeiss Axiocam ERc 5s. With at least five replications per each
treatment, the test was replicated five times.

2.5. Conidia Germination Inhibition and Morphological Abnormalities in Germinated Conidia

Stock solutions of every PKC inhibitor were made by dissolving 0.1 µg of compound in
10 µL of DMSO, then diluting with distilled water to make the concentration to 0.1 µg/mL.
A 0.1 µg/mL solution of Nativo®75WG was made using distilled water, which serves
as a positive control. We established a protocol for MoT conidial germination studies,
which was followed by [55,56]. A 100 µL solution of 0.1 µg/mL was immediately mixed
to 100 µL, containing 1 × 105 MoT conidia/mL, to make a 200 µL of final solution in a
hole of a 96-multi-well plate having test compounds of 0.05 µg/mL. The suspension was
instantly mixed with a rod of glass before being incubated for 6 h, 12 h, and 24 h in a humid
chamber at 25 ◦C. As a control, sterile water containing 1% DMSO was used. From each
of the five replications, a sum of 100 conidia was studied at 100× magnification using a
Zeiss Primo Star microscope. The photos were taken with a Zeiss Axiocam ERc 5s, and
the percent conidia germination, as well as morphological modifications of spore germ
tubes and appressoria, was assessed. The study was conducted five times with at least five
replications per treatment. From mean results, conidia germination percentage (±standard
error) was estimated as: CG% = (C − T)/C × 100; where, %CG = conidia germination,
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C = conidia germination percentage in control, and T = conidia germination percentage in
treated samples.

2.6. Progression of Wheat Blast on Separated Wheat Leaves

Small amount of DMSO was utilized to prepare staurosporine and chelerythrine
chloride stock solutions. The natural compounds were then prepared in distilled water at
50, 100, 200, and 300 µg/mL, with the final DMSO concentration never exceeding 1%. The
concentrations of Nativo®75WG were also 50, 100, 200, and 300 µg/mL. Sterilized water
containing 1% DMSO was used as a negative control. This experiment was also conducted
following the methodology described by Chakraborty et al. [55,56]. At first, leaves of wheat
were separated from seedlings at the five-leaf stage and put inside plates having 3 layers of
damp paper towels. Three 20 µL drops of the properly synthesized test metabolites at the
aforementioned concentrations were put on three distinct places of each leaf and allowed
to dry for 15 min. After that, each location was inoculated with 1 µL conidial solution
having 1 × 105 MoT conidia/mL, and the dishes were incubated at 28 ◦C with 100% Rh in
the dark for the first 30 h and then under continuous light for next two days. The test was
carried out five times repeatedly with five different samples each time. The length of blast
lesions caused by MoT was assessed from three leaves per study for each treatment and
compound concentration.

2.7. Field Evaluation of Staurosporine and Chelerythrine Chloride for Wheat Blast Control
2.7.1. Land Preparation, Seed Sowing, and Plot Maintenance

The experiment was carried out in a constrained area of the Bangabandhu Sheikh
Mujibur Rahman Agricultural University (BSMRAU) research field in Gazipur, Bangladesh.
The trial location was at 24.09 north latitude, 90.26 east longitude, and 8.4 m above mean
sea level. The land was thoroughly ploughed and cleared of weeds and stubbles. During
land preparation, adequate amounts of well-decomposed cowdung were applied. Urea,
triple superphosphate, muriate of potash, and gypsum were applied as chemical fertilizers
at ratios of 70-28-50-11 kg/ha [59]. All other fertilizers and two-thirds of the urea were
administered as a baseline dosage 3–4 days before seed sowing at the final land preparation.
The remaining one-third of the urea was applied at the first irrigation, 20 days after sowing
(DAS). In the first week of December, wheat seeds of variety BARI Gom-26 were sown.
Before sowing, the seeds were treated with Vitavex 200 (3 g/kg seed). The plots were all
labeled properly. Irrigation and other intercultural activities were carried out as required.
The experiment was carried out using a randomized complete block design (RCBD).

2.7.2. Infection Assay in the Reproductive Phase of Wheat

Thoroughly prepared 5 µg/mL concentrations of the test compounds were sprayed
on each plot and allowed to dry overnight, while sterilized water with 1% DMSO served
as a negative control. Spore suspension was administered to wheat fields shortly after the
flowering stage. The positive control was fungicide Nativo®75WG, whereas the negative
control was deionized distilled water. Plots were coated with polyethylene sheets before
inoculation to maintain a humid environment conducive to spore germination.

2.7.3. Data Collection, Disease Intensity, and Severity Evaluation

During the reproductive phase, data on total tiller, productive tiller, and diseased tiller
per hill, full length and affected portion of spike, seeds per spike, 1000-grain weight, and
grain yield per hill were recorded. During the vegetative phase, data on total seedlings,
diseased seedlings per pot, full length, and affected portion of the leaves were collected.
The intensity of the disease (DI) was determined by employing the formula:

DI =
Total no. of infected plants
Total no. of plant observed

× 100%
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Likewise, the severity of blast disease was assessed using a 5-point scale, with %
infection referring to the length of the spike affected by blast. The scales were 0 for no
lesions, 1 for 1–25% infection, 2 for 26–50% infection, 3 for 51–75% infection, and 4 for
76–100% length of infected leaves. The following formula was used to calculate the severity
of the blast:

DS =
n × v
N × V

× 100%

where, DS = disease severity

n = number of leaves infected by blast
v = value score of each category attack
N = number of leaves observed
V = value of highest score

2.8. Experimental Design and Statistical Analysis

The fungicidal activity of the pure compounds was determined in the laboratory
and in the field using a fully randomized design (CRD) and a randomized complete
block design (RCBD), respectively. All statistical analyses were performed using IBM
SPSS Statistics 25 and the Microsoft Office Excel 2015 application package. Tukey’s HSD
(Honestly Significance Difference) test was used to compare the means of the treatments.
Each treatment was repeated five times, and the mean value ± standard error was utilized
in the tables and figures.

3. Results
3.1. Hyphal Growth Suppression and Morphological Impacts on Mycelium

Both staurosporine and chelerythrine chloride (Figure 1) significantly inhibited MoT
mycelium development on PDA (Figure 2). Staurosporine inhibited MoT mycelium de-
velopment more efficiently than the other compound. When both staurosporine and
chelerythrine chloride were administered at 20 µg/disk, hyphal growth suppression was
74.3 ± 1.6% and 51.6 ± 0.8%, respectively (Figure 3). Both staurosporine and chelery-
thrine chloride demonstrated lower inhibitory capacity than the commercial fungicide
Nativo®75WG (93.3 ± 0.9% at 20 µg/disk).
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Figure 2. Photographs and micrographs of in vitro antifungal activity of staurosporine, chelerythrine
chloride and a commercial fungicide, Nativo®75WG against wheat blast fungus, Magnaporthe oryzae
Triticum (MoT) at 20 µg/disk. (a) Mycelial growth of MoT on PDA (control). (b) Normal tubu-
lar hyphal growth in a control. (c) Inhibition of MoT mycelial growth by chelerythrine chloride.
(d) Disrupted tubular growth of MoT hyphae in the presence of chelerythrine chloride. (e) Inhibition
of MoT mycelial growth by staurosporine. (f) Disrupted tubular growth and excessive branching in
MoT hyphae in the presence of staurosporine. (g) Inhibition of MoT mycelial growth by Nativo®75WG.
(h) Abnormal growth and necrosis in MoT hyphae in the presence of Nativo®75WG. Bar = 50 µm.
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Mycelial growth of MoT was inhibited by both PKC inhibitors in a dose-dependent
manner. The suppressible effects of these alkaloids rose as concentrations increased from
0.05 to 20 µg/disk, attaining 74.3% for the staurosporine (Figure 3). Staurosporine inhi-
bition was a bit lower than Nativo®75WG but greater than chelerythrine chloride sup-
pression. At concentrations less than 0.1µg, both the alkaloids were inactive against MoT.
Staurosporine impeded MoT hyphal growth extensively at 20 µg/disk (74.3 ± 1.6%),
10 µg/disk (69.5 ± 1.1%), and 5 µg/disk (64.1 ± 1.2%), indicating a positive interaction
between inhibition and accelerated concentrations. At 20, 10, and 5 µg/disk, chelerythrine
chloride suppressed 51.6 ± 0.8%, 45.5 ± 1.8%, and 31.7 ± 1.9% hyphal growth of MoT.

Staurosporine and chelerythrine chloride had minimal inhibitory concentrations of
0.25 µg/disk and 1 µg/disk, respectively. Staurosporine and chelerythrine chloride inhib-
ited hyphal development by 12.6 ± 1.9% and 8.62 ± 1.6% at 0.25 and 1 µg/disk, respectively.
Furthermore, 0.05 µg/disk was the minimum inhibitory concentration of Nativo®75WG.

Untreated MoT mycelium displayed polar, tubular development with smooth, branch-
ing, hyaline, septate, plump, and unbroken mycelium under microscopic investigations
(Figure 2a). Staurosporine and chelerythrine chloride-treated hyphae developed irregularly
and had a greater frequency of branching per unit of mycelium length (Figure 2b,c). The
fungicide Nativo®75WG inhibited hyphal development in a similar way. When the mycelia
were near to the filter disc of Nativo®75WG, a similar anomaly of MoT hyphae occurred
(Figure 2d). However, the two PKC inhibitor alkaloids caused slightly distinct morphologi-
cal abnormalities in MoT compared to the Nativo®75WG, indicating a potentially different
mode of action.

3.2. Conidia Formation (Conidiogenesis) Suppression

When compared to the control, PKC inhibitors and fungicide significantly reduced
conidial production by MoT at concentrations of 50, 100, 200, and 300 µg/mL, and sup-
pression increased as concentrations climbed from 50 to 300 µg/mL (Figure 4). In all three
treatments, less or no conidia was produced at 300 µg/mL. For all three treatments at 300
µg/mL, microscopic investigation exhibited damaged hyphal tips and a total absence of
conidiophores.

3.3. Conidia Germination Inhibition and Morphological Abnormalities in Germinated Conidia

In the multi-well plates, staurosporine, chelerythrine chloride, and Nativo®75WG at
0.05 µg/mL were employed to investigate the inhibition of MoT conidial germination. The
rate of germinated conidia was measured after 6, 12, and 24 h of incubation (Table 1). When
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compared to control, all three treatments dramatically inhibited conidia germination after
6 h. In water, 100% of conidia were germinated, whereas in Nativo®75WG treated plates, it
was 51.6 ± 0.8%. At 0.05 µg/mL, the germination rates of MoT conidia with staurosporine
and chelerythrine chloride were 27.1 ± 0.8% and 67.5 ± 0.7%, respectively.

Table 1. Effects of staurosporine and chelerythrine chloride on Germination of Conidia and Their
Subsequent Developmental Transitions of Magnaporthe oryzae Triticum (MoT) at the Dose of 0.05
µg/mL In Vitro.

Compound Time (h)

Effects of Natural Compounds on Developmental Transitions of Conidia of Wheat
Blast Fungus M. oryzae Triticum (MoT)

Germinated
Conidia (% ± SE a)

Major Morphological Change/Developmental Transitions in
the Treated Conidia

Water

0 0 ± 0 e No germination

6 100 ± 0 a Germinated with normal germ tube and normal appressoria
developed

12 100 ± 0 a Mycelial growth took place

24 100 ± 0 a Huge mycelial growth took place

Staurosporine

0 0 ± 0 e No germination

6 27.1 ± 0.8 d Germinated with a short germ tube

12 22.8 ± 0.6 d 4.7 ± 0.8% Normal and 18.1 ± 0.6% abnormally long hyphae-like
germ tube formed

24 0 ± 0 b No appressoria formation and mycelial growth took place

Chelerythrine Chloride

0 0 ± 0 e No germination

6 67.5 ± 0.7 b Germinated with 52.3 ± 0.8% short germ tube and 15.2± 0.7%
conidia lysis occurred

12 45.8 ± 0.5 c 13.3 ± 0.8% Normal and 32.5± 0.6% abnormally long hyphae-like
germ tube formed

24 0 ± 0 b No appressoria formation and mycelial growth took place

Nativo®75WG

0 0 ± 0 e No germination

6 51.6 ± 0.8 c Germinated with a short germ tube

12 51.6 ± 0.8 b Normal germ tube formed

24 0 ± 0 b No appressoria formation or mycelial growth took place
a Data presented here are mean value ± SE of three replications in each compound. Means within a column
followed by the same letter(s) are not significantly different as assessed by Tukey’s HSD (honest significance
difference) post-hoc (p ≤ 0.05).

During the 6 h of incubation under the influence of staurosporine, 27.1 ± 0.8% of
conidia germinated with a small germ tube. After 12 h of the same treatment, 4.7 ± 0.8%
germ tubes were normal, whereas 18.1 ± 0.6% were abnormally long hyphae-like germ
tubes. After 24 h, there were no appressoria and hyphal development took place (Table 1,
Figure 5b).

In the case of chelerythrine chloride, 15.2 ± 0.7% of the conidia were lysed after 6 h,
and 52.3 ± 0.8% germination occurred with a short germ tube after 6 h (Table 1, Figure 5c).
After 12 h, 13.3 ± 0.8% normal and 32.5 ± 0.6% abnormally long hyphae-like germ tube
were formed (Table 1, Figure 5c). There was no appressoria formation and hyphal growth
occurred after 24 h (Table 1, Figure 5c).

After 6 h and 12 h with the influence of Nativo®75WG, 51.6 ± 0.8% of conidia
germinated with typical germ tubes, no appressoria formed. After 24 h, the fungicide
Nativo®75WG also suppressed sporulation (Table 1, Figure 5d). It is worth noting the
fact that the alkaloids induced abnormally long hyphae-like germ tubes and conidia lysis,
whilst the fungicide had no such effects.



Microorganisms 2022, 10, 1186 9 of 18

Microorganisms 2022, 10, x FOR PEER REVIEW 8 of 19 
 

 

Staurosporine and chelerythrine chloride had minimal inhibitory concentrations of 
0.25 µg/disk and 1 µg/disk, respectively. Staurosporine and chelerythrine chloride inhib-
ited hyphal development by 12.6 ± 1.9% and 8.62 ± 1.6% at 0.25 and 1 µg/disk, respectively. 
Furthermore, 0.05 µg/disk was the minimum inhibitory concentration of Nativo®75WG. 

Untreated MoT mycelium displayed polar, tubular development with smooth, 
branching, hyaline, septate, plump, and unbroken mycelium under microscopic investi-
gations (Figure 2a). Staurosporine and chelerythrine chloride-treated hyphae developed 
irregularly and had a greater frequency of branching per unit of mycelium length (Figure 
2b,c). The fungicide Nativo®75WG inhibited hyphal development in a similar way. When 
the mycelia were near to the filter disc of Nativo®75WG, a similar anomaly of MoT hyphae 
occurred (Figure 2d). However, the two PKC inhibitor alkaloids caused slightly distinct 
morphological abnormalities in MoT compared to the Nativo®75WG, indicating a poten-
tially different mode of action. 

3.2. Conidia Formation (Conidiogenesis) Suppression 
When compared to the control, PKC inhibitors and fungicide significantly reduced 

conidial production by MoT at concentrations of 50, 100, 200, and 300 µg/mL, and sup-
pression increased as concentrations climbed from 50 to 300 µg/mL (Figure 4). In all three 
treatments, less or no conidia was produced at 300 µg/mL. For all three treatments at 300 
µg/mL, microscopic investigation exhibited damaged hyphal tips and a total absence of 
conidiophores. 

 
Figure 4. Effects of staurosporine, chelerythrine chloride, and the fungicide Nativo®75WG on inhi-
bition of conidiogenesis of Magnaporthe oryzae Triticum in 96-multi-well plates at 50 µg/mL, 100 
µg/mL, 200 µg/mL, and 300 µg/mL. (a) Profuse production of conidia on conidiophores (conidi-
ogenesis) in untreated control. Suppressed conidiogenesis by varying doses of staurosporine (b), 
chelerythrine chloride (c), and Nativo®75WG (d). Bar = 50 µm. 

3.3. Conidia Germination Inhibition and Morphological Abnormalities in Germinated Conidia 
In the multi-well plates, staurosporine, chelerythrine chloride, and Nativo®75WG at 

0.05 µg/mL were employed to investigate the inhibition of MoT conidial germination. The 
rate of germinated conidia was measured after 6, 12, and 24 h of incubation (Table 1). 

Figure 4. Effects of staurosporine, chelerythrine chloride, and the fungicide Nativo®75WG on
inhibition of conidiogenesis of Magnaporthe oryzae Triticum in 96-multi-well plates at 50 µg/mL,
100 µg/mL, 200 µg/mL, and 300 µg/mL. (a) Profuse production of conidia on conidiophores (conid-
iogenesis) in untreated control. Suppressed conidiogenesis by varying doses of staurosporine (b),
chelerythrine chloride (c), and Nativo®75WG (d). Bar = 50 µm.

At all the incubation durations (6 h, 12 h, and 24 h), 100% of conidia was germinated
in water, with typical germ tube formation and hyphal development (Table 1, Figure 5a)
in the dark at 25 ◦C. At 0.05 µg/mL, the two PKC inhibitors showed negative impacts on
conidial germination and post-germination developmental activities, inducing aberrant
transitions from one phase to the other.

Microorganisms 2022, 10, x FOR PEER REVIEW 9 of 19 
 

 

When compared to control, all three treatments dramatically inhibited conidia germina-
tion after 6 h. In water, 100% of conidia were germinated, whereas in Nativo®75WG 
treated plates, it was 51.6 ± 0.8%. At 0.05 µg/mL, the germination rates of MoT conidia 
with staurosporine and chelerythrine chloride were 27.1 ± 0.8% and 67.5 ± 0.7%, respec-
tively. 

At all the incubation durations (6 h, 12 h, and 24 h), 100% of conidia was germinated 
in water, with typical germ tube formation and hyphal development (Table 1, Figure 5a) 
in the dark at 25 °C. At 0.05 µg/mL, the two PKC inhibitors showed negative impacts on 
conidial germination and post-germination developmental activities, inducing aberrant 
transitions from one phase to the other. 

 
Figure 5. Time-dependent observation of germination of conidia of Magnaporthe oryzae Triticum 
and their subsequent morphological changes in the control plate (a), presence of staurosporine (b), 
chelerythrine chloride (c), and the commercial fungicide, Nativo®75WG (d). Dose of chelerythrine 
chloride, staurosporine, and Nativo®75WG was 0.05 µg/mL. Bar = 10 µm. 

During the 6 h of incubation under the influence of staurosporine, 27.1 ± 0.8% of co-
nidia germinated with a small germ tube. After 12 h of the same treatment, 4.7 ± 0.8% 
germ tubes were normal, whereas 18.1 ± 0.6% were abnormally long hyphae-like germ 
tubes. After 24 h, there were no appressoria and hyphal development took place (Table 1, 
Figure 5b). 

In the case of chelerythrine chloride, 15.2 ± 0.7% of the conidia were lysed after 6 h, 
and 52.3 ± 0.8% germination occurred with a short germ tube after 6 h (Table 1, Figure 5c). 
After 12 h, 13.3 ± 0.8% normal and 32.5 ± 0.6% abnormally long hyphae-like germ tube 
were formed (Table 1, Figure 5c). There was no appressoria formation and hyphal growth 
occurred after 24 h (Table 1, Figure 5c). 

Table 1. Effects of staurosporine and chelerythrine chloride on Germination of Conidia and Their 
Subsequent Developmental Transitions of Magnaporthe oryzae Triticum (MoT) at the Dose of 0.05 
µg/mL In Vitro. 

Compound Time (h) 

Effects of Natural Compounds on Developmental Transitions 
of Conidia of Wheat Blast Fungus M. oryzae Triticum (MoT)  
Germinated 
Conidia (% ± 
SE a) 

Major Morphological Change/Developmental 
Transitions in the Treated Conidia 

Water 0 0 ± 0 e No germination 

Figure 5. Time-dependent observation of germination of conidia of Magnaporthe oryzae Triticum
and their subsequent morphological changes in the control plate (a), presence of staurosporine (b),
chelerythrine chloride (c), and the commercial fungicide, Nativo®75WG (d). Dose of chelerythrine
chloride, staurosporine, and Nativo®75WG was 0.05 µg/mL. Bar = 10 µm.
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3.4. Progression of Wheat Blast on Separated Wheat Leaves

The two PKC inhibitors applied at 50, 100, 200, and 300 µg/mL significantly reduced
symptoms of wheat blast observed in separated wheat leaves infected with MoT. The lesion
length in wheat leaves treated with staurosporine averaged 1.8 ± 0.2 mm at 50 µg/mL,
1.4 ± 0.1 mm at 100 µg/mL, and 0 ± 0 mm at 200 and 300 µg/mL, respectively (Figure 6A,B).
The blast lesion lengths with chelerythrine chloride were 1.7 ± 0.1 mm, 1.4 ± 0.1 mm,
1.2 ± 0.2 mm, and 0 ± 0 mm at 50, 100, 200, and 300 µg/mL, respectively (Figure 6A,B).
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was carried out with a commercial fungicide, Nativo®75WG at 5 µg/mL, to determine if 
these alkaloids inhibit blast disease in artificially infected wheat spikes. In the field, stau-
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Figure 6. Suppression of wheat blast disease by staurosporine, chelerythrine chloride at 50 µg/mL,
100 µg/mL, 200 µg/mL, and 300 µg/mL on representative detached wheat leaves inoculated with
Magnaporthe oryzae Triticum. (A) Blast lesions on treated and untreated wheat leaves. (a) MoT
inoculation after treatment of leaf with water (control). (b) MoT inoculation after treatment of leaf
with staurosporine. (c) MoT inoculation after treatment of leaf with chelerythrine chloride. (d) MoT
inoculation after treatment of leaf with Nativo®75WG. (e) Non-inoculated after treatment with
water. The experiment was repeated 5 times and only the representative images are shown. (B) Blast
lesion lengths on detached wheat leaves treated with staurosporine, chelerythrine chloride, and
Nativo®75WG fungicide compared with water treatment (control). The data are the averages ±
standard errors of at least five replicates for each dose of the tested compounds at p ≤ 0.05. Bars
represent ± standard error.

Leaves of wheat treated with Nativo®75WG at 50, 100, 200, and 300 µg/mL showed
no signs of blast (Figure 6A,B). Neither of the compounds developed signs at 300 µg/mL.
Water-treated leaves exhibited normal blast lesions, having length averaging 9.6 ± 0.2 mm
(Figure 6A,B) as a negative control. The fungicide inhibited lesion formation more than
both the alkaloids at all the applied concentrations.

3.5. Wheat Blast Disease Suppression by PKC Inhibitors at the Heading Stage of Wheat in the Field

Wheat blast is a disease that mostly affects the heads of wheat. A field experiment
was carried out with a commercial fungicide, Nativo®75WG at 5 µg/mL, to determine
if these alkaloids inhibit blast disease in artificially infected wheat spikes. In the field,
staurosporine and chelerythrine chloride significantly decreased the wheat blast incidence
(36.33% and 51.33%, respectively) (Figure 7c,d, Table 2), whereas the blast disease incidence
was 91.33% in the untreated control plot (Figure 7b, Table 2).
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Figure 7. Suppression of wheat blast symptoms with staurosporine and chelerythrine chloride
at 5 µg/mL. Herein, (a) Non-inoculated, non-treated spike, (b) Water control + MoT inoculation,
(c) Staurosporine + MoT inoculation, (d) chelerythrine chloride + MoT inoculation, (e) Nativo®75WG +
MoT inoculation.

Table 2. Effect of staurosporine and chelerythrine chloride on Yield and Yield Components of
the Wheat Variety BARI Gom-26 under Field Condition after Artificial Inoculation with Wheat
Blast Fungus.

Treatment Yield/Plot (gm) * 1000-Grain WEIGHT (gm) * Disease Incidence (%) * Disease Severity (%) *

Healthy control 136.60 ± 0.3.98 a 50.90 ± 0.81 a 0.00 ± 0.00 d 0.00 ± 0.00 e

Untreated control 56.40 ± 3.67 c 34.12 ± 1.74 cd 91.33 ± 2.03 a 83.00 ± 3.06 a

Staurosporine 120.60 ± 2.62 b 42.06 ± 1.71 bc 36.33 ± 1.76 c 28.67 ± 1.45 c

Chelerythrine
chloride 117.20 ± 3.56 b 36.10 ± 2.48 dcd 51.33 ± 1.74 b 40.33 ± 1.76 b

Nativo®75WG 131.00 ± 6.63 ab 45.28 ± 2.35 ab 30.00 ± 2.35 c 14.33 ± 2.40 d

* Any two means having a common letter are not significantly different at the 5% level of significance.

Furthermore, wheat plants treated with these natural products showed blast severity
of 28.67% and 40.33%, respectively, compared with 83.3% of untreated control. When
comparing with the untreated control (56.4 ± 3.67 gm), staurosporine (120.6 ± 2.62 gm),
chelerythrine chloride (117.2 ± 3.56 gm), and Nativo®75WG (1316.63 gm) exhibited consid-
erably higher grain yields. The grain yields in the staurosporine, chelerythrine chloride,
and Nativo®75WG treatments were similar to the healthy control (136.6 ± 3.9 gm) (Table 2).

One thousand grain weights were also measured for each treatment and weights of
45.28, 36.10, 42.06, and 50.90 gm were obtained for Nativo®75WG, chelerythrine chloride,
staurosporine, and the negative control plot, respectively. These grain yields were much
higher than the untreated control plot’s yield (34.12 gm) (Table 2).

4. Discussion

In this study, we observed that the alkaloid antibiotics staurosporine and chelerythrine
chloride have potent antifungal activity against M. oryzae Triticum (MoT), a destructive
pathogen of wheat blast. The results of in vitro bioassays indicated that the chemicals
significantly decreased hyphal development, conidia formation, germination and develop-
mental changes of germinated conidia, and controlled wheat blast in vivo. Consequently,
our data suggested that these alkaloids can decrease wheat blast disease in vivo by in-
hibiting hyphal proliferation and conidial germination. Many natural compounds have
been documented to inhibit mycelial development, conidia formation, and conidial ger-
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mination of different fungi, including rice blast and wheat blast fungus on an in vitro
bioassay [55,56,58,60–64]. Moreover, alkaloid antibiotics have a wide spectrum of an-
timicrobial [58,65,66], anti-inflammatory [67], antitumor [68], anti-angiogenesis [69], and
anti-acetylcholinesterase properties [70]. Furthermore, these alkaloids are potent inhibitors
of Ca2+/phospholipid-dependent protein kinase or protein kinase C (PKC), which is a
major modulatory enzyme in signaling pathways governing different cellular responses
of eukaryotes [2,12,20]. Despite the PKC inhibitor alkaloids’ exceptional biological fea-
tures, only a few studies have concentrated on their use as plant protection agents to far.
It is, however, the first report of natural bioactive PKC inhibitor alkaloids derived from
Streptomyces spp. controlling MoT.

The hyperbranching phenomenon of MoT hyphae by these alkaloids is one of the
most remarkable findings in our work (Figure 2b), where we used doses varying from
0.005 to 2 µg/disk. With higher concentrations, branch frequency increased propora-
tionately. Phloroglucinols and xanthobaccin A have been found to cause hyperbranching
in fungal mycelium [71–74]. Magae and Magae [75] reported that staurosporine restricted
mycelial growth of Pleurotus ostreatus in a different way than that of MoT. It induced stubby
and balbous hyphae as well as swelling of hyphal tips and subapical regions. On the
other hand, chelerythrine inhibited the mycelial growth of Ustilaginoidea virens by induc-
ing thin, twisted, atrophied, narrow, and locally fractured mycelium [76]. According to
Yang et al. [77], chelerythrine derivatives extracted from M. microcarpa greatly suppressed
the hyphal development of Curvularia lunata, Fusarium solani, Valsa mali, Fusarium oxysporum
f. sp. vasinfectum, Alternaria alternate, Pyricularia oryzae, and Fusarium oxysporum. Thus
far, this is the foremost evidence-based report of two PKC inhibitor alkaloids exhibiting
hyperbranching-like predatory behaviour against a damaging fungal pathogen. More re-
search is requisite to detecting the method of action of these alkaloids against the dangerous
wheat pathogen MoT.

Conidia are fungal spores that are generated asexually on a conidiophore, and the
method of forming conidia is termed conidiogenesis [62]. Most of the plant pathogenic
fungi attack plant conidia or spores [78]. The probability of invasive fungal infections is
lessened when conidiogenesis and conidia germination are inhibited. Compounds that
impede these processes have the potential to be used as plant protection solutions in the
future. Another intriguing discovery of this work is that these PKC inhibitors significantly
reduced conidiogenesis (Figure 5), germination and triggered developmental changeover
of MoT conidia (Table 2, Figure 6). Conidia lysis and unusually long hypha-like conidial
germ tubes were among the other unique and interconnected phenomena discovered in
this work (Figure 5b,c). A similar occurrence was discovered by oligomycins derived
from Streptomyces, which trigger lysis of conidia and develop hyphae-like germ tubes of
phytopathogen MoT [56]. Islam and his colleagues [79] discovered that staurosporine
and chelerythrine chloride suppress zoosporogenesis, hamper motility, and trigger lysis
of Plasmopara viticola zoospores. Lecithin caused aberrant branching germ tube tips and
hindered the formation of appressoria in rice blast fungus, according to Homma and his
co-workers [80]. Methods of action and modes of suppressing conidiogenesis, conidia, and
appressoria formation in MoT conidia by alkaloids have not previously been documented.

The PKC inhibitors staurosporine and chelerythrine chloride have antimicrobial
activities against several bacteria, fungi, and peronosporomycetal plant pathogens, in-
cluding Xanthomonas oryzae, Staphylococcus aureus, Pleurotus ostreatus, Phytophthora ap-
sica, Valsa mali, Fusarium solani, Alternaria alternate, Pyricularia oryzae, Candida sp., Saccha-
romyces sp., Aspergillus sp. Fusarium oxysporum, Plasmopara viticola, Aphanomyces cochlioides,
etc. [7,75,77,79,81–83]. Staurosporine was discovered as a novel antifungal alkaloid syn-
thesized by Streptomyces sp. AM-2282 [7]. Staurosporine is a selective inhibitor which
binds tightly to the ATP domain of nearly all active kinases [84–86]. It is a powerful in-
hibitor of PKC as well as other tyrosine, serine, and threonine protein kinases [87–89].
Staurosporine has also been identified as a potential promoter of plant resistance as well
as a modulator of genes involved in causing programmed cell death or the production
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of defence factors within the host [82]. Staurosporine has a severe cytotoxic impact on
mammalian cell growth (IC50 values: 90 nM for MCF-7 cells, <3 nM for HeLa S3 cells) [90].
Furthermore, chelerythrine is a natural benzophenanthridine alkaloid obtained from herbal
plants. Chelerythrine, unlike staurosporine, is at least 100 times more specific for PKC
than other kinases (i.e., PKA, PKG) [17,18]. Chelerythrine’s selectivity for PKC has led to
its application in studies of PKC activities in cells [91]. Chelerythrine is mostly desirable
for its kinase selectivity, simplicity of application in situ, capacity to induce ceramide
formation, and ATP-independent inhibition of PKC [17,18,92]. The inhibitory activities of
chelerythrine on DNA synthesis, proteinase production, and membrane permeability are
also linked to its antimicrobial modes of action [76,83]. Several studies have found that
chelerythrine stimulates intracellular ROS formation, which leads to apoptosis [76,93–95]. It
has also been reported as a BclXL-Bak BH3 peptide binding inhibitor. It triggered apoptosis
in BclXL-overexpressing cells that have been entirely resistant to staurosporine by releasing
Cytochrome C from the isolated mitochondria [96]. Chelerythrine chloride is cytotoxic
to tumor cell lines of human [18,93]. Islam et al. [79] confirmed that inhibitory activity of
staurosporine and chelerythrine chloride is linked with PKC inhibition in the cells. The out-
comes of this work do not specify the details mechanism of action, but they do suggest that
inhibition of PKC activities in cells could suppress the hyphal development and impede
conidia germination as these cellular processes require supply of energy from mitochondria
and intracellular Ca2+ ions [97]. Elucidating the activities of PKC in suppressing hyphal
development, conidia formation, conidial germination, and appressoria production might
help us comprehend the biology and the pathogenicity of filamentous plant pathogens.
Therefore, these PKC inhibitors from natural source might be a potential pioneer compound
for producing new, effective agrochemicals to combat this notorious plant pathogen.

The application of these PKC inhibitors effectively inhibited blast disease of wheat
in in vivo experiments, which was also a noteworthy finding in this investigation
(Figures 6 and 7). In this work, wheat leaves that had previously been treated with those
alkaloids exhibited smaller lesions in length than the untreated controls (Figure 6). Most of
those lesions were tiny, brown patches with pinhead-sized spots (scale 1) to tiny, roundish
to moderately extended, grey dots measuring 1–2 mm in diameter (scale 3). According
to the IRRI Standard Evaluation System’s 9-scale blast disease evaluation system [98],
the untreated control leaves displayed normal blast lesions spreading 26–50% of the leaf
surface (scale 7). With the influence of Nativo®75WG, nevertheless, no apparent lesions
of blast were observed. We found comparable findings at the wheat heading stage. On
artificially infected wheat spikes, staurosporine and chelerythrine chloride substantially
suppressed the development of blast disease (Figure 7). Herein, Nativo®75WG is a com-
mercially available systemic broad-spectrum fungicide that was employed as the positive
control. These alkaloids have antifungal action similar to this fungicide when it relates to
inhibiting the MoT fungus. Tebuconazole and the trifloxystrobin are the active ingredients
in Nativo®75WG. Tebuconazole is a dimethylase inhibitor that is utilized as a systemic tria-
zole fungicide (DMI). This impedes conidia germination and fungal growth by interfering
with sterol production in fungal cell walls [99]. Trifloxystrobin is a fungicide of strobilurin
that impedes the development of plant pathogenic fungi by interrupting metabolism and
blocking electron transfer in mitochondria [100]. Although a comparable disease inhibition
response has been noticed, the principles of actions of disease inhibition by these PKC
inhibitors are probably distinct from those of Nativo®75WG. The fundamental mechanism
by which these alkaloids inhibit wheat blast requires more research. Moreover, when
recognizing these PKC inhibitors as efficient fungicides for wheat blast, a field study of
their effectiveness in inhibiting wheat head infection is required.

Fungicidal resistance in phytopathogens is constantly evolving, necessitating the
research and development of novel fungicides with an alternative mode of action. Natu-
ral product-based plant protectants have received much interest from scientists in recent
decades because they are believed to be less hazardous to mammals and the environ-
ment [48,101]. These PKC inhibitors exhibit greater bioactivity than the commercialized
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fungicide Nativo®75WG, and the compound’s inhibitory efficacy against MoT should make it
a candidate agrochemical with a novel method of action toward this plant pathogenic fungus.

5. Conclusions

Our findings revealed that two PK inhibitors, staurosporine and chelerythrine chlo-
ride, inhibited hyphal growth and asexual life phases of MoT fungus in vitro, as well as
wheat blast disease in both leaves and spikes. To confirm if these metabolites are efficient
fungicides towards wheat blast disease, a large-scale field evaluation of these alkaloids is
required. More research is also required to elucidate the underlying molecular mechanisms
and structure–activity relationship between these PK inhibitors and the wheat killer fungus
M. oryzae Triticum.
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