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Enrichment of plasma extracellular 
vesicles for reliable quantification 
of their size and concentration 
for biomarker discovery
Marija Holcar1, Jana Ferdin1, Simona Sitar2, Magda Tušek‑Žnidarič3, Vita Dolžan1, 
Ana Plemenitaš1, Ema Žagar2 & Metka Lenassi1*

Human plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. 
Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to 
be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation 
rate- (sucrose cushion ultracentrifugation—sUC) and size- (size exclusion chromatography—SEC) 
based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow 
fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron 
microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC 
method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC 
resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that 
importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked 
to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV 
size measured in independently processed samples from the same plasma source was 5.4% and 2.1% 
when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method 
is compatible with reliable measurement of concentration and size of EVs from plasma and should in 
the future be tested on larger cohorts in relation to different diseases. This is one of the first studies 
using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the 
technique.

Extracellular vesicles (EVs) are phospholipid bilayer-enclosed nanosized particles (50–1000 nm) secreted by all 
cell types1. EVs’ molecular cargo, size and concentration reflect the state of their cell-of-origin2, making them 
ideal candidates for biomarkers of various pathological conditions3–6. EVs are found in all body fluids, although 
blood is the most frequently used for biomarker research7. Peripheral venous blood requires a minimally inva-
sive collection procedure and its dynamic composition closely relates to the (pato)physiologic changes in the 
organism8. Blood is a highly complex fluid involved in maintaining homeostasis in the body. Plasma, the liquid 
part of the blood, contains a plethora of extracellular nanoparticles, among them EVs, which can have common 
characteristics9. By far the most abundant nanoparticles are different proteins and protein complexes, but even 
circulating lipoproteins outnumber blood-EVs for six to seven orders of magnitude7,10. If present, enveloped 
viruses, such as retroviruses, are also budding from the cells and contribute to blood nanoparticles1. Despite 
increasing scientific and clinical interest7, lack of a standardized method of EVs enrichment from plasma hinders 
reliable and comparable quantification of blood-derived EVs.

Two of the most often used methods for EVs enrichment are: (1) ultracentrifugation (UC), which separates 
particles based on their sedimentation rate (dependent on particle size, shape and flotation density), and (2) 
size exclusion chromatography (SEC), which separates particles based on their size11,12. UC usually follows a 
few initial steps of differential centrifugation at lower speeds, which ensure gradual removal of cells, cellular 
debris, and larger soluble protein/lipoprotein aggregates, whereas UC with acceleration at ≥ 100,000×g, helps to 
enrich EVs and any other nanoparticles in the sample. With an addition of density gradient or cushion of denser 
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solution (like sucrose) to the UC step, efficacy of enrichment process and purity of EVs can be increased and 
potential mechanical damage to the vesicles reduced13. SEC is another simple and increasingly popular column-
based method for EV enrichment14. Successful separation should lead to EV-enriched fractions, free of non-EV 
contaminants, with EVs retaining their structure and physiological function15, but SEC is unable to separate EVs 
from other nanoparticles of similar size16,17. Combining different techniques would help, but high numbers and 
relatively low starting volumes of samples, typically analyzed in clinical environments, do not support the use of 
expensive and lengthy multistep EV-enrichment processes. Therefore, we need a simple method for enrichment 
of EVs from small blood volumes, which can easily be implemented for consistent and high throughput use.

Research of EVs is currently focused on their function and molecular composition (miRNA, DNA or pro-
teins), whereas studies of changes in size and/or concentration of EVs as biomarkers of disease are rare. This 
is likely due to EVs’ small size and low refractive index, making their detection and analysis technically very 
difficult18,19. Furthermore, many methods for quantification of small EVs do not recognize the nature of analyzed 
particles, thus any co-enriched non-EV particles can affect the accuracy of EV measurements20. Besides the direct 
determination of EVs’ size by electron microscopy, several indirect methods exist where a large amount of col-
lected data helps to determine EVs average size, size distribution and concentration in the sample21. Larger EVs 
are commonly measured using flow cytometry20,22, while for detection of smaller EVs23–25 nanoparticle tracking 
analysis (NTA), dynamic light scattering and resistive pulse sensing are more widespread. These methods were 
already used to quantify EVs in a limited number of biomarker studies26–28. Currently the most common tool for 
simple quantification of small EVs in the solution is NTA, where size and concentration of particles are calculated 
by capturing the amount of laser light scattering and the Brownian movement of particles in the solution on a 
single-particle level20. Recently, asymmetrical flow field-flow fractionation (AF4) started to gain relevance as a 
final size-fractionation step before analysis of size and concentration of particles in EV-enriched samples29–31. 
Historically, this technique was used for separation of proteins, polymers, viruses and lipoproteins based on size 
and speed of movement through the column32. When coupled to different detectors, like ultraviolet (UV) and 
multi-angle light scattering (MALS) detectors, the method enables quantification of EVs heterogeneous in size 
and can indirectly provide information on presence of contaminants high in protein or DNA content31. Alto-
gether, EV-enrichment should be coupled to different quantification techniques, to provide sufficient dynamic 
range for reliable determination of EV size and concentration in biomarker discovery studies.

In this study we evaluated the suitability and repeatability of sedimentation rate- and size- based methods 
for enrichment of EVs from relatively small volumes of human blood plasma. Enriched EVs from ten healthy 
adult volunteers were analyzed for size, concentration and purity by NTA, AF4-UV-MALS, transmission electron 
microscopy (TEM), enzyme-linked immunosorbent assay (ELISA) and quantitative PCR (qPCR). To this end, 
AF4-UV-MALS was optimized for use on blood plasma EVs. Our aim was to find a simple method for enrich-
ment of plasma EVs, compatible with reliable quantification of EVs as biomarkers of disease.

Results
sUC and SEC enrich different populations of nanoparticles from human plasma.  In all study 
subjects, EVs were enriched from defrosted aliquots of cell- and larger EVs- depleted plasma using two methods, 
separating based on different particle characteristics: with in-lab prepared sUC and with commercially available 
SEC columns.

To quantify nanoparticles in the samples obtained from the above mentioned EV-enrichment methods, we 
first measured the mode size and concentration of nanoparticles by NTA for each study subject and calculated 
the median of those measurements (Fig. 1, Table 1). We observed significant (p < 0.001) differences in the NTA-
concentration of nanoparticles between sUC and SEC EV-enrichment (Fig. 1A,B,D). Overall, sUC led to a statis-
tically significant lower NTA-concentration of particles [3.11 (2.33–3.48) × 109 particles/mL, median (25–75%), 
N = 10] than SEC [8.64 (6.00–17.16) × 109 particles/mL, median (25–75%), N = 10]. However, variability in the 
NTA-concentration of nanoparticles between samples of included study subjects was larger after SEC (Fig. 1A,D). 
The median of size profiles of nanoparticles of all study subjects was comparable between two EVs-enrichment 
methods (Fig. 1C,D; sUC: 109 (95–138) nm, SEC: 99 (89–115) nm; median (25–75%), N = 10). Interestingly, only 
the diameter of nanoparticles in sUC samples statistically correlated with the age of the study subjects (Fig. 1E; 
p = 0.0061, rs = 0.8146). Together these results imply a possible difference in the nature of nanoparticles in the 
samples after EV-enrichment with sUC and SEC methods. 

All samples were further analyzed by AF4, coupled with UV and MALS detectors (Fig. 2). UV and MALS sig-
nal were very high and overlapped in EV-enriched samples after SEC, which made their quantification impossible 
(Fig. 2A). On the other hand, EV samples enriched by sUC could be reliably characterized, since UV and MALS 
signal were separated, and thus size and concentration of particles could be evaluated (Table 1, Fig. 2). Subpopu-
lation of nanoparticles eluted between 25–58 min after analysis start (corresponding to 2*Rgeom > 120 nm) were 
significantly larger compared to NTA measurements (2*Rgeom: 195 (186–211) nm, p < 0.0001; median (25–75%), 
N = 8), but also significantly less concentrated [0.66 (0.23–0.94) × 109 particles/mL p < 0.01; median (25–75%), 
N = 8]. Results of nanoparticle quantification with NTA and AF4-UV-MALS, as well as sex and age of the study 
subjects, are presented in Table 1.

We additionally quantified nanoparticles in the EV-enriched samples indirectly by measuring expression (Ct) 
of miR-103a-3p, miR-126-3p, miR-425-5p, miR625-3p, and let-7i-5p, which were previously detected in EVs 
from human plasma33. SEC EV-enriched samples in general showed more variability in the Ct -values between 
samples of included study subjects than sUC EV-enriched samples (Fig. 3). Ct-values of all quantified miRNAs 
were significantly lower in samples after sUC compared to samples after SEC EV-enrichment (Fig. 3; p < 0.01 for 
all tested miRNAs, except for hsa-miR-126-3p and hsa-miR-625-3p: p < 0.05), indicating higher concentration 
of isolated miRNAs after sUC.
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As shown by NTA, AF4–UV-MALS and qPCR sample characterization, sUC and SEC methods result in 
enrichment of different populations of nanoparticles. To determine the nature of said particles, we inspected 
EV-enriched samples under TEM.

sUC EV‑enrichment led to better removal of lipoprotein and protein contaminants in the 
sample.  TEM analysis of the EV-enriched samples showed that both enrichment methods isolated at least 

Figure 1.   Quantification of enriched nanoparticles from human blood plasma by NTA. (A) NTA signal for 
samples of all included subjects after sUC and SEC. Comparison of the average particle (B) concentration 
and (C) size distribution for included subjects after sUC and SEC. (D) Box and whiskers plot of particle 
concentration and size in samples after sUC and SEC. Each circle or diamond presents one sample. ***p < 0.001. 
(E) Correlation of particle mode diameter after EVs-enrichment with age of the study subjects: SEC: p = 0.5603; 
sUC p = 0.0061, rs = 0.8146. N = 10. NTA nanoparticle tracking analysis, sUC sucrose cushion ultracentrifugation, 
SEC size exclusion chromatography.

Table 1.   Concentration and size of nanoparticles, enriched by SEC or sUC, as measured by NTA and AF4-
UV-MALS. NTA nanoparticle tracking analysis, AF4-UV-MALS asymmetrical flow field-flow fractionation 
with ultraviolet and multi-angle light scattering detectors, SEC size exclusion chromatography, sUC 
ultracentrifugation with sucrose cushion, Rgeom geometric radius.

Sample Sex Age (years)

NTA AF4-UV-MALS

SEC sUC sUC

Conc. of particles 
(particles/mL) (*109) Mode diameter (nm)

Conc. of particles 
(particles/mL) (*109) Mode diameter (nm)

Conc. of particles 
(particles/mL) (*109) 2*Rgeom (nm)

S1 F 51.7 5.39 161 5.04 100 0.19 190

S2 F 54.8 7.84 115 2.21 97 0.23 200

S3 F 62.8 8.93 104 3.36 151 0.23 212

S4 F 60.1 5.04 143 2.69 118 0.81 174

S5 M 47.4 16.80 84 0.97 70 NA NA

S6 M 50.2 8.35 93 2.13 94 0.50 210

S7 M 61.8 17.28 89 3.31 156 NA NA

S8 F 65.5 25.00 61 3.52 136 0.99 188

S9 F 58.4 5.04 90 2.91 138 0.92 212

S10 M 54.7 20.40 113 5.60 70 16.00 178

Median 56.6 8.64 99 3.11 109 0.66 195

1st–3rd quartile 52.5–61.4 6.00–17.16 89–115 2.33–3.48 95–138 0.23–0.94 186–211
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Figure 2.   Quantification of enriched nanoparticles from human blood plasma by AF4-UV-MALS. (A) 
Representative fractogram. Representation of MALS (LS) and UV signals in relation to elution time in sample 
from subject 9 (S9) after sUC or SEC. Dotted lines present UV signals, solid lines present MALS signals. (B) 
Representative fractogram. Magnification of the MALS(LS) signal. The inset represents calculated size of 
eluted particles, presented as 2*Rgeom. (C) Particle size and concentration in samples after sUC. Each circle or 
triangle presents one sample. N = 8. AF4-UV-MALS asymmetrical flow field-flow fractionation with ultraviolet 
and multi-angle light scattering detectors, sUC sucrose cushion ultracentrifugation, SEC size exclusion 
chromatography, Rgeom geometric radius.
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some EVs, but importantly differed in the amount of the co-isolated impurities (Fig. 4). For the purpose of this 
analysis, we separated subject’s samples into three groups based on NTA quantification of particles in SEC EV-
enriched samples; those are groups with low (S1 and S4; Fig. 4A), medium (S2, S3, S6 and S9; Fig. 4B) and high 
(S5, S7, S8 and S10; Fig. 4C) particle concentration. Representative TEM images for all samples are collected in 
Supplementary Table 1. Beside nanoparticles that were determined as EVs, we observed high amounts of low 
electron lucent (white) amorphous non-EV particles of size up to 500 nm in the SEC (Fig. 4D), but not in the 
sUC samples (Fig. 4E). These nanoparticles were proposed to represent lipoproteins, based on their electron 
homogeneously lucent appearance due to very low binding of uranyl stain that is typical for lipids34. When 
present in higher concentrations as in SEC EV-enriched samples, lipoproteins tended to accumulate together 
and form larger structures, capturing protein aggregates and even EVs (Fig. 4D, Supplementary Table 1). TEM 
images of sUC EV-enriched samples showed relatively pure EVs, with few very small white spherical particles 
(10–30 nm, likely HDLs) and some protein aggregates still present (Fig. 4E, Supplementary Table 1).

To support TEM results, concentration of lipoproteins in SEC and sUC EV-enriched samples was measured 
by ELISAs specific for Apolipoprotein A1 (ApoA1, Fig. 5A) and Apolipoprotein B100 (ApoB100, Fig. 5B), char-
acteristic for HDLs and LDLs, IDLs or VLDLs, respectively. Concentration of both lipoproteins was significantly 
higher in samples after SEC compared to sUC enrichment. While the difference in ApoA1 was approximately 
twofold [SEC: 1.070 (0.761–1.960) × 104 ng/mL vs. sUC: 0.484 (0.399–0.689) × 104 ng/mL, p < 0.01; median 
(25–75%), N = 10] the difference in ApoB100 was as much as 100-fold [SEC: 26.312 (18.618–35.610) × 103 ng/mL 
vs. sUC: 0.263 (0.221–0.352) × 103 ng/mL, p < 0.0001; median (25–75%), N = 10], signifying HDLs, but especially 
LDLs, IDL and VLDLs were present in much higher concentrations in samples after SEC. Results of ApoA1 and 
ApoB100 quantification are presented in Supplementary Table 2.

Figure 3.   Quantification of enriched nanoparticles from human blood plasma by qPCR. Ct values of five 
selected miRNAs in samples after sUC and SEC. Each square or circle presents one sample. N = 10. *p < 0.05, 
**p < 0.01. Ct cycle threshold, sUC sucrose cushion ultracentrifugation, SEC size exclusion chromatography.
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Despite higher concentration of nanoparticles in EV-enriched samples after SEC, high concentration of con-
taminat lipoproteins are co-purified. sUC method leads to high purity of EVs in the samples, and is therefore a 
more suitable method for enrichment of EVs from human plasma.

sUC‑based enrichment of EVs from plasma linked to NTA or AF4‑UV‑MALS quantification 
gives repeatable results.  We wanted to analyze the repeatability of sUC EV-enrichment method, linked 
to quantification of EVs by NTA (Fig. 6A, Supplementary Table 3) and AF4-UV-MALS (Fig. 6B, Supplementary 
Table 3). Percent relative standard deviation (%RSD), the measure of repeatability, was especially good when 
comparing the size of EVs, as the RSD was 5.4% when measured by NTA (mode diameter) and 2.1% when 
measured by AF4-UV-MALS (2*Rgeom). Percent RSD increased for EV concentration in the samples, as RSD was 
19.1% and 24.4% when analyzed by NTA and AF4-UV-MALS, respectively.

Next, we treated the EV-enriched samples with proteinase K and DNase-I to evaluate the influence of any 
remaining protein or DNA contaminants on EVs quantification by NTA (Fig. 7A, Supplementary Table 3) and 
AF4-UV-MALS (Fig. 7B, Supplementary Table 3). According to NTA, digestion did not considerably change the 
size profile, or significantly change the modal size (p = 0.0571) nor the concentration (p = 0.6857) of enriched EVs. 
Same general trend was seen for digested EV-samples after analysis with AF4-UV-MALS (modal size: p = 0.4286; 

Figure 4.   Comparison of representative TEM images of enriched nanoparticles from human blood plasma 
after SEC and sUC. (A) Comparison of NTA signal for average (solid line) and representative (dotted line) 
samples after sUC and SEC in samples with low, (B) medium and (C) high concertation of particles after SEC. 
(D) TEM images of representative samples after EVs enrichment with SEC. (E) TEM images of representative 
sample of each group after EVs enrichment with sUC. Yellow triangles indicate EVs, blue triangles indicate 
lipoproteins. TEM transmission electron microscopy, NTA nanoparticle tracking analysis, sUC sucrose cushion 
ultracentrifugation, SEC size exclusion chromatography.
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Figure 5.   Quantification of ApoA1 and ApoB100 with ELISA in SEC and sUC EV-enriched samples. Box 
and whiskers plot of (A) ApoA1 and (B) ApoB100 concentrations in samples after SEC and sUC. Each 
circle or triangle presents one sample. N = 10. **p < 0.01, ****p < 0.0001. ApoA1 Apolipoprotein A1, ApoB100 
Apolipoprotein B100, sUC sucrose cushion ultracentrifugation, SEC size exclusion chromatography.

Figure 6.   Repeatability of the sUC enrichment method linked to quantification with NTA and AF4-UV-MALS. 
(A) Quantification of nanoparticle size and concentration of four independently sUC-enriched aliquots of the 
same plasma sample by NTA. (B) Quantification of size and concertation of three independently sUC-enriched 
aliquots of the same plasma sample by AF4-UV-MALS. Representative fractogram. Representation of MALS 
and UV signals in relation to elution time in average of sample with and without enzymatic digestion after sUC. 
NTA nanoparticle tracking analysis, AF4-UV-MALS asymmetrical flow field-flow fractionation with ultraviolet 
and multi-angle light scattering detectors, sUC sucrose cushion ultracentrifugation.
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concentration: p = 0.7143). Importantly, the efficiency of enzyme degradation was demonstrated by decrease and 
slight move to left of the UV-signal curve for digested samples on AF4-UV-MALS histogram (Fig. 7B).

The sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as 
determined by low %RSD in EVs size. Digestion of the EV-enriched samples with DNase-I and Proteinase K is 
redundant, as it does not significantly affect the quantification of EVs.

Discussion
In search for new biomarkers, a simple method for enrichment of EVs from small starting volumes of human 
plasma is needed for their reliable quantification. We compared two methods for enrichment of EVs from one 
mL of blood plasma, separating particles based on their sedimentation rate—sUC, and size—SEC. According to 
NTA, AF4-UV-MALS, miRNA quantification, TEM and ELISA, sUC enrichment method leads to high purity 
of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with 
lipoproteins and other aggregates of EV-like sizes. We additionally showed that sUC EV-enrichment method, 
followed by quantification with NTA or AF4-UV-MALS, is repeatable and could in the future be used for studies 
of plasma EVs as biomarkers of disease.

Although commercially available SEC columns are promoted as compatible with EV-enrichment from the 
blood plasma35,36, in our hands they were not so effective for this purpose. SEC in our study co-enriched numer-
ous non-EV contaminants as detected by NTA and AF4-UV-MALS. They were later identified as lipoproteins and 
lipo/protein aggregates by TEM and ELISAs specific for ApoA1 (found in HDL) and ApoB100 (found in LDL, 
IDL and VLDL). This is not surprising, as SEC method isolates nanoparticles based on size and many lipopro-
teins (LDLs, VLDLs and chylomicrons) and also larger protein aggregates37 are in the same size-range as EVs38. 
Moreover, lipoproteins are approximately 107-fold more abundant in human blood plasma than EVs7,9, with 
reported concentrations of ApoA1 and ApoB100 in healthy adults of 189.11 × 104 ng/mL and 147.25 × 104 ng/mL, 
respectively39. We have shown that high concentrations of ApoA1 (median value: 1.1 × 104 ng/mL) and ApoB100 
(median value: 2.6 × 104 ng/mL) are present in the sample even after enrichment of EVs with SEC. As lipoproteins 
can also stick to and aggregate with EVs17, they can considerably affect enrichment and quantification of EVs. 
Furthermore, as prandial status40, genetic makeup41 and lifestyle42 of study subjects affect plasma lipoprotein 
levels, any EV-enrichment method that cannot discard lipoproteins is hindered by these additional pre-analytical 
factors43,44. Despite high reported recovery of EVs with SEC43, the method is evidently less suitable for direct 
isolation of EVs from plasma. Some have addressed this by linking SEC to other EV-enrichment methods, like 
density gradient UC or highly specialized methods45,46, but these approaches can be complex, time-consuming, 
expensive and non-compatible with high numbers of low-volume samples, typical for clinical settings. Still, SEC 
is a valuable method for enrichment of EVs from other biological sources, where lipoproteins are not the main 
contaminant, like urine47 and cerebrospinal fluid48.

We therefore propose sUC, a simple method for one step enrichment of EVs from small volumes of blood 
plasma, which can be coupled to different methods for quantification of EVs. sUC allowed for simultaneous 
processing of many plasma samples towards final enrichment of EVs and important decrease in the number of 

Figure 7.   Effect of digestion with proteinase K and DNase-I on particle size and concentration after enrichment 
with sUC. (A) Quantification of size and concentration of nanoparticles human blood plasma sample with 
(black line) or without (blue line) treatment with proteinase K and DNase-I by NTA. Lines represent the average 
particle values of four independently sUC-enriched and treated aliquots of the same sample with and without 
enzymatic digestion. (B) Quantification of size and concentration of nanoparticles in human blood plasma 
sample with (black line) or without (blue line) treatment with proteinase K and DNase-I by AF4-UV-MALS. 
Fractograms present average MALS and UV signals in relation to elution time of three independently sUC-
enriched samples with and without enzymatic digestion. NTA nanoparticle tracking analysis, AF4-UV-MALS 
asymmetrical flow field-flow fractionation with ultraviolet and multi-angle light scattering detectors, sUC 
sucrose cushion ultracentrifugation.
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larger lipoproteins (0.1% of normal plasma ApoB100 concentration) and aggregates, independent of prandial 
status of study subjects. Sucrose cushion UC was historically used for routine isolation of enveloped viruses49,50, 
which show similar biophysical characteristics as EVs51. It was also successfully used for enrichment of EVs from 
conditioned media13,52,53, but this is the first report of its use for enrichment of EVs from blood plasma. Although 
sUC enriched EVs still contained some HDLs as shown by TEM and confirmed by ELISA measurement of ApoA1 
(median value: 0.48 × 104 ng/mL), they do not interfere with EV quantification by NTA or AF4-UV-MALS, as 
they are only about 10–20 nm in diameter54. This is supported by our observation that EV diameter after sUC-
enrichment correlates with study subjects’ age, but this should be confirmed in a larger study. HDLs were reported 
to transport miRNA54,55, but the results are not yet conclusive56. Still, when miRNA characterization is the end 
goal of the study, we propose separate quantification of HDLs in EV-enriched sample to evaluate their potential 
contribution to miRNA expression or treatment of EV-enriched sample with protease/RNase to release and 
degrade lipoprotein associated miRNAs, as proposed by Driedonks et al.57. Alternatively, HDLs can be removed 
from plasma by antibody-mediated clearing of lipoproteins58. Plasma EVs, enriched by UC-based methods, have 
previously been used in functional studies10, implying sUC does not impair EV’s functional activity.

Concentration of nanoparticles in the same EV-enriched sample was significantly lower when comparing 
AF4-UV-MALS to NTA quantification, while an average reported size of particle was almost twice as big in the 
case of AF4-UV-MALS. Although these methods detect and report different types of particle size59, a comparison 
between Rgeom obtained by AF4-UV-MALS and Rh obtained by NTA is reasonable, since the vesicle’s scattering 
mass is distributed on a thin shell surrounding the spherical core60. However, the methods seem to detect a 
different subpopulation of nanoparticles in the EV-enriched sample. Even though NTA is in theory suited for 
polydispersed samples, only EVs larger than approximately 60 nm in diameter are detected61, furthermore EVs 
cannot be distinguished from lipoproteins or larger protein aggregates with similar Brownian motion10,62. Addi-
tionally, a previous study showed NTA prevalently reports properties of approximately 200 nm-sized particles, 
regardless of sample actual composition63. On the other hand, AF4-UV-MALS is known to detect a broad size 
range of particles (1 nm–10 µm)29, also due to initial separation of particles before they reach detectors. Still, 
most of smaller particles were not included in particle radius calculations in our study, as they co-eluted with 
other contaminants that absorb UV light. Our31 and other studies namely showed that UV detector at 280 nm 
measures proteins64 and lipoproteins65 in the sample. To exclude the effect of impurities on EV quantification, 
we effectively included in the AF4-UV-MALS analysis only particles with 2*Rgeom larger than ≥ 120 nm. NTA and 
AF4-UV-MALS are evidently great complementary techniques for quantification of EVs from a complex source.

Importantly, we demonstrated good repeatability of the sUC-based enrichment of EVs from human plasma, 
when linked to quantification by NTA and AF4-UV-MALS. Percent RSD of EV size, measured in independently 
processed samples from the same plasma source, was namely 5.4% and 2.1% when analyzed by NTA or AF4-UV-
MALS, respectively. We observed higher %RSD of EV concentration in processed samples (19.1% and 24.4% for 
NTA and AF4-UV-MALS, respectively), but this is likely due to inherent limitations of the instruments used for 
quantification. Higher %RSD is namely reported for measurements of EV concentration by NanoSight NS300 
when compared to %RSD for EV size (5.4–10.7% for concentration vs. 0.8–6.7% for size)61. A similar study for 
AF4-UV-MALS has not yet been performed. Development and introduction of validated EVs reference materials, 
such as recombinant EVs, will in the future allow further normalization of each sample for its specific recovery 
efficiency45, leading to even better repeatability and methodological standardization of the protocol.

This is to our knowledge one of the first reports of analysis of human blood plasma EVs by AF4-UV-MALS. 
One study directly analyzed proteins, antigens and smaller lipoproteins in diluted rat plasma and human whole 
blood by AF4-UV-MALS64, while a recent study successfully analyzed EVs in pre-processed plasma of human 
subjects that were fasted for at least 12 h66. We have previously implemented AF4-UV-MALS for quantification 
of EVs by using commercially available EV standards31 and monodisperse polystyrene beads of various radii67. 
The technique was later adopted by others in many quantification studies of cell culture- and urine-derived 
EVs13,29,30,36,47. Different biological sources of EVs each have distinct nanoparticle composition, with different 
contaminants possibly interfering with EV quantification. As shown here, the biggest challenge of blood-derived 
EVs were lipoproteins30,47. MALS signal for particles and UV signal for present lipoprotein impurities com-
pletely overlapped in the SEC EV-enriched samples, so quantification was only possible for the subpopulation 
of sUC enriched EVs, where UV signal was low. Wu et al.66 addressed this problem by using at least 12 h fasted 
plasma, but this is not always possible in the clinical setting and in the context of certain diseases. Efficiency of 
AF4-UV-MALS therefore still seems to greatly benefit from carefully chosen method for enrichment of EVs, 
like here described sUC.

In conclusion, we propose sUC EV-enrichment method, coupled to NTA or AF4-UV-MALS, for simple and 
repeatable quantification of human plasma EVs in biomarkers studies. Optimization of AF4-UV-MALS for 
quantification of EVs from blood plasma opens new possible clinical utility for the technique. In the future, sUC 
EV-enrichment method should be tested on larger cohorts in connection to different diseases.

Methods
Study subjects.  Ten healthy adult volunteers (median age of 56.5 years at enrolment) were included in the 
study, which was approved by the Slovenian Ethics Committee for Research in Medicine and was carried out 
according to the Declaration of Helsinki. Each participant signed an informed consent.

Peripheral whole venous blood of unfasted volunteers was collected into commercially available vacutainer 
tubes containing EDTA (BD Vacutainer, BD, USA) in the morning and processed within 1 h after withdrawal. 
After the first centrifugation (820×g for 10 min at 4 °C) plasma was collected and centrifuged again (2500×g for 
10 min at 4 °C). The supernatants were then aliquoted to protein low binding tubes (Eppendorf, Germany) and 
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stored at − 80 °C. Before small EV enrichment, aliquots were defrosted on ice and centrifuged at 10,000×g for 
20 min at 4 °C to remove large nanoparticles.

Small EV‑enrichment with sucrose cushion ultracentrifugation (sUC).  One mL of plasma was 
diluted with 8.5  mL particle-free Dulbecco’s Phosphate buffer saline (dPBS, Sigma-Aldrich, USA), carefully 
overlaid on 2 mL of 20% sucrose cushion (sucrose (Merck Millipore, USA) in dPBS) in polypropylene tubes 
(Beckman Coulter, USA) and centrifuged at 100,000×g for 135 min at 4 °C (MLA-55, Beckman Coulter, USA) to 
enrich EVs in the sample. The supernatant was gently aspirated and residual moisture absorbed from the walls 
of the tubes. The pellet was resuspended in small volume of dPBS (NTA: 20 µL, AF4-UV-MALS: 40 µL, TEM: 
20 µL) and stored at − 20 °C. For miRNA extraction, pellet was resuspended in 200 µL of dPBS and 800 µL Tri-
reagent (Sigma, USA) was added before storage.

To analyze repeatability of sUC EV-enrichment method linked to quantification methods, 4 aliquots of plasma 
from the same donor were processed as described above. Repeatability is measured by % relative standard devia-
tion (%RSD) and is calculated as: (standard deviation/mean)*100.

Small EV‑enrichment with size exclusion chromatography (SEC).  Five hundred µL of plasma was 
loaded on the SEC column (qEV original, IZON Science, USA) and eluted with dPBS. Twenty eluted fractions 
of 500 µL were collected in protein low binding tubes. After flushing the column with 10 mL of fresh dPBS, the 
process was repeated with the remaining 500 µL of plasma as before. Based on A280 chromatogram (Synergy 2, 
BioTek, USA) proteins started to elute in fraction 12, with the bulk released in fractions 15–19. Therefore, only 
fractions 7–11, with enriched EVs, were collected (final volume = 5 mL) and concentrated (NMWL membrane, 
100 kDa, Amicon Ultra-4 Centrifugal Filter Unit, Merck Millipore, USA) to 40 µL. Samples were further diluted 
depending on subsequent analysis as described for sUC.

Quantification of EVs by NTA.  EV-enriched samples were diluted in dPBS to a concentration in the 
range of 1 × 107–109/mL and examined using a NanoSight NS300 (NanoSight Ltd., UK) equipped with a 488 nm 
blue laser. Five 60 s-long videos were taken for each sample, with the best three chosen for analysis after visual 
inspection. Raw data of laser scattering and particle movement were analyzed using NTA software (version 3.3; 
NanoSight Ltd., UK). Automatic settings were selected for minimum expected particle size and blur, minimum 
track length was set to 10, detection threshold to 5, sample viscosity to the corresponding viscosity for water and 
temperature to 25 °C. The output data was presented as EV size (modal hydrodynamic diameter in nm) and EV 
concentration (number of EVs enriched from 1 mL of plasma in particles/mL).

Quantification of EVs by AF4‑UV‑MALS.  The AF4 was performed using the Eclipse 3+ system (Wyatt 
Technology Europe, Germany) connected to the isocratic pump, on-line vacuum degasser and auto-sampler 
(Agilent Technologies 1260 series, USA). The samples were separated in a trapezoidal-shaped channel, with 
a tip-to-tip length of 152 nm and an initial channel breadth of 21 mm that decreased to final 3 mm, equipped 
with the 350 µm spacer and 10 kDa regenerated cellulose membrane. The fractionated particles were detected 
with an on-line UV detector operating at 280 nm (Agilent Technologies, USA) and a multi-angle light scattering 
(MALS) detector (DAWN HELEOS, Wyatt Technology, USA) operating at a wavelength of 658 nm, calibrated 
using toluene and normalized with bovine serum albumin protein as an isotropic scatterer standard. As a run-
ning eluent, dPBS supplemented with 0.02% w/v sodium azide was used. The eluent was filtered through a Nylon 
66 membrane with a pore-size of 0.45 µm (Supelco Analytical, USA). Between the HPLC pump and the AF4 
channel, an additional filter with a pore-size of 0.1 µm was placed (PEEK Inline Filter Holder, Wyatt Technology, 
USA). Samples were injected during a focusing/injection step of 5 min, with a focus flow rate of 1.5 mL/min and 
an injection flow rate of 0.2 mL/min, followed by a focusing/relaxation step for an additional 7 min. The elution 
step was performed with two linear cross-flow gradients, a high initial gradient of 0.275 mL/min2 (i.e., cross-flow 
from 3.0 to 0.25 mL/min in 10 min) followed by a lower gradient of 0.0036 mL/min2 (cross-flow from 0.25 to 
0.09 mL/min in 45 min). Here, 0.09 mL/min was the lowest cross-flow limit of the instrument. Once this limit 
was reached, the cross-flow was turned off. The detector flow rate was 1 mL/min. The last step was washing the 
channel for 10 min in elution mode without any cross-flow13,31.

The Astra 5.3.4.20 software (Wyatt Technology, USA) was used to analyze the data. The size of the particles 
was expressed as geometric radius (Rgeom). The Rgeom was obtained from the MALS detector without the need 
for the solute concentration and the increment in the sample refractive index and was determined by the Astra 
Particle template assuming spherical EV shape68. The concentration of particles (particles/mL) was evaluated by 
the Astra Number density template, using an EV refractive index of 1.3969.

DNase‑I and proteinase K digestion.  After sUC, the EV-enriched pellet was resuspended in 40 µL of 
DNase-I buffer (Thermo Scientific, USA) and transferred to a fresh protein low binding tube. First, 4.5 U of 
DNase-I (Thermo Scientific, USA) was added, gently mixed and incubated at 37 °C for 30 min. The activity of 
DNase-I was stopped by addition of ethylenediaminetetraacetic acid (final concentration 1 mM; Thermo Scien-
tific, USA,). Next, samples were digested with Proteinase K (final concentration 50 μg/mL; Ambion, USA) for 
30 min at 37 °C. After the digestion, Proteinase K was inhibited by incubation with 1 µL of Protease Inhibitor 
Cocktail (I3911, Sigma-Aldrich, USA) for 10 min at RT. Digested EV-enriched samples were stored at − 20 °C 
until use.
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EV‑miRNA quantification.  For isolation of miRNA, 1 mL aliquots of EV-enriched samples mixed with 
Tri-reagent, were defrosted on ice and mixed with 1 µL of SPIKE-IN (ath-miR-159a, final concentration 2 nM; 
Applied Biosystems, USA), 1 µL of MS2 RNA carrier (final concentration 0.8 µg/µL; Roche, Switzerland), 200 µL 
of chloroform (Sigma-Aldrich, USA) and mixed vigorously. miRNA was extracted by chloroform extraction, 
using the miRNeasy Mini Kit (Qiagen, Germany), according to the manufacturer’s instructions. The protocol 
was adapted by addition of extra chloroform extraction step (addition of 500 µL of RNase/DNase-free water 
after removal of aqueous phase from the chloroform-sample mixture) and changes in miRNA column elution 
step (two sequential additions of 25 µL of RNase/DNase free water and centrifugations at 15.000×g, 30 s). Eluted 
miRNA was stored at − 20 °C in DNA low binding tubes (Eppendorf, Germany).

Reverse transcription of miRNA to cDNA was performed in a batch (for all samples at once), transcribing 
total isolated miRNA using the TaqMan Advanced miRNA cDNA Synthesis Kit (Applied Biosystems, USA) and 
following manufacturers recommendations. Samples were stored at − 20 °C.

qPCR for miRNA expression analysis was performed using the TaqMan Advanced MicroRNA assay (Applied 
Biosystems, USA) on Viia 7 Real-Time PCR System (Applied Biosystems, USA). In addition to five miRNAs 
of interest (hsa-miR-103a-3p, hsa-miR-126-3p, hsa-miR-425-5p, hsa-miR625-3p, and hsa-let-7i-5p), threshold 
cycle (Ct) of spike-in was analyzed for efficiency of miRNA isolation and transcription to cDNA and deviations 
would result in exclusion of the sample. All samples were also tested for hemolysis by analyzing miR-23a-3p and 
miR-451a, ∆Ct (Ct(miR-23a-3p) – Ct(miR-451a)) ≥ 7 indicated hemolysis and would result in exclusion of the sample. The 
analysis was performed using Viia 7 Software (Applied Biosystems, USA) and the miRNA levels expressed as Ct.

Characterization of EVs by TEM.  Samples were visualized by TEM using a negative staining method. 
Four µL of EV-enriched samples were applied on Formvar-coated and carbon stabilized copper grid and stained 
with 1% (w/v) water solution of uranyl acetate. Samples were analyzed with Philips CM 100 electron microscope 
(FEI, The Netherlands), operating at 80 kV. Images were obtained with OriusSC200 camera (Gatan, USA) using 
DigitalMicrograph Software (Gatan Inc., USA)13.

Quantification of ApoA1 and ApoB100 with ELISA.  EV-enriched samples were diluted in dPBS 
(100,000-times for measurements of ApoA1 in all samples, 3000-times for measurements of ApoB100 in samples 
after SEC and 80-times for measurements of ApoB100 in samples after sUC) and the concentration (ng/mL) of 
ApoA1 (specific for HDLs) and ApoB100 (specific for IDLs, LDLs and VLDLs) measured in duplicates by des-
ignated ELISAs (ELISA-ApoA1: #3710-1HP-2, ELISA-ApoB100: #3715-1HP-2, Mabtech, Sweden), according to 
the manufacturer’s instructions. Measured concentrations were normalized to 1 mL of starting plasma and any 
potential dilution of the samples was accounted for.

Statistics.  Data analysis and graphical presentations were performed using GraphPad Prism version 6.07 
(GraphPad Software, USA). The Mann–Whitney test was used to test for differences between the two groups. 
Correlations between experimental results were examined using Spearman’s rank test. p values of less than 0.05 
indicated statistical significance.
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