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    Human plasmacytoid DCs (pDCs) are respon-
sible for robust production of type I IFNs ( 1, 2 ). 
They express Toll-like receptor (TLR)-7 and 
-9, which recognize single-stranded RNA and 
double-stranded DNA, respectively ( 3 – 5 ). Upon 
stimulation, pDCs migrate to the T cell area 
of lymphoid organs via the high endothelial 
venules (HEVs), where they produce signifi cant 
amounts of type I IFNs, suggesting a central 
role in pathogen recognition and the induction 
of innate immunity ( 6, 7 ). Increasing evidence 
indicates that pDCs are also critical in bridging 
innate and adaptive immune responses in the 
context of systemic viral or bacterial infections 
( 1, 8 ). This is caused, in part, by the production 

of IFNs, as well as their ability to participate in 
the recruitment of NK and activated T cells ( 9 ). 
More recently, it has been demonstrated that 
pDC-derived IFN supports conventional DCs 
(cDCs) in the priming of CD8 �  T cells ( 8, 10 ). 
Although this adjuvant eff ect is now accepted, 
the precise cytokine and chemokine network 
that accounts for pDC ’ s role in establishing 
an infl ammatory microenvironment has been 
poorly characterized. 

 Taking advantage of multianalyte profi ling 
(MAP) technology, we have performed an in-
depth analysis of the cytokines and chemokines 
secreted by activated pDCs ( 1 ). Using both 
TLR-7 and -9 agonists, we confi rmed what 
has been previously described concerning their 
secretory activity, and we identified addi-
tional infl ammatory molecules directly expressed 
by pDCs. Specifi cally, we have used MAP for 
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 Plasmacytoid dendritic cells (pDCs) are the professional type I interferon (IFN)-producing 

cells, and upon activation they traffi c to lymph organs, where they bridge innate and 

adaptive immunity. Using multianalyte profi ling (MAP), we have mapped the key chemokines 

and cytokines produced in response to pDC activation, taking into consideration the role 

of autocrine IFN, as well as paracrine effects on other innate cells (e.g., monocytes and 

conventional DCs). Interestingly, we identify four distinct cytokine/chemokine loops initiated 

by Toll-like receptor engagement. Finally, we applied this analytic approach to the study of 

pDC activity in chronic hepatitis C patients. Based on the activation state of pDCs in fresh 

blood, the lack of agonistic activity of infectious virions, the production of a broad array of 

cytokines/chemokines once stimulated, and the direct effects of pDCs on other PBMCs, we 

conclude that the pDCs from hepatitis C virus (HCV)-infected individuals are fully functional 

and are, indeed, a viable drug target. In sum, this study provides insight into the use of 

MAP technology for characterizing cytokine networks, and highlights how a rare cell type 

integrates the activation of other infl ammatory cells. Furthermore, this work will help evaluate 

the therapeutic application of pDC agonists in diseases such as chronic HCV infection. 
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 Figure 1.   TLR stimulation triggers pDCs to produce and induce a broad array of proinfl ammatory molecules. (A) 33,500 purifi ed pDCs were 

cultured in 200  � l for 20 h with the indicated amount of FLU (hemagglutinating unit [HAU]/milliliter; black bars), CpG (micrograms/milliliter; gray bars), 

or media alone ( ø ; white bars). Supernatants were harvested and analyzed by Luminex. Data are expressed in nanograms/milliliter. The scale is indicated 

on the left. Data are the mean of duplicate wells, and each error bar indicates one SD. (B) To confi rm the Luminex data, PBMCs were incubated for 5 h 

with media or 50 HAU/ml FLU. Cells were stained on the surface with pDC markers, fi xed, permeabilized, and stained intracellularly for the indicated cytokine/

chemokine. We looked at the cytokine/chemokine production on a per cell basis by gating on pDCs. (C) 10 6  PBMCs (solid line) or PBMCs depleted of 

pDCs (PBMCs-pDCs; dashed line) were stimulated for 20 h with the indicated doses of CpG-2216 in 200  � l of culture media. Mean values of duplicate 

wells are presented. For A – C, results are representative of six independent experiments each, performed on a total of eight donors.   

   

characterization of the interactions between activated pDCs 
and other innate cells within the immune system. Interest-
ingly, we identifi ed four distinct cytokine loops by which 
pDCs contribute to the initiation of an infl ammatory response: 
(a) molecules secreted by the pDC itself and independent of 
IFN production; (b) molecules secreted by the pDC and in-
hibited by paracrine IFN; (c) molecules secreted by the pDC 
and amplifi ed by paracrine IFN; and (d) molecules not pro-
duced by pDCs, but triggered by paracrine IFN. Herein, we 
map each of the four mechanisms and show data with repre-
sentative pDC-produced and -induced analytes. 

 Although pDC research has primarily focused on their 
ability to produce IFNs, and understandably so, as pDCs have 
been shown to produce 19 diff erent type I IFNs, with this 
activity accounting for  � 60% of the transcriptional activity 
( 11 ), some studies have reported that pDCs secrete substantial 
amounts of other infl ammatory molecules. Specifi cally, it 
has been shown that pDC stimulation results in the produc-
tion of TNF �  and IL-6, as well as the  �  chemokines CCL3 
and CCL4 ( 9, 12 – 14 ). That said, many of these studies fail to 
demonstrate on a per cell basis that pDCs are the true source 
of the analyte in question. Furthermore, none of these studies 
used a systematic approach to defi ne the extended array of 
molecules simultaneously produced by pDCs, nor has there 
been much consideration of the cells that are indirectly acti-
vated as a result of pDC-derived IFNs. Given the importance 
of pDCs in coordinating an infl ammatory milieu, we believe 
our eff orts off er critical information for understanding the pro-
gramming of an antiviral or antibacterial response. 

 The analytic approach developed in this study lends itself 
to the evaluation of perturbations in the cytokine/chemokine 
network in diff erent disease states. Several reports have indi-
cated subversion of pDC function in hepatitis C virus (HCV) 
patients ( 15 – 18 ), and for this reason, we chose to defi ne the 
functional status of pDCs in chronically infected individuals 
using MAP. This matter is of great importance, as it concerns 
not only the pathogenesis of HCV infection, but also the util-
ity of novel therapeutic strategies based on targeting circulat-
ing pDCs. As shown here, by all measures, we fi nd that pDCs 
from HCV-infected individuals are fully functional and are, 
indeed, a viable target for immunotherapy. 

  RESULTS  

 pDC activation results in the production of a broad array 

of proinfl ammatory molecules 

 To validate our stimulation protocols and defi ne the experi-
mental conditions used herein, we purifi ed pDCs based on 

BDCA-4 expression and stimulated them with TLR-7 or -9 
agonists. As previously demonstrated, pDC activation resulted 
in high levels of IFN �  production, expression of characteris-
tic maturation markers, a shift in chemokine receptor ex-
pression, and an increased survival ex vivo (Fig. S1, available 
at http://www.jem.org/cgi/content/full/jem.20070814/DC1) 
( 6, 10 ). We chose live infl uenza as an agonist, as it triggers 
rapid induction of IFN translation and protein accumulation 
such that it can be measured at an early time point by cytometric 
assays (Fig. S1 A and not depicted). Notably, pDCs respond 
to live infl uenza in a TLR-7 – dependant manner ( 3, 19, 20 ). 
To further characterize the eff ects of TLR engagement and 
to defi ne the role of pDCs in bridging innate and adaptive 
immunity, we used MAP technology to test the kinetics of 
production for 93 analytes using supernatants from stimulated 
pDCs. Using this initial screen, we defi ned a set of 12 mole-
cules for this study (those not signifi cantly produced by acti-
vated pDCs or by other cell types within the unfractionated 
PBMCs are listed in the Supplemental materials and methods). 
We chose a 20-h time point based on the observed kinetics 
of production for the diff erent analytes ( Fig. 1 A  and not 
depicted).  With this technology, we identifi ed pDCs as being 
able to secrete a broad array of proinfl ammatory cytokines 
and chemokines. As shown, several cytokines (TNF � , IL-6, 
and IL-1Ra) and chemokines (CCL3, CCL4, IL-8, and 
CXCL10) are produced in response to infl uenza or CpG-
2216 stimulation (Fig. 1 A). Although potential diff erences 
between infl uenza and CpG may refl ect distinct pathogen-
induced responses (Fig. S2), our interest was the defi nition of 
how activated pDCs initiate an infl ammatory milieu. 

 For several of the key analytes, we tested whether pDCs 
are the true source by performing intracellular cytokine stain-
ing ( Fig. 1 B ). Indeed, this is the case for TNF � , CXCL10, 
and IL-8. Notably, pDCs do not produce CCL2, suggesting 
that the CCL2 found in some of the experiments (and possibly 
other analytes) is caused by a contaminating cell population. 
In fact, the eff ect of pDCs on other cell types is of great 
 importance, and to assess which analytes are produced versus 
induced by activated pDCs, we performed MAP analysis on 
PBMCs and PBMCs depleted of pDCs (PBMCs-pDC). Be-
cause of the observation that infl uenza is stimulatory for other 
cell types within the PBMCs (unpublished data), we focused 
on CpG, as it is primarily acting on the pDCs. As expected, 
CpG-2216 triggered the production of IFN � , which was ab-
sent when pDCs were depleted ( Fig. 1 C ). Interestingly, the 
pattern of molecules produced does not follow the MAP of 
purifi ed pDCs. We observe low amounts of TNF- � , CCL3, 
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 pDC-derived IFN inhibits secretion of IL-8 

 IL-8, also called neutrophil-activating peptide-1 and CXCL8, 
is derived from several cell types in response to infl ammatory 
stimuli. It functions as a chemoattractant and a stimulator of 

and CCL4 ( Fig. 1 C ), all of which were highly expressed by 
purifi ed pDCs ( Fig. 1 ). Notably, there were much higher lev-
els of CCL2, CXCL10, and IL-1Ra produced by stimulated 
PBMCs than that observed from purifi ed pDCs ( Fig. 1 A, C ), 
yet these three analytes are completely dependant on the pres-
ence of pDCs, as is evident from the absence of these mole-
cules in the PBMCs-pDC condition. Although the dependence 
on pDCs is not too surprising, as we were stimulating the cells 
with a TLR-9 stimulus, these observations are important, as 
they suggest multiple mechanisms by which pDC activation 
infl uences chemokine and cytokine production. These results 
were also confi rmed using FACS-purifi ed pDCs ( n  � 2; un-
published data). In further dissecting the mechanisms by which 
pDCs initiate infl ammatory responses, we defi ned four stimu-
lation loops driven by TLR ligation and/or type I IFN 
 production. We report on four molecules to illustrate these 
pathways: TNF- � , IL-8, CXCL10, and CCL2. 

 TLR engagement results in the production of TNF �  

independent of autocrine IFN �  

 TNF �  is a pleiotropic infl ammatory cytokine. It is produced 
by several cell types, but is predominantly secreted by macro-
phages in response to TLR-2 and -4 stimulation ( 21, 22 ). 
Depending, in part, on the TNF receptor expressed, cells may 
respond to cytokine stimulation by undergoing cell activation, 
cell division, or cell death ( 23 ). Although pDCs have been 
previously reported to produce TNF � , and some studies have 
explored its role in inhibiting IFN � , the infl uence of the IFN �  
cytokine loops on TNF �  production has not been explored 
( 24 – 26 ). Interestingly, pDCs exposed to infl uenza or CpG se-
crete robust levels of TNF � , producing on average 9.5  �  10 9  
molecules of TNF �  per pDC, which is calculated based on the 
molecular weight of TNF �  and the number of cells used in the 
stimulation ( Fig. 1 ). As shown, pDCs are directly producing 
TNF �  ( Fig. 1 B ), and strikingly, they are one of the dominant 
sources of this cytokine when PBMCs are stimulated with in-
fl uenza ( Fig. 2 A , top plots).  In contrast, when PBMCs are 
stimulated by LPS, the majority of responding cells are mac-
rophage, and pDCs account for a negligible amount of the 
TNF �  produced ( Fig. 2 A , bottom plots). This is an important 
control, as it excluded the possibility that pDCs produce TNF �  
as a consequence of infl ammation. However, as LPS does not 
trigger a strong IFN �  response, it does not exclude the possi-
bility that pDC-derived IFN �  stimulates production of TNF �  
via an autocrine loop. To address this possibility, we stimulated 
purifi ed pDCs with infl uenza in the presence of blocking anti-
bodies specifi c for the interferon  � / �  receptor 2 (IFNAR2). 
No modulation of TNF �  was observed ( Fig. 2 B ); moreover, 
pDCs stimulated with purifi ed recombinant IFN �  2b  did not 
stimulate TNF �  production ( Fig. 2 C ). Together, these data 
indicate that engagement of TLR on pDCs results in the pro-
duction of high levels of TNF � , and that this activation pathway 
is independent of its ability to produce type I IFNs ( Fig. 2 D ). 
We have also demonstrated that CCL3 follows this pattern of 
expression stimulation of pDCs (Fig. S3, available at http://
www.jem.org/cgi/content/full/jem.20070814/DC1). 

 Figure 2.   pDCs secrete robust amounts of TNF �  in an IFN � -

 independent manner. (A) PBMCs were incubated for 5 h with 50 HAU/ml 

FLU or 10  � g/ml LPS, and brefeldin was added during the fi nal 2 h 30 min. 

Unstimulated PBMCs were used to establish the gating of TNF � -positive 

cells (not depicted). (B) PBMCs were stimulated for 5 h with FLU  �  anti-

IFNAR2. ICCS and surface staining were again performed to evaluate 

TNF �  production in stimulated pDCs. The histograms show TNF �  levels in 

BDCA-2 �  BDCA-4 �  cells. (C) 22,000 purifi ed pDCs were exposed to the 

indicated amount of rIFN � 2. After 20-h incubation, supernatants were 

harvested and TNF �  level was evaluated by Luminex. For each dataset, 

results are representative of two independent experiments. (D) A schematic 

representation of TNF �  production by pDCs that are independent of the 

IFN �  pathway.   
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As shown, pDC-derived IFN �  is essential, as blocking IFNAR 
engagement or pDC-depletion from the PBMCs completely 
abrogated the expression of CXCL10. It should also be noted 
that after a short stimulation with CpG or IFN � , B cells do 
not secrete measurable levels of CXCL10 ( Fig. 4 B  and not 
depicted); however, after 20 h, it was indeed possible to detect 
direct activation of TLR-9 on B cells, resulting in the induc-
tion of CXCL10, confi rming the results of Vollmer et al. ( Fig. 
4 D  and not depicted) ( 35 ). These data illustrate the complex 
cytokine loops responsible for expression of CXCL10; more-
over, it demonstrates that in some cell types, IFN �  stimulation 
is suffi  cient for triggering CXCL10 (monocytes and cDCs), 
whereas in others (pDCs), IFNAR signaling serves as an am-
plifi er of TLR activation, thus permitting the cell to achieve 
high levels of CXCL10 expression ( Fig. 4 E ). We have also 
demonstrated that CCL4 follows this pattern of expression af-
ter CpG stimulation of pDCs (Fig. S3). 

 CCL2 is not produced, but is robustly induced, 

by activated pDCs 

 Monocyte chemotactic protein-1, renamed CCL2, is a pro-
infl ammatory chemokine and plays a principal role in the re-
cruitment of monocytes to sites of injury and infl ammation 
( 36 ). The current models suggest that CCL2 produced in the 
tissue may drain to the lymph node and facilitate traffi  cking of 
monocytes from the blood via the HEVs ( 37 ). We now dem-
onstrate that activated pDC may be an additional trigger for 
CCL2 production. That said, the pDCs do not themselves 
produce CCL2 ( Fig. 1 B ); instead, activated pDCs induce 
production of CCL2 in PBMCs ( Fig. 5 A ).  Based on experi-
ments with recombinant IFN �  2a , we demonstrate that pDC-
derived type I IFNs may serve as the stimulus for CCL2 
production ( Fig. 5 B ), with the main cellular source being 
monocytes ( Fig. 5 C  and not depicted). These data illustrate 
a fourth mechanism by which pDCs may infl uence the in-
fl ammatory microenvironment of lymphoid organs ( Fig. 5 D ). 
We have also demonstrated that IL1RA follows this pattern 
of expression after CpG stimulation of pDCs ( Fig. 1 C  and 
not depicted). 

 pDCs in chronically infected HCV patients initiate a normal 

infl ammatory network 

 We next applied our insight from the MAP of pDCs to the 
evaluation of HCV-infected patients. It is well recognized 
that subversion of pathways responsible for the stimulation 
of type I IFNs is a critical feature of HCV pathogenesis and, 
moreover, therapeutic IFN �  2  (given in combination with 
ribavirin) remains the standard of care for chronically infected 
patients ( 38 ). These observations led to attention being focused 
on the functional state of pDCs in patients who become 
chronically infected. There remains signifi cant controversy in 
the fi eld ( 15, 18, 39, 40 ), and arguably, some of the confusion 
stems from not fully addressing the complex role of pDCs 
in the establishment of an infl ammatory milieu; instead, stud-
ies on this subject have simply relied on IFN �  production as 
a measure of pDC activity. 

angiogenesis ( 27, 28 ). As shown in  Fig. 1 , TLR stimuli in-
duce IL-8 production in pDCs; although this may be ex-
pected given the broad tissue distribution of IL-8 production, 
pDCs are a unique case, as they also produce high amounts of 
IFNs, which are known to inhibit IL-8 production at the 
transcriptional level ( 29, 30 ). To test this cytokine loop, we 
again performed intracellular cytokine staining on activated 
pDCs in the presence or absence of anti-IFNAR2. Notably, 
the amount of IL-8 produced on a per cell basis was not sig-
nifi cantly diff erent when autocrine stimulation by type I 
IFNs was inhibited ( Fig. 3 A ).  This result was confi rmed by 
Luminex on supernatants of stimulated pDCs ( Fig. 3 B ). In 
contrast, the production of IL-8 by other PBMCs, mono-
cytes in particular, increased dramatically in the presence of 
anti-IFNAR2 ( Fig. 3 C ). This could also be observed when 
we evaluated the levels of IL-8 in the supernatants of CpG-
2216 – stimulated PBMCs ( Fig. 3 D ). This was quite reveal-
ing, as in the absence of IFNAR blockade, IL-8 levels were 
undetectable; and it suggested that pDC-derived TNF �  trig-
gers IL-8 production ( 31 ). We confi rmed this hypothesis by 
exposing PBMCs to recombinant TNF �  in the presence of 
increasing amounts of IFN �  ( Fig. 3 E ). As shown, TNF �  has 
the ability to induce IL-8 production by whole PBMCs, but 
this eff ect is antagonized once IFN �  is present in the media. 
As schematized in  Fig. 3 F , we demonstrate that in respect to 
IL-8 induction, the following two opposing responses emerge 
from activated pDCs: induction by TNF �  and its simultane-
ous inhibition by type I IFN. 

 CXCL10 is produced and induced by activated pDCs 

 IFN 	 -inducible protein 10, now referred to as CXCL10, was 
fi rst identifi ed as an IFN 	 -induced gene product produced by 
monocytes, endothelial cells, and fi broblasts ( 32 ). It has also 
been shown that type I IFNs and TNF �  induces its produc-
tion ( 33 ), and it was recently reported that pDCs are included 
among the cell types that can produce CXCL10 ( 34 ). Al-
though our data support this result, with activated pDCs pro-
ducing  � 9  �  10 8  molecules of CXCL10/cell ( Fig. 1, A and B ), 
an additional source of pDC-induced CXCL10 exists ( Fig. 1 C ). 
We fi rst evaluated the production of CXCL10 by pDCs, and 
using anti-IFNAR2, we demonstrate that autocrine type I IFN 
amplifi es CXCL10 mRNA expression in CpG-stimulated 
pDCs ( Fig. 4 A ).  Next, we considered the eff ect of IFN �  
on other cell types. When rIFN �  2a  was added to PBMCs, 
we observed CXCL10 production by monocytes and cDCs 
( Fig. 4 B ). We also evaluated CXCL10 production in lym-
phocytes and NK cells, but did not observe signifi cant levels 
of CXCL10 production (unpublished data). Interestingly, 
pDCs were not stimulated to produce CXCL10 in response 
to IFN �  alone, suggesting that synergy between TLR and 
IFNAR stimulation is required, accounting for the high produc-
tion of CXCL10 by this cell type. To confi rm that pDC-
derived IFNs mediate release of CXCL10 after CpG stimulation, 
we monitored CXCL10 mRNA and protein in whole PBMCs 
in the presence of blocking antibodies, thus preventing the 
paracrine eff ects of type I IFNs ( Fig. 4 C  and not depicted). 
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 Figure 3.   pDC-derived IFN �  inhibits IL-8 production in monocytes and cDCs. (A) PBMCs were stimulated for 5 h with FLU  �  anti-IFNAR2. ICCS 

and surface staining were performed to evaluate IL-8 production in stimulated pDCs. The plots show IL-8 levels in BDCA-2 �  BDCA-4 �  cells. (B) Purifi ed 

pDCs were stimulated for 20 h with 50 HAU/ml FLU  �  anti-IFNAR2, and supernatants were harvested and analyzed by Luminex. Data shown are the 

mean of results obtained from two donors. (C) PBMCs were stimulated for 5 h with 50 HAU/ml FLU  �  anti-IFNAR2. ICCS and surface staining were 

performed to evaluate IL-8 production in monocytes (gated on CD14 �  expression), cDCs (identifi ed as BDCA-1 �  CD19 
  cells), and B cells (gated on CD19 �  

expression). For each dataset, results are representative of two independent experiments. (D) 5  �  10 5  PBMCs were incubated for 5 h with 50  � g/ml 
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.org/cgi/content/full/jem.20070814/DC1). Similar to our 
previous patient cohort, pDC enumeration in these patients 
indicated a slight reduction in the percentage of pDCs in 
NR HCV patients as compared with normal individuals 

 We established a new cohort of patients who failed to re-
spond to IFN � /ribavirin therapy (nonresponders [NRs]) and 
a control population of patients who are sustained virologic 
responders (SVRs; Table S1, available at http://www.jem

CpG-2216  �  anti-IFNAR2. Supernatants were harvested, and IL-8 levels were evaluated by Luminex. (E) 10 6  PBMCs were cultured in the presence of 1 ng/ml 

rTNF �  (solid line) or media alone (dashed line) in the presence of the increasing amounts of rIFN � . After 20 h, supernatants were harvested and IL-8 levels 

were evaluated by Luminex. Data show the average values obtained from experiments performed on two healthy donors. (F) A schematic representation 

illustrating the opposing effects of pDC-derived TNF �  and IFN �  on IL-8 production.   

   

  
 Figure 4.   CXCL10 is amplifi ed on pDCs and induced in PBMCs by pDC-derived IFN � . (A) Purifi ed pDCs were stimulated for 3 h using 50  � g/ml 

CpG-2216. RNA were extracted and CXCL10 mRNA was evaluated by quantitative PCR, as detailed in the Materials and methods. (B) PBMCs were exposed for 

5 h to recombinant IFN � 2, and ICCS was performed. CXCL10 expression was evaluated for the different cell populations using lineage markers. As a negative 

control, we added anti-IFNAR2 antibodies to the culture wells. (C) PBMCs or PBMCs depleted of pDCs (PBMCs-pDCs) were exposed to 50  � g/ml CpG-2216 for 

3 h in the presence of anti-IFNAR2. As in A, CXCL10 mRNA was evaluated by qPCR. (D) 10 6  PBMCs and PBMCs-pDCs were stimulated for 20 h with 5  � g/ml 

CpG-2216 in 200  � l of culture media. Supernatants were harvested and CXCL10 levels were evaluated by Luminex. Each dot represents a unique donor ( n  � 6), 

and the bars indicate the mean value. (E) A schematic representation illustrating the direct and induced production of CXCL10 by activated pDCs.   
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for their expression of defi ned maturation markers: CD80, 
CD86, CD83, HLA-DR, and the chemokine receptors CCR7 
and CXCR3. In all patients tested, we observed resting-state 
levels of maturation markers ( Fig. 6 A ), off ering evidence that 
circulating pDCs in SVR and NR HCV patients are in an 
inactive state.  As a control that patient pDCs were able to 
undergo maturation, we stimulated cells and assessed patient 

(unpublished data). In addition, we fi nd lower numbers of 
pDCs in SVRs, suggesting that the presence of HCV in the 
plasma of patients is not directly responsible for the decrease 
in pDC number. We next assessed the phenotype of freshly 
isolated circulating pDCs as a direct measure of their acti-
vation state. pDCs were identifi ed based on expression of 
BDCA-2 and -4 (Fig. S4 A). Gated cells were then analyzed 

   Figure 5.   CCL2 is induced in PBMCs by pDC-derived IFN � . (A) 10 6  PBMCs and PBMCs depleted of pDCs (PBMCs-pDCs) were stimulated for 20 h 

using 5  � g/ml CpG-2216. Supernatants were harvested, and CCL2 protein levels were evaluated by Luminex. Each dot represents a unique donor ( n  � 6), and 

the bars indicate the mean value. (B) 10 6  PBMCs were exposed to the indicated amount or rIFN � 2. After a 20-h incubation, supernatants were harvested 

and CCL2 levels were evaluated. Error bars indicate one SD. (C) PBMCs were exposed for 5 h to rIFN � 2, and then ICCS was performed. CCL2 expression in 

a defi ned cell population was evaluated using lineage markers, including CD3, CD14, CD16, CD19, CD56, CD83, and BDCA-2. (D) A schematic representation 

illustrating the induction of CCL2 by pDC-derived IFN � . For B and C, data are representative of two independent experiments.   
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 Figure 6.   pDCs are not infected and not stimulated by replication-competent HCV. (A) pDCs were isolated from fresh PBMCs, and the phenotype 

was analyzed on samples from healthy control subjects ( n  � 4, white bars), NRs ( n  � 5, gray bars), and SVRs ( n  � 5, black bars). The bars represent the 

average mean fl uorescence intensity of the FL-2 signal. (B) To directly evaluate infectability, 10 4  Huh7.5 cells or BDCA-4 – purifi ed pDCs were cultured 

in 96-well plates  �  Rluc-J6-JF. After 12 h, cells were washed 3 times with PBS to remove free and membrane-bound viruses. Cells were replated in 

complete media, and this was considered as time � 0 h for the experiment. At 0, 24, 48, and 72 h, cells were monitored for luciferase activity. Recombinant 

IL-3 (10 ng/ml) was added in pDCs, and survival was confi rmed by trypan blue exclusion at 72 h. Data shown are representative of two healthy donors. 

(C) Intracellular staining of claudin-1 was performed on Huh-7.5 cell line and freshly isolated PBMCs (from two healthy donors). Expression of claudin-1 

by pDCs was evaluated by looking at BDCA-2 � /BDCA-4 �  cells within PBMCs. (D) 10 6  PBMCs were stimulated with media alone, infl uenza-A/PR8, or J6-JFH. 

After 5 h, intracellular cytokine staining was performed to evaluate IFN �  production. pDCs were identifi ed as BDCA-2 �  BDCA-4 �  cells within the PBMCs, 

and IFN �  level on the gated cells is shown. Data are representative of experiments performed on PBMCs isolated from three healthy donors with two 

different viral preparations. These data were confi rmed by IFN �  Luminex in two additional donors (not depicted).   
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( Fig. 6 D  and not depicted). This observation was confi rmed 
by exposing pDCs derived from healthy individuals to primary 
isolate HCV in the presence of antiserum (unpublished data). 
As a positive control in our experiments, we used infl uenza 
A/PR8 as a pDC agonist. Finally, we tested if exposure to 
JFH-1J6 might abrogate pDC ’ s ability to respond to TLR 
stimuli. In coculture experiments, we fi nd no evidence that 
live HCV virions alter a pDC ’ s ability to produce IFN �  sec-
ondary to CpG and live infl uenza stimulation (unpublished 
data). We also evaluated if high viral titer plasma from patients 
could stimulate purifi ed pDCs (Fig. S5, available at http://
www.jem.org/cgi/content/full/jem.20070814/DC1). These 
plasma contain free viruses, as well as anti-E2 antibodies that 
can lead to formation of antibody – virus complexes ( 46 ). These 
data indicate that pDCs do not secret IFN �  in the presence 
of high viral titer plasma, suggesting that indirect entry of 
the virus, going through Fc receptors, does not lead to pDC 
activation. Together, these data support the absence of infec-
tion and the presence of quiescent pDCs within chronically 
infected HCV patients. 

 We next applied MAP to defi ne the infl ammatory net-
work triggered by the activation of purifi ed patient pDCs. 
Data were analyzed using a bioinformatics tool developed by 

pDC phenotype. As shown in the representative plots, the 
pDCs from all three cohorts underwent a rapid maturation 
looking at several surface molecules (Fig. S4 B, solid lines). 

 The lack of pDC activation in patients with high viral ti-
ter would suggest that HCV was neither infecting nor stimu-
lating pDCs. To directly test this supposition, we used the 
replication-competent chimeric HCV, J6-JFH ( 41 – 43 ). First, 
we evaluated direct infection of the pDC using a J6-JFH 
strain engineered to express cytoplasmic luciferase ( 44 ). Al-
though the hepatocellular line Huh-7.5 was readily infected, 
pDCs did not show any luciferase activity. Importantly, in 
this experiment, IL-3 was added to the pDC cultures to en-
sure survival over the 72-h time course ( Fig. 6 B ). In addi-
tion, we evaluated pDC ’ s expression of the recently identifi ed 
HCV coreceptor claudin-1 ( 45 ). Whereas the HCV-permissive 
cell line Huh-7.5 expresses high levels of claudin-1, expression 
on pDCs was undetectable. These data support our observa-
tion that pDCs are not infected, but it does not exclude the 
possibility that viral engagement of pDCs might result in 
pDC activation. 

 To address this question, we tested if J6-JFH exposure 
might induce pDCs to produce IFN � . Strikingly, no IFN �  
was produced in response to live, replication-competent HCV 

 Figure 7.   Purifi ed pDCs produce normal levels of TLR-9 – induced cytokines and chemokines. pDCs (mean purity  � 90%) isolated from 10 healthy 

donors (H, blue bars), 7 NRs (red bars), and 9 SVRs (yellow bars) were stimulated with 5  � g/ml CpG-2216 for 20 h. Supernatants were harvested and MAP 

was performed using the Luminex technology. Data were analyzed with the OmniViz program, and Mann-Whitney tests were performed to obtain P values 

(statistically signifi cant values, P  �  0.05, are shown in red). For each analyte, the range (R � min  −  max) and the median value (m) are indicated, 

expressed in nanograms/milliliter. Each stimulation was performed in duplicate, using 10 5  pDCs in 200  � l of culture media. * indicates the measured 

analytes that were not statistically different from unstimulated cells (not depicted; Mann-Whitney tests, P  �  0.05).   
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and we observed the expected patterns of expression for all 
cytokines/chemokines. We conclude that the pDCs in HCV 
patients are normal across several independent criteria. In-
deed, they are functionally active in regard to their ability to 
produce a broad spectrum of proinfl ammatory molecules, 
thus permitting the initiation of an appropriate infl amma-
tory network. 

  DISCUSSION  

 pDCs coordinate the production of four distinct chemokine 

and cytokine loops 

 Using MAP, we have characterized the network of chemo-
kines and cytokines produced upon pDC activation. Interest-
ingly, this technology lends itself to working with rare cell 
populations such as pDCs, as simultaneous measurements can 
be achieved using small amounts of cell supernatant. In ad-
dition, through the use of recombinant cytokines and block-
ing antibodies to cytokine receptors, it has been possible to 
provide a detailed analysis of what occurs when pDCs are 
activated by TLR-7 or -9 agonists. We fi nd that although 
pDCs represent a small percentage of the PBMCs, they trigger 
a remarkable cascade of chemokine and cytokine production. 
We defi ne four distinct cytokine loops that together help 

OmniViz, and patient data are represented as whisker-box 
plots, showing absolute amounts of the respective cytokine 
or chemokine ( Figs. 7 ).  To the right of each plot, the range 
(R) and median (M) value is reported. The Mann-Whitney 
test was used to determine statistical diff erences between each 
pair of patient cohorts: healthy (H) versus NR chronically 
infected patients (N); healthy (H) versus SVRs (S); and NRs 
(N) versus SVRs (S). Each P value is reported, and those val-
ues  �  0.05 are shown in red. Overall, there is a striking simi-
larity between the patient cohorts in respect to their pDC 
activity. For several analytes, however, we did observe statis-
tically signifi cant diff erences. Interestingly, in each of these 
instances, the HCV patients were producing higher levels of 
the respective analyte on a per pDC basis. In the case of 
IFN � , CXCL10, and IL-6 production, we detected statisti-
cally signifi cant diff erences in stimulated pDCs isolated from 
SVR than from healthy individuals. To determine if any of 
these diff erences were relevant to the pDCs ability to pro-
voke an infl ammatory cascade and to take into account the 
observed diff erences in absolute pDC number (unpublished 
data), we next defi ned the MAP of unfractionated PBMCs 
stimulated with CpG-2216 ( Fig. 8 ).  Notably, there were no 
statistically signifi cant diff erences across the three cohorts, 

 Figure 8.   The pDC-mediated infl ammatory network is intact in chronically infected HCV patients. Freshly isolated PBMCs from 8 healthy donors 

(H, blue bars), 7 NRs (red bars), and 9 SVRs (S, yellow bars) were stimulated with 5  � g/ml CpG-2216 for 20 h. Supernatants were harvested, and MAP was 

performed using the Luminex technology. Data were analyzed with the OmniViz program, and Mann-Whitney tests were performed to obtain P values 

(statistically signifi cant values, P  �  0.05, are shown in red). For each analyte, the range (R � min  −  max) and the median value (m) are indicated, expressed 

in nanograms/milliliter. Each stimulation was performed in duplicate using 10 6  pDCs in 200  � l of culture media. * indicates the measured analytes that 

were not statistically different from unstimulated cells (not depicted; Mann-Whitney tests, P  �  0.05).   
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transcription (and possibly translation) exert their control and 
help defi ne on a molecular level the regulation of these four 
cytokine loops. 

 A viable drug target in chronically infected HCV patients 

 There are nearly 200 million HCV-infected individuals world-
wide, posing a signifi cant public health risk ( 51 ). Approx-
imately 30% of people infected with HCV resolve infection, 
whereas 70% progress to chronic infection. Given the recent 
observations concerning the role of type I IFN in facilitating 
cDCs to prime CD8 �  T cells, it has been considered that 
HCV inhibits pDC function, thereby limiting endogenous 
IFN production. Indeed, there have been several studies that 
report evidence for impaired DC subsets in chronically in-
fected patients ( 17, 52, 53 ). As it is diffi  cult to reconcile these 
data with the observation that individuals chronically infected 
with HCV are not immunocompromised and that, in fact, 
they have high levels of endogenous IFN ( 54 ), we performed 
an in-depth evaluation of the phenotypic measures and func-
tional activity of patient pDCs compared with normal controls. 
It is important to note that prior studies have limited their 
analysis to the pDC ’ s ability to produce IFN � / � . In this 
study, we have considered the pDC in the context of its 
infl ammatory network and demonstrate that there is neither 
a defect in circulating pDCs nor in the ability of pDCs to en-
gage other PBMCs for the establishment of a chemokine and 
cytokine network. 

 In addition to immunologic measures of pDC function, 
we considered the direct eff ects of replication-competent vi-
rus on freshly isolated pDCs. We report no direct infection 
and fi nd no evidence for HCV virions resulting in pDC ac-
tivation ( Fig. 6, B and D ). Notably, these experiments were 
performed using a highly sensitive measure of infection, as 
the recombinant viruses were engineered to express renilla 
luciferase (Rluc). We also demonstrate that pDCs do not ex-
press the HCV receptor claudin-1. Finally, we demonstrate 
evidence that virus – antibody immune complexes present 
in HCV plasma do not result in pDC activation (Fig. S5). 
Given the lack of an intrinsic defect in chronically infected 
HCV patient pDCs, and the ability of circulating cells to 
respond appropriately to TLR stimulation, it is exciting to 
consider the use of pDC agonists as an alternative therapeu-
tic intervention. 

 The current standard of care for chronic HCV infection 
is a 1-yr course of pegylated IFN �  (PEG-IFN) and ribavirin 
( 55 ). The PEG-IFN is administered subcutaneously and re-
sults in a blood level of 10 – 25 ng/ml of type I IFN � / � . Al-
though this therapy results in  � 50% viral clearance, there are 
signifi cant adverse eff ects, including mental health problems 
(e.g., irritability, depression, and anxiety), leukopenia, throm-
bopenia, and changes in vision. New therapeutics are desper-
ately needed and pDC agonists are an exciting option for 
two reasons ( 56 – 58 ). First, it facilitates delivery of the IFN 
stimulation to the lymph node microenvironment. This is 
achieved by harnessing the biology of activated pDCs, which up-
 regulate CCR7 and traffi  c to the site of T cell priming. In this 

establish the proinfl ammatory response initiated by pDC activa-
tion (Fig. S6, available at http://www.jem.org/cgi/content/
full/jem.20070814/DC1). Specifi cally, we have characterized 
these cytokine loops in respect to the pDCs innate ability to 
produce type I interferons. In the fi rst, activated pDCs secrete 
factors such as TNF �  and CCL3 in a manner that is triggered 
by TLR engagement and independent of IFNAR stimulation 
( Fig. 2  and Fig. S3). In the second, IL-8 is the only molecule 
we identifi ed that follows a second pattern of expression; it 
is secreted by pDCs in response to TLR engagement, but its 
production is inhibited by IFNAR signaling ( Fig. 3 ). Inter-
estingly, pDCs are refractory to the inhibitory eff ects of IFN, 
suggesting that TLR-7 –  and -9 – induced IL-8 production 
follows a diff erent signaling pathway from TNF � -mediated 
IL-8 stimulation ( Fig. 3, A and B,  and not depicted). The 
third class of molecules is secreted by pDCs in response to 
TLR engagement, with their expression being enhanced by 
autocrine IFN. In the case of CXCL10 and CCL4, pDC-
derived IFN may also induce other cell types to produce 
these chemokines in a manner that is apparently independent 
of direct TLR stimulation ( Fig. 4  and Fig. S3). In the fourth 
cytokine loop, illustrated by CCL2 and also true for IL1Ra, 
IL1 � , and IL-12p70, the pDCs do not produce, but instead 
induce, the production of these molecules by other cell types 
( Fig. 5  and not depicted). These results suggest a coordinated 
set of events that support recruitment of defi ned cells and the 
production of infl ammatory analytes for the initiation of an 
aff erent immune response. 

 Although we have not directly evaluated the signaling 
pathways that mediate these four cytokine loops, and there 
exists the caveat of extrapolating from mouse experiments 
that primarily rely on embryonic fi broblasts derived from 
knockout animals, published data, indeed, supports such a 
demarcation of events upon pDC activation. We predict that 
the IFN-independent production of TNF �  and CCL3 is me-
diated by an IFN regulatory factor-5 – regulated gene induc-
tion program ( 47 ). This is predicated on the observation that 
 Irf5  
 / 
    hematopoietic cells respond to CpG by producing 
type I IFNs, but fail to secrete TNF �  in addition to other 
proinfl ammatory cytokines. Inhibition of IL-8 has been care-
fully characterized, and studies of the human  IL-8  promoter 
demonstrate that IFN � / �  suppresses its NF-  B site-mediated 
transcription ( 30 ). As IL-8 mediates neutrophil migration, its 
inhibition might be an important hallmark of pDC-initiated 
infl ammation in the lymph organs. Concerning the third 
signaling loop, the small but signifi cant amount of IFNAR-
independent CXCL10 is likely a result of TLR-induced 
phosphorylation of IFN regulatory factor-3, which acts as a 
homodimer and induces the transcription of  CXCL10  ( 48, 49 ). 
The autocrine and paracrine amplifi cation could be explained 
by the activation of IFN-stimulated gene factor 3, which will 
act on the ISRE within the promoter of  CXCL10  ( 33 ). 
Finally, it is also the IFN-stimulated gene factor that could 
account for the induction of CCL2, IL1Ra, IL-1 � , and IL-
12p70 in cells that are predisposed toward producing these 
molecules ( 11, 50 ). Clearly, additional modulators of gene 
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way, it off ers a second potential benefi t. By concentrating the 
IFN �  production to the lymphoid organs, it may be possible 
to achieve similar activity with lower systemic levels of IFN � . 
Thus, the stimulation of the hypothalamic – pituitary – adrenal 
axis may be less signifi cant, helping to avoid some of the more 
severe side eff ects of therapy, such as mood disorders. 

 In sum, we provide an in-depth characterization of the 
fi rst integrated map of the pDC chemokine/cytokine net-
work, and conclude that the pDCs generated from patients 
with chronic HCV infection are phenotypically and func-
tionally normal. This work also establishes a solid foundation 
for pDC immunotherapy, where the pDC itself would serve 
as the drug target, in turn releasing IFN � / �  into the lymph 
node microenvironment and facilitating the activation of 
adaptive immune responses. We expect that the analytic ap-
proach developed in this study will be of use in the evalua-
tion of perturbations in the cytokine/chemokine network in 
diff erent disease states. 

  MATERIALS AND METHODS  
 Cell preparation and isolation.   Buff y coat were obtained from the 

 É tablissement Fran ç ais du Sang. PBMCs were separated from granulocytes, 

erythrocytes, and platelets using Ficoll-Paque PLUS (GE Healthcare). Plasma-

cytoid DCs were isolated from 500  �  10 6  PBMCs using the anti – BDCA-4 

magnetic beads (Miltenyi Biotec) following the manufacturer ’ s protocol. 

Three populations were obtained: PBMCs, enriched pDCs (90 – 95% purity), 

and PBMCs depleted of pDCs (PBMCs-pDCs,  � 0.01% pDCs). In all ex-

periments, freshly isolated cells were used. 

 Cell stimulation.   Freshly isolated cells were resuspended in RPMI (Cambrex) 

that had been supplemented with 10% FCS (Eurobio). Number of cells and 

time of stimulation are indicated in the fi gure legends of each experi-

ment. All stimulations were performed in 96-well fl at-bottom plates (BD 

Biosciences) in a fi xed volume of 200  � l of media. Cells were stimulated 

with infl uenza virus strain A/PR8/1976 (Charles River Laboratories), LPS 

(serotype O55:5; Sigma-Aldrich), or CpG-2216 (5 � -GGGGGACGATC-

GTCGGGGGG-3 � ; Eurogentec). Recombinant IFN �  2  (Sigma-Aldrich) 

and TNF �  (R & D Systems) were reconstituted in PBS and stored at  − 80 ° C. 

Mouse monoclonal antibodies specifi c for human IFNAR2 (PBL biomedical) 

were used at 5  � g/ml and added simultaneously with the pDC agonist used. 

For intracellular cytokine staining experiments, cells were stimulated for 5 h 

with live infl uenza virus, and GolgiPlug (BD Biosciences) was added during 

the last 2 h. 

 Supernatant analysis.   After stimulation, supernatants were harvested and 

conserved at  − 80 ° C for further analysis. Chemokines and cytokines were 

measured by Luminex (12 plex kits; Biosource) following the manufacturer ’ s 

instructions. In brief, 50  � l of supernatant or standard was incubated with 

antibody-linked beads for 2 h, washed twice with wash solution, and incu-

bated for 1 h with biotinylated secondary antibodies. A fi nal incubation of 

30 min with streptavidin-PE preceded the acquisition on the Luminex 100IS. 

At least 100 events were acquired for each analyte. Values above or below 

the standard curves were replaced by the lowest or the highest concentra-

tions measured. Where applicable, two-tailed nonparametric comparisons 

(Mann-Whitney  U  test) were performed to calculate P values. Statistical 

analyses were performed with the OmniViz program. 

 Flow cytometric analysis.   Stimulated cells were transferred to 96-well 

round-bottom plates, washed once, and resuspended in 100  � l of FACS 

buff er (PBS, 1% FCS, and 1% pooled human sera). In intracellular cytokine 

stimulation (ICCS) experiments, surface lineage markers were used to iden-

tify pDCs (BDCA-2 FITC and BDCA-4 APC; Miltenyi Biotec), B cells and 

cDCs (CD19 FITC [BD Bioscience]; BDCA-1 APC [Miltenyi Biotec]), and 

monocytes (CD14 FITC; BD Bioscience) within stimulated PBMCs. Mouse 

anti – human CXCL10, IL-8, TNF �  (BD Biosciences), and CCL2 (eBio-

science) antibodies were directly conjugated to PE. IFN �  staining was per-

formed in two steps. First, mouse anti-IFN �  (PBL Biomedical) was used, 

followed by staining with a secondary antibody conjugated to PE (goat anti –

 mouse IgGs; Biosource). For PE-conjugated antibodies, cells were surface 

labeled, fi xed, permeabilized, and stained for intracellular cytokine production. 

For IFN �  detection, cells were fi xed and permeabilized fi rst so that the second-

ary antibody would not have the possibility to cross-react with surface-

bound antibodies. pDC phenotype analysis ( Fig. 6 A ) was performed by 

staining for pDC surface lineage markers (BDCA-2 FITC, BDCA-4 APC; 

Miltenyi Biotec) associated with the desired phenotype marker in FL-2 

channel (isotype PE, CD80 PE, CD86 PE, CD83 PE, HLA-DR PE, 

CXCR3 PE, and CCR7 PE; all purchased from BD Biosciences). Cells 

were incubated for 20 h at 4 ° C and analyzed by FACS, as indicated in the 

fi gure legend. Intracellular staining of claudin-1 was performed on fresh 

PBMCs (note, the available antibody recognizes an intracellular domain of 

the protein). Mouse anti – claudin-1 (Zymed Laboratories) was incubated for 

20 h, followed by a secondary antibody conjugated to PE. Staining was fol-

lowed by antibodies specifi c for surface markers BDCA-2/-4, thus allowing 

us to determine claudin-1 expression in pDCs. 

 Quantitative analysis of mRNA in stimulated cells.   Total RNA from 

3-h-stimulated cells were extracted using Trizol (Invitrogen), and cDNA 

was synthesized from 1 – 2  � g RNA using oligo-dT (Roche) and Super-

script reverse transcriptase (Invitrogen) according to the manufacturers ’  in-

structions. Quantitative real-time PCR was performed using the TaqMan 

gene expression assays technology (Applied Biosystems) for CXCL10 

(Hs00171042_m1), CCL2 (Hs00234142_m1), and CCL4 (Hs00237011_m1). 

GAPDH was used as a housekeeping gene to normalize mRNA expression. 

The ratio of gene of interest versus housekeeping gene was calculated ac-

cording to the following formula: ratio � 2  −  dCt (dCT � mean Ct gene  −  

mean Ct housekeeping). The mRNA fold increase was calculated as the 

 ratio between mRNA in stimulated cells and mRNA in unstimulated cells. 

The reactions were run on a PTC200 equipped with a Chromo4 detector 

(MJ Research). The analyses were performed with Opticon Monitor soft-

ware version 2.03 (MJ Research). All the measures were performed in dupli-

cate and validated when the diff erence in threshold cycle (Ct) between the 

2 measures was  � 0.3. 

 Patient cohort.   The study protocol RBM 03 – 59 was approved by the In-

stitut National de la Sant é  et de la Recherche M é dicale clinical investigation 

department and received ethical approval from the ethical committee of 

Necker Hospital (Consultative Committee for Protection of Persons in Bio-

medical Research). 22 HCV patients had chronic infection as defi ned by 

anti-HCV antibodies and HCV RNA positivity for a period of time  � 6 mo. 

They all had biopsy-proven chronic hepatitis related to a genotype 1 infection. 

21/22 patients were treated by a combination of pegylated interferon and 

ribavirin for at least 3 mo (Table S1); 12 were SVRs and 10 were NRs. 

SVRs were defi ned as individuals absent of HCV RNA for  � 6 mo after ter-

mination of therapy. NRs had viral persistence and liver injury. Samples 

were collected by leukapheresis for 17/22 patients, and from whole blood 

donations for 5/22 individuals. 

 Preparation of Rluc-J6-JFH and luciferase assay.   J6-JFH and J6-JFH –

 expressing Rluc were generated as previously described ( 44 ). Regarding the 

luciferase-expressing virus, the Rluc gene was inserted between the P7 and 

NS2 proteins of the J6-JFH chimeric virus, allowing for a cytoplasmic ex-

pression of the enzyme during viral replication. Viral stocks were prepared 

by harvesting the supernatants of Huh7.5 cells infected with J6-JFH or 

Rluc-J6-JFH and storing them at  − 80 ° C. 

 Luciferase assay.   Cells exposed to Rluc-J6-JFH were washed twice with 

PBS and lysed with Renilla lysis buff er (Promega). Lysates were harvested 
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and frozen at  − 80 ° C for further analysis. Frozen samples were thawed, 

and 10  � l of samples were mixed with luciferase assay substrate (Promega). 

Luciferase activity was measured using a luminometer (Lumat LB 9507; 

Berthold Technologies). 

 Online supplemental material.   Table S1 shows the characteristics of the 

HCV patients included in the study. Fig. S1 shows that pDCs mature and 

secrete IFN �  in response to TLR ligands. Fig. S2 shows the production of 

proinfl ammatory chemokines and cytokines by purifi ed pDCs. Fig. S3 shows 

the diff erential regulation of CCL3 and CCL4 production. Fig. S4 shows 

that pDCs isolated from chronic HCV patients undergo a normal maturation 

when stimulated in vitro. Fig. S5 shows that purifi ed healthy pDCs do not 

produce IFN �  when they are exposed to high viral titer HCV plasma. Fig. S6 

is a schematic summarizing the four diff erent loops of regulation described in 

the study. The online version of this article is available at http://www.jem

.org/cgi/content/full/jem.20070814/DC1. 
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